

 Navigation

 	
 index

 	rgi-assessment-tool stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/rgi-assessment-tool/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/rgi-assessment-tool/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	rgi-assessment-tool stable documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/readable-stream/node_modules/string_decoder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 string_decoder.js (require('string_decoder')) from Node.js core

Copyright Joyent, Inc. and other Node contributors. See LICENCE file for details.

Version numbers match the versions found in Node core, e.g. 0.10.24 matches Node 0.10.24, likewise 0.11.10 matches Node 0.11.10. Prefer the stable version over the unstable.

The build/ directory contains a build script that will scrape the source from the joyent/node [https://github.com/joyent/node] repo given a specific Node version.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/nwmatcher/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

NWMatcher [http://dperini.github.io/nwmatcher/]

A fast CSS selector engine and matcher.

Installation

To include NWMatcher in a standard web page:

<script type="text/javascript" src="nwmatcher.js"></script>

To use it with Node.js:

$ npm install nwmatcher.js

NWMatcher currently supports browsers (as a global, NW.Dom) and headless environments (as a CommonJS module).

Supported Selectors

Here is a list of all the CSS2/CSS3 Supported selectors [https://github.com/dperini/nwmatcher/wiki/CSS-supported-selectors].

Features and Compliance

You can read more about NWMatcher features and compliance [https://github.com/dperini/nwmatcher/wiki/Features-and-compliance] on the wiki.

API

DOM Selection

first(selector, context)

Returns a reference to the first element matching selector, starting at context.

match(element, selector, context)

Returns true if element matches selector, starting at context; returns false otherwise.

select(selector, context, callback)

Returns an array of all the elements matching selector, starting at context. If callback is provided, it is invoked for each matching element.

DOM Helpers

byId(id, from)

Returns a reference to the first element with ID id, optionally filtered to descendants of the element from.

byTag(tag, from)

Returns an array of elements having the specified tag name tag, optionally filtered to descendants of the element from.

byClass(class, from)

Returns an array of elements having the specified class name class, optionally filtered to descendants of the element from.

byName(name, from)

Returns an array of elements having the specified value name for their name attribute, optionally filtered to descendants of the element from.

getAttribute(element, attribute)

Return the value read from the attribute of element with name attribute, as a string.

hasAttribute(element, attribute)

Returns true element has an attribute with name attribute set; returns false otherwise.

Engine Configuration

configure(options)

The following options exist and can be set to true or false:

		CACHING: enable caching of results

		SHORTCUTS: allow accepting mangled selectors

		SIMPLENOT: disallow nested complex :not() selectors

		UNIQUE_ID: disallow multiple elements with same ID

		USE_QSAPI: enable native querySelectorAll if available

		USE_HTML5: enable special HTML5 rules, related to the relationship between :checked and :selected

		VERBOSITY: choose between throwing errors or just console warnings

Example:

NW.Dom.configure({ USE_QSAPI: false, VERBOSITY: false });

registerOperator(symbol, resolver)

Registers a new symbol and its matching resolver in the operators table. Example:

NW.Dom.registerOperator('!=', 'n!="%m"');

registerSelector(name, rexp, func)

Registers a new selector, with the matching regular expression and the appropriate resolver function, in the selectors table.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/entities/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #entities [image: NPM version] [https://npmjs.org/package/entities] [image: Downloads] [https://npmjs.org/package/entities] [image: Build Status] [http://travis-ci.org/fb55/node-entities] [image: Coverage] [https://coveralls.io/r/fb55/node-entities]

En- & decoder for XML/HTML entities.

####Features:

		Focussed on speed

		Supports three levels of entities: XML, HTML4 & HTML5
		Supports char code entities (eg. U)

##How to…

###…install entities

npm i entities

###…use entities

//encoding
require("entities").encode(<str> data[, <int> level]);
//decoding
require("entities").decode(<str> data[, <int> level]);

The level attribute indicates what level of entities should be decoded (0 = XML, 1 = HTML4 and 2 = HTML5). The default is 0 (read: XML).

There are also methods to access the level directly. Just append the name of the level to the action and you’re ready to go (e.g. encodeHTML4(data), decodeXML(data)).

License: BSD-like

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Change Log

v2.51.0 (2014/12/10)

		#1310 [https://github.com/request/request/pull/1310] Revert changes introduced in https://github.com/request/request/pull/1282 (@simov)

v2.50.0 (2014/12/09)

		#1308 [https://github.com/request/request/pull/1308] Add browser test to keep track of browserify compability. (@eiriksm)

		#1299 [https://github.com/request/request/pull/1299] Add optional support for jsonReviver (@poislagarde)

		#1277 [https://github.com/request/request/pull/1277] Add Coveralls configuration (@simov)

		#1307 [https://github.com/request/request/pull/1307] Upgrade form-data, add back browserify compability. Fixes #455. (@eiriksm)

		#1305 [https://github.com/request/request/pull/1305] Fix typo in README.md (@LewisJEllis)

		#1288 [https://github.com/request/request/pull/1288] Update README.md to explain custom file use case (@cliffcrosland)

v2.49.0 (2014/11/28)

		#1295 [https://github.com/request/request/pull/1295] fix(proxy): no-proxy false positive (@oliamb)

		#1292 [https://github.com/request/request/pull/1292] Upgrade caseless to 0.8.1 (@mmalecki)

		#1276 [https://github.com/request/request/pull/1276] Set transfer encoding for multipart/related to chunked by default (@simov)

		#1275 [https://github.com/request/request/pull/1275] Fix multipart content-type headers detection (@simov)

		#1269 [https://github.com/request/request/pull/1269] adds streams example for review (@tbuchok)

		#1238 [https://github.com/request/request/pull/1238] Add examples README.md (@simov)

v2.48.0 (2014/11/12)

		#1263 [https://github.com/request/request/pull/1263] Fixed a syntax error / typo in README.md (@xna2)

		#1253 [https://github.com/request/request/pull/1253] Add multipart chunked flag (@simov, @nylen)

		#1251 [https://github.com/request/request/pull/1251] Clarify that defaults() does not modify global defaults (@nylen)

		#1250 [https://github.com/request/request/pull/1250] Improve documentation for pool and maxSockets options (@nylen)

		#1237 [https://github.com/request/request/pull/1237] Documenting error handling when using streams (@vmattos)

		#1244 [https://github.com/request/request/pull/1244] Finalize changelog command (@nylen)

		#1241 [https://github.com/request/request/pull/1241] Fix typo (@alexanderGugel)

		#1223 [https://github.com/request/request/pull/1223] Show latest version number instead of “upcoming” in changelog (@nylen)

		#1236 [https://github.com/request/request/pull/1236] Document how to use custom CA in README (#1229) (@hypesystem)

		#1228 [https://github.com/request/request/pull/1228] Support for oauth with RSA-SHA1 signing (@nylen)

		#1216 [https://github.com/request/request/pull/1216] Made json and multipart options coexist (@nylen, @simov)

		#1225 [https://github.com/request/request/pull/1225] Allow header white/exclusive lists in any case. (@RReverser)

v2.47.0 (2014/10/26)

		#1222 [https://github.com/request/request/pull/1222] Move from mikeal/request to request/request (@nylen)

		#1220 [https://github.com/request/request/pull/1220] update qs dependency to 2.3.1 (@FredKSchott)

		#1212 [https://github.com/request/request/pull/1212] Improve tests/test-timeout.js (@nylen)

		#1219 [https://github.com/request/request/pull/1219] remove old globalAgent workaround for node 0.4 (@request)

		#1214 [https://github.com/request/request/pull/1214] Remove cruft left over from optional dependencies (@nylen)

		#1215 [https://github.com/request/request/pull/1215] Add proxyHeaderExclusiveList option for proxy-only headers. (@RReverser)

		#1211 [https://github.com/request/request/pull/1211] Allow ‘Host’ header instead of ‘host’ and remember case across redirects (@nylen)

		#1208 [https://github.com/request/request/pull/1208] Improve release script (@nylen)

		#1213 [https://github.com/request/request/pull/1213] Support for custom cookie store (@nylen, @mitsuru)

		#1197 [https://github.com/request/request/pull/1197] Clean up some code around setting the agent (@FredKSchott)

		#1209 [https://github.com/request/request/pull/1209] Improve multipart form append test (@simov)

		#1207 [https://github.com/request/request/pull/1207] Update changelog (@nylen)

		#1185 [https://github.com/request/request/pull/1185] Stream multipart/related bodies (@simov)

v2.46.0 (2014/10/23)

		#1198 [https://github.com/request/request/pull/1198] doc for TLS/SSL protocol options (@shawnzhu)

		#1200 [https://github.com/request/request/pull/1200] Add a Gitter chat badge to README.md (@gitter-badger)

		#1196 [https://github.com/request/request/pull/1196] Upgrade taper test reporter to v0.3.0 (@nylen)

		#1199 [https://github.com/request/request/pull/1199] Fix lint error: undeclared var i (@nylen)

		#1191 [https://github.com/request/request/pull/1191] Move self.proxy decision logic out of init and into a helper (@FredKSchott)

		#1190 [https://github.com/request/request/pull/1190] Move _buildRequest() logic back into init (@FredKSchott)

		#1186 [https://github.com/request/request/pull/1186] Support Smarter Unix URL Scheme (@FredKSchott)

		#1178 [https://github.com/request/request/pull/1178] update form documentation for new usage (@FredKSchott)

		#1180 [https://github.com/request/request/pull/1180] Enable no-mixed-requires linting rule (@nylen)

		#1184 [https://github.com/request/request/pull/1184] Don’t forward authorization header across redirects to different hosts (@nylen)

		#1183 [https://github.com/request/request/pull/1183] Correct README about pre and postamble CRLF using multipart and not mult... (@netpoetica)

		#1179 [https://github.com/request/request/pull/1179] Lint tests directory (@nylen)

		#1169 [https://github.com/request/request/pull/1169] add metadata for form-data file field (@dotcypress)

		#1173 [https://github.com/request/request/pull/1173] remove optional dependencies (@seanstrom)

		#1165 [https://github.com/request/request/pull/1165] Cleanup event listeners and remove function creation from init (@FredKSchott)

		#1174 [https://github.com/request/request/pull/1174] update the request.cookie docs to have a valid cookie example (@seanstrom)

		#1168 [https://github.com/request/request/pull/1168] create a detach helper and use detach helper in replace of nextTick (@seanstrom)

		#1171 [https://github.com/request/request/pull/1171] in post can send form data and use callback (@MiroRadenovic)

		#1159 [https://github.com/request/request/pull/1159] accept charset for x-www-form-urlencoded content-type (@seanstrom)

		#1157 [https://github.com/request/request/pull/1157] Update README.md: body with json=true (@Rob–W)

		#1164 [https://github.com/request/request/pull/1164] Disable tests/test-timeout.js on Travis (@nylen)

		#1153 [https://github.com/request/request/pull/1153] Document how to run a single test (@nylen)

		#1144 [https://github.com/request/request/pull/1144] adds documentation for the “response” event within the streaming section (@tbuchok)

		#1162 [https://github.com/request/request/pull/1162] Update eslintrc file to no longer allow past errors (@FredKSchott)

		#1155 [https://github.com/request/request/pull/1155] Support/use self everywhere (@seanstrom)

		#1161 [https://github.com/request/request/pull/1161] fix no-use-before-define lint warnings (@emkay)

		#1156 [https://github.com/request/request/pull/1156] adding curly brackets to get rid of lint errors (@emkay)

		#1151 [https://github.com/request/request/pull/1151] Fix localAddress test on OS X (@nylen)

		#1145 [https://github.com/request/request/pull/1145] documentation: fix outdated reference to setCookieSync old name in README (@FredKSchott)

		#1131 [https://github.com/request/request/pull/1131] Update pool documentation (@FredKSchott)

		#1143 [https://github.com/request/request/pull/1143] Rewrite all tests to use tape (@nylen)

		#1137 [https://github.com/request/request/pull/1137] Add ability to specifiy querystring lib in options. (@jgrund)

		#1138 [https://github.com/request/request/pull/1138] allow hostname and port in place of host on uri (@cappslock)

		#1134 [https://github.com/request/request/pull/1134] Fix multiple redirects and self.followRedirect (@blakeembrey)

		#1130 [https://github.com/request/request/pull/1130] documentation fix: add note about npm test for contributing (@FredKSchott)

		#1120 [https://github.com/request/request/pull/1120] Support/refactor request setup tunnel (@seanstrom)

		#1129 [https://github.com/request/request/pull/1129] linting fix: convert double quote strings to use single quotes (@FredKSchott)

		#1124 [https://github.com/request/request/pull/1124] linting fix: remove unneccesary semi-colons (@FredKSchott)

v2.45.0 (2014/10/06)

		#1128 [https://github.com/request/request/pull/1128] Add test for setCookie regression (@nylen)

		#1127 [https://github.com/request/request/pull/1127] added tests around using objects as values in a query string (@bcoe)

		#1103 [https://github.com/request/request/pull/1103] Support/refactor request constructor (@nylen, @seanstrom)

		#1119 [https://github.com/request/request/pull/1119] add basic linting to request library (@FredKSchott)

		#1121 [https://github.com/request/request/pull/1121] Revert “Explicitly use sync versions of cookie functions” (@nylen)

		#1118 [https://github.com/request/request/pull/1118] linting fix: Restructure bad empty if statement (@FredKSchott)

		#1117 [https://github.com/request/request/pull/1117] Fix a bad check for valid URIs (@FredKSchott)

		#1113 [https://github.com/request/request/pull/1113] linting fix: space out operators (@FredKSchott)

		#1116 [https://github.com/request/request/pull/1116] Fix typo in noProxyHost definition (@FredKSchott)

		#1114 [https://github.com/request/request/pull/1114] linting fix: Added a new operator that was missing when creating and throwing a new error (@FredKSchott)

		#1096 [https://github.com/request/request/pull/1096] No_proxy support (@samcday)

		#1107 [https://github.com/request/request/pull/1107] linting-fix: remove unused variables (@FredKSchott)

		#1112 [https://github.com/request/request/pull/1112] linting fix: Make return values consistent and more straitforward (@FredKSchott)

		#1111 [https://github.com/request/request/pull/1111] linting fix: authPieces was getting redeclared (@FredKSchott)

		#1105 [https://github.com/request/request/pull/1105] Use strict mode in request (@FredKSchott)

		#1110 [https://github.com/request/request/pull/1110] linting fix: replace lazy ‘==’ with more strict ‘===’ (@FredKSchott)

		#1109 [https://github.com/request/request/pull/1109] linting fix: remove function call from if-else conditional statement (@FredKSchott)

		#1102 [https://github.com/request/request/pull/1102] Fix to allow setting a requester on recursive calls to request.defaults (@tikotzky)

		#1095 [https://github.com/request/request/pull/1095] Tweaking engines in package.json (@pdehaan)

		#1082 [https://github.com/request/request/pull/1082] Forward the socket event from the httpModule request (@seanstrom)

		#972 [https://github.com/request/request/pull/972] Clarify gzip handling in the README (@kevinoid)

		#1089 [https://github.com/request/request/pull/1089] Mention that encoding defaults to utf8, not Buffer (@stuartpb)

		#1088 [https://github.com/request/request/pull/1088] Fix cookie example in README.md and make it more clear (@pipi32167)

		#1027 [https://github.com/request/request/pull/1027] Add support for multipart form data in request options. (@crocket)

		#1076 [https://github.com/request/request/pull/1076] use Request.abort() to abort the request when the request has timed-out (@seanstrom)

		#1068 [https://github.com/request/request/pull/1068] add optional postamble required by .NET multipart requests (@netpoetica)

v2.43.0 (2014/09/18)

		#1057 [https://github.com/request/request/pull/1057] Defaults should not overwrite defined options (@davidwood)

		#1046 [https://github.com/request/request/pull/1046] Propagate datastream errors, useful in case gzip fails. (@ZJONSSON, @Janpot)

		#1063 [https://github.com/request/request/pull/1063] copy the input headers object #1060 (@finnp)

		#1031 [https://github.com/request/request/pull/1031] Explicitly use sync versions of cookie functions (@ZJONSSON)

		#1056 [https://github.com/request/request/pull/1056] Fix redirects when passing url.parse(x) as URL to convenience method (@nylen)

v2.42.0 (2014/09/04)

		#1053 [https://github.com/request/request/pull/1053] Fix #1051 Parse auth properly when using non-tunneling proxy (@isaacs)

v2.41.0 (2014/09/04)

		#1050 [https://github.com/request/request/pull/1050] Pass whitelisted headers to tunneling proxy. Organize all tunneling logic. (@isaacs, @Feldhacker)

		#1035 [https://github.com/request/request/pull/1035] souped up nodei.co badge (@rvagg)

		#1048 [https://github.com/request/request/pull/1048] Aws is now possible over a proxy (@steven-aerts)

		#1039 [https://github.com/request/request/pull/1039] extract out helper functions to a helper file (@seanstrom)

		#1021 [https://github.com/request/request/pull/1021] Support/refactor indexjs (@seanstrom)

		#1033 [https://github.com/request/request/pull/1033] Improve and document debug options (@nylen)

		#1034 [https://github.com/request/request/pull/1034] Fix readme headings (@nylen)

		#1030 [https://github.com/request/request/pull/1030] Allow recursive request.defaults (@tikotzky)

		#1029 [https://github.com/request/request/pull/1029] Fix a couple of typos (@nylen)

		#675 [https://github.com/request/request/pull/675] Checking for SSL fault on connection before reading SSL properties (@VRMink)

		#989 [https://github.com/request/request/pull/989] Added allowRedirect function. Should return true if redirect is allowed or false otherwise (@doronin)

		#1025 [https://github.com/request/request/pull/1025] [fixes #1023] Set self._ended to true once response has ended (@mridgway)

		#1020 [https://github.com/request/request/pull/1020] Add back removed debug metadata (@FredKSchott)

		#1008 [https://github.com/request/request/pull/1008] Moving to module instead of cutomer buffer concatenation. (@mikeal)

		#770 [https://github.com/request/request/pull/770] Added dependency badge for README file; (@timgluz)

		#1016 [https://github.com/request/request/pull/1016] toJSON no longer results in an infinite loop, returns simple objects (@FredKSchott)

		#1018 [https://github.com/request/request/pull/1018] Remove pre-0.4.4 HTTPS fix (@mmalecki)

		#1006 [https://github.com/request/request/pull/1006] Migrate to caseless, fixes #1001 (@mikeal)

		#995 [https://github.com/request/request/pull/995] Fix parsing array of objects (@sjonnet19)

		#999 [https://github.com/request/request/pull/999] Fix fallback for browserify for optional modules. (@eiriksm)

		#996 [https://github.com/request/request/pull/996] Wrong oauth signature when multiple same param keys exist [updated] (@bengl)

v2.40.0 (2014/08/06)

		#992 [https://github.com/request/request/pull/992] Fix security vulnerability. Update qs (@poeticninja)

		#988 [https://github.com/request/request/pull/988] “–” -> “—” (@upisfree)

		#987 [https://github.com/request/request/pull/987] Show optional modules as being loaded by the module that reqeusted them (@iarna)

v2.39.0 (2014/07/24)

		#976 [https://github.com/request/request/pull/976] Update README.md (@fosco-maestro)

v2.38.0 (2014/07/22)

		#952 [https://github.com/request/request/pull/952] Adding support to client certificate with proxy use case (@ofirshaked)

		#884 [https://github.com/request/request/pull/884] Documented tough-cookie installation. (@wbyoung)

		#935 [https://github.com/request/request/pull/935] Correct repository url (@fritx)

		#963 [https://github.com/request/request/pull/963] Update changelog (@nylen)

		#960 [https://github.com/request/request/pull/960] Support gzip with encoding on node pre-v0.9.4 (@kevinoid)

		#953 [https://github.com/request/request/pull/953] Add async Content-Length computation when using form-data (@LoicMahieu)

		#844 [https://github.com/request/request/pull/844] Add support for HTTP[S]_PROXY environment variables. Fixes #595. (@jvmccarthy)

		#946 [https://github.com/request/request/pull/946] defaults: merge headers (@aj0strow)

v2.37.0 (2014/07/07)

		#957 [https://github.com/request/request/pull/957] Silence EventEmitter memory leak warning #311 (@watson)

		#955 [https://github.com/request/request/pull/955] check for content-length header before setting it in nextTick (@camilleanne)

		#951 [https://github.com/request/request/pull/951] Add support for gzip content decoding (@kevinoid)

		#949 [https://github.com/request/request/pull/949] Manually enter querystring in form option (@charlespwd)

		#944 [https://github.com/request/request/pull/944] Make request work with browserify (@eiriksm)

		#943 [https://github.com/request/request/pull/943] New mime module (@eiriksm)

		#927 [https://github.com/request/request/pull/927] Bump version of hawk dep. (@samccone)

		#907 [https://github.com/request/request/pull/907] append secureOptions to poolKey (@medovob)

v2.35.0 (2014/05/17)

		#901 [https://github.com/request/request/pull/901] Fixes #555 (@pigulla)

		#897 [https://github.com/request/request/pull/897] merge with default options (@vohof)

		#891 [https://github.com/request/request/pull/891] fixes 857 - options object is mutated by calling request (@lalitkapoor)

		#869 [https://github.com/request/request/pull/869] Pipefilter test (@tgohn)

		#866 [https://github.com/request/request/pull/866] Fix typo (@dandv)

		#861 [https://github.com/request/request/pull/861] Add support for RFC 6750 Bearer Tokens (@phedny)

		#809 [https://github.com/request/request/pull/809] upgrade tunnel-proxy to 0.4.0 (@ksato9700)

		#850 [https://github.com/request/request/pull/850] Fix word consistency in readme (@0xNobody)

		#810 [https://github.com/request/request/pull/810] add some exposition to mpu example in README.md (@mikermcneil)

		#840 [https://github.com/request/request/pull/840] improve error reporting for invalid protocols (@FND)

		#821 [https://github.com/request/request/pull/821] added secureOptions back (@nw)

		#815 [https://github.com/request/request/pull/815] Create changelog based on pull requests (@lalitkapoor)

v2.34.0 (2014/02/18)

		#516 [https://github.com/request/request/pull/516] UNIX Socket URL Support (@lyuzashi)

		#801 [https://github.com/request/request/pull/801] 794 ignore cookie parsing and domain errors (@lalitkapoor)

		#802 [https://github.com/request/request/pull/802] Added the Apache license to the package.json. (@keskival)

		#793 [https://github.com/request/request/pull/793] Adds content-length calculation when submitting forms using form-data li... (@Juul)

		#785 [https://github.com/request/request/pull/785] Provide ability to override content-type when json option used (@vvo)

		#781 [https://github.com/request/request/pull/781] simpler isReadStream function (@joaojeronimo)

v2.32.0 (2014/01/16)

		#767 [https://github.com/request/request/pull/767] Use tough-cookie CookieJar sync API (@stash)

		#764 [https://github.com/request/request/pull/764] Case-insensitive authentication scheme (@bobyrizov)

		#763 [https://github.com/request/request/pull/763] Upgrade tough-cookie to 0.10.0 (@stash)

		#744 [https://github.com/request/request/pull/744] Use Cookie.parse (@lalitkapoor)

		#757 [https://github.com/request/request/pull/757] require aws-sign2 (@mafintosh)

v2.31.0 (2014/01/08)

		#645 [https://github.com/request/request/pull/645] update twitter api url to v1.1 (@mick)

		#746 [https://github.com/request/request/pull/746] README: Markdown code highlight (@weakish)

		#745 [https://github.com/request/request/pull/745] updating setCookie example to make it clear that the callback is required (@emkay)

		#742 [https://github.com/request/request/pull/742] Add note about JSON output body type (@iansltx)

		#741 [https://github.com/request/request/pull/741] README example is using old cookie jar api (@emkay)

		#736 [https://github.com/request/request/pull/736] Fix callback arguments documentation (@mmalecki)

v2.30.0 (2013/12/13)

		#732 [https://github.com/request/request/pull/732] JSHINT: Creating global ‘for’ variable. Should be ‘for (var ...’. (@Fritz-Lium)

		#730 [https://github.com/request/request/pull/730] better HTTP DIGEST support (@dai-shi)

		#728 [https://github.com/request/request/pull/728] Fix TypeError when calling request.cookie (@scarletmeow)

v2.29.0 (2013/12/06)

		#727 [https://github.com/request/request/pull/727] fix requester bug (@jchris)

v2.28.0 (2013/12/04)

		#724 [https://github.com/request/request/pull/724] README.md: add custom HTTP Headers example. (@tcort)

		#719 [https://github.com/request/request/pull/719] Made a comment gender neutral. (@oztu)

		#715 [https://github.com/request/request/pull/715] Request.multipart no longer crashes when header ‘Content-type’ present (@pastaclub)

		#710 [https://github.com/request/request/pull/710] Fixing listing in callback part of docs. (@lukasz-zak)

		#696 [https://github.com/request/request/pull/696] Edited README.md for formatting and clarity of phrasing (@Zearin)

		#694 [https://github.com/request/request/pull/694] Typo in README (@VRMink)

		#690 [https://github.com/request/request/pull/690] Handle blank password in basic auth. (@diversario)

		#682 [https://github.com/request/request/pull/682] Optional dependencies (@Turbo87)

		#683 [https://github.com/request/request/pull/683] Travis CI support (@Turbo87)

		#674 [https://github.com/request/request/pull/674] change cookie module,to tough-cookie.please check it . (@sxyizhiren)

		#666 [https://github.com/request/request/pull/666] make ciphers and secureProtocol to work in https request (@richarddong)

		#656 [https://github.com/request/request/pull/656] Test case for #304. (@diversario)

		#662 [https://github.com/request/request/pull/662] option.tunnel to explicitly disable tunneling (@seanmonstar)

		#659 [https://github.com/request/request/pull/659] fix failure when running with NODE_DEBUG=request, and a test for that (@jrgm)

		#630 [https://github.com/request/request/pull/630] Send random cnonce for HTTP Digest requests (@wprl)

v2.27.0 (2013/08/15)

		#619 [https://github.com/request/request/pull/619] decouple things a bit (@joaojeronimo)

v2.26.0 (2013/08/07)

		#613 [https://github.com/request/request/pull/613] Fixes #583, moved initialization of self.uri.pathname (@lexander)

		#605 [https://github.com/request/request/pull/605] Only include ”:” + pass in Basic Auth if it’s defined (fixes #602) (@bendrucker)

v2.24.0 (2013/07/23)

		#596 [https://github.com/request/request/pull/596] Global agent is being used when pool is specified (@Cauldrath)

		#594 [https://github.com/request/request/pull/594] Emit complete event when there is no callback (@RomainLK)

		#601 [https://github.com/request/request/pull/601] Fixed a small typo (@michalstanko)

v2.23.0 (2013/07/23)

		#589 [https://github.com/request/request/pull/589] Prevent setting headers after they are sent (@geek)

		#587 [https://github.com/request/request/pull/587] Global cookie jar disabled by default (@threepointone)

v2.22.0 (2013/07/05)

		#544 [https://github.com/request/request/pull/544] Update http-signature version. (@davidlehn)

		#581 [https://github.com/request/request/pull/581] Fix spelling of “ignoring.” (@bigeasy)

		#568 [https://github.com/request/request/pull/568] use agentOptions to create agent when specified in request (@SamPlacette)

		#564 [https://github.com/request/request/pull/564] Fix redirections (@criloz)

		#541 [https://github.com/request/request/pull/541] The exported request function doesn’t have an auth method (@tschaub)

		#542 [https://github.com/request/request/pull/542] Expose Request class (@regality)

v2.21.0 (2013/04/30)

		#536 [https://github.com/request/request/pull/536] Allow explicitly empty user field for basic authentication. (@mikeando)

		#532 [https://github.com/request/request/pull/532] fix typo (@fredericosilva)

		#497 [https://github.com/request/request/pull/497] Added redirect event (@Cauldrath)

		#503 [https://github.com/request/request/pull/503] Fix basic auth for passwords that contain colons (@tonistiigi)

		#521 [https://github.com/request/request/pull/521] Improving test-localAddress.js (@noway421)

		#529 [https://github.com/request/request/pull/529] dependencies versions bump (@jodaka)

v2.17.0 (2013/04/22)

		#523 [https://github.com/request/request/pull/523] Updating dependencies (@noway421)

		#520 [https://github.com/request/request/pull/520] Fixing test-tunnel.js (@noway421)

		#519 [https://github.com/request/request/pull/519] Update internal path state on post-creation QS changes (@jblebrun)

		#510 [https://github.com/request/request/pull/510] Add HTTP Signature support. (@davidlehn)

		#502 [https://github.com/request/request/pull/502] Fix POST (and probably other) requests that are retried after 401 Unauthorized (@nylen)

		#508 [https://github.com/request/request/pull/508] Honor the .strictSSL option when using proxies (tunnel-agent) (@jhs)

		#512 [https://github.com/request/request/pull/512] Make password optional to support the format: http://username@hostname/ (@pajato1)

		#513 [https://github.com/request/request/pull/513] add ‘localAddress’ support (@yyfrankyy)

		#498 [https://github.com/request/request/pull/498] Moving response emit above setHeaders on destination streams (@kenperkins)

		#490 [https://github.com/request/request/pull/490] Empty response body (3-rd argument) must be passed to callback as an empty string (@Olegas)

		#479 [https://github.com/request/request/pull/479] Changing so if Accept header is explicitly set, sending json does not ov... (@RoryH)

		#475 [https://github.com/request/request/pull/475] Use unescape from querystring (@shimaore)

		#473 [https://github.com/request/request/pull/473] V0.10 compat (@isaacs)

		#471 [https://github.com/request/request/pull/471] Using querystring library from visionmedia (@kbackowski)

		#461 [https://github.com/request/request/pull/461] Strip the UTF8 BOM from a UTF encoded response (@kppullin)

		#460 [https://github.com/request/request/pull/460] hawk 0.10.0 (@hueniverse)

		#462 [https://github.com/request/request/pull/462] if query params are empty, then request path shouldn’t end with a ‘?’ (merges cleanly now) (@jaipandya)

		#456 [https://github.com/request/request/pull/456] hawk 0.9.0 (@hueniverse)

		#429 [https://github.com/request/request/pull/429] Copy options before adding callback. (@nrn)

		#454 [https://github.com/request/request/pull/454] Destroy the response if present when destroying the request (clean merge) (@mafintosh)

		#310 [https://github.com/request/request/pull/310] Twitter Oauth Stuff Out of Date; Now Updated (@joemccann)

		#413 [https://github.com/request/request/pull/413] rename googledoodle.png to .jpg (@nfriedly)

		#448 [https://github.com/request/request/pull/448] Convenience method for PATCH (@mloar)

		#444 [https://github.com/request/request/pull/444] protect against double callbacks on error path (@spollack)

		#433 [https://github.com/request/request/pull/433] Added support for HTTPS cert & key (@mmalecki)

		#430 [https://github.com/request/request/pull/430] Respect specified {Host,host} headers, not just {host} (@andrewschaaf)

		#415 [https://github.com/request/request/pull/415] Fixed a typo. (@jerem)

		#338 [https://github.com/request/request/pull/338] Add more auth options, including digest support (@nylen)

		#403 [https://github.com/request/request/pull/403] Optimize environment lookup to happen once only (@mmalecki)

		#398 [https://github.com/request/request/pull/398] Add more reporting to tests (@mmalecki)

		#388 [https://github.com/request/request/pull/388] Ensure “safe” toJSON doesn’t break EventEmitters (@othiym23)

		#381 [https://github.com/request/request/pull/381] Resolving “Invalid signature. Expected signature base string: ” (@landeiro)

		#380 [https://github.com/request/request/pull/380] Fixes missing host header on retried request when using forever agent (@mac-)

		#376 [https://github.com/request/request/pull/376] Headers lost on redirect (@kapetan)

		#375 [https://github.com/request/request/pull/375] Fix for missing oauth_timestamp parameter (@jplock)

		#374 [https://github.com/request/request/pull/374] Correct Host header for proxy tunnel CONNECT (@youurayy)

		#370 [https://github.com/request/request/pull/370] Twitter reverse auth uses x_auth_mode not x_auth_type (@drudge)

		#369 [https://github.com/request/request/pull/369] Don’t remove x_auth_mode for Twitter reverse auth (@drudge)

		#344 [https://github.com/request/request/pull/344] Make AWS auth signing find headers correctly (@nlf)

		#363 [https://github.com/request/request/pull/363] rfc3986 on base_uri, now passes tests (@jeffmarshall)

		#362 [https://github.com/request/request/pull/362] Running rfc3986 on base_uri in oauth.hmacsign instead of just encodeURIComponent (@jeffmarshall)

		#361 [https://github.com/request/request/pull/361] Don’t create a Content-Length header if we already have it set (@danjenkins)

		#360 [https://github.com/request/request/pull/360] Delete self._form along with everything else on redirect (@jgautier)

		#355 [https://github.com/request/request/pull/355] stop sending erroneous headers on redirected requests (@azylman)

		#332 [https://github.com/request/request/pull/332] Fix #296 - Only set Content-Type if body exists (@Marsup)

		#343 [https://github.com/request/request/pull/343] Allow AWS to work in more situations, added a note in the README on its usage (@nlf)

		#320 [https://github.com/request/request/pull/320] request.defaults() doesn’t need to wrap jar() (@StuartHarris)

		#322 [https://github.com/request/request/pull/322] Fix + test for piped into request bumped into redirect. #321 (@alexindigo)

		#326 [https://github.com/request/request/pull/326] Do not try to remove listener from an undefined connection (@strk)

		#318 [https://github.com/request/request/pull/318] Pass servername to tunneling secure socket creation (@isaacs)

		#317 [https://github.com/request/request/pull/317] Workaround for #313 (@isaacs)

		#293 [https://github.com/request/request/pull/293] Allow parser errors to bubble up to request (@mscdex)

		#290 [https://github.com/request/request/pull/290] A test for #289 (@isaacs)

		#280 [https://github.com/request/request/pull/280] Like in node.js print options if NODE_DEBUG contains the word request (@Filirom1)

		#207 [https://github.com/request/request/pull/207] Fix #206 Change HTTP/HTTPS agent when redirecting between protocols (@isaacs)

		#214 [https://github.com/request/request/pull/214] documenting additional behavior of json option (@jphaas)

		#272 [https://github.com/request/request/pull/272] Boundary begins with CRLF? (@elspoono)

		#284 [https://github.com/request/request/pull/284] Remove stray console.log() call in multipart generator. (@bcherry)

		#241 [https://github.com/request/request/pull/241] Composability updates suggested by issue #239 (@polotek)

		#282 [https://github.com/request/request/pull/282] OAuth Authorization header contains non-“oauth_” parameters (@jplock)

		#279 [https://github.com/request/request/pull/279] fix tests with boundary by injecting boundry from header (@benatkin)

		#273 [https://github.com/request/request/pull/273] Pipe back pressure issue (@mafintosh)

		#268 [https://github.com/request/request/pull/268] I’m not OCD seriously (@TehShrike)

		#263 [https://github.com/request/request/pull/263] Bug in OAuth key generation for sha1 (@nanodocumet)

		#265 [https://github.com/request/request/pull/265] uncaughtException when redirected to invalid URI (@naholyr)

		#262 [https://github.com/request/request/pull/262] JSON test should check for equality (@timshadel)

		#261 [https://github.com/request/request/pull/261] Setting ‘pool’ to ‘false’ does NOT disable Agent pooling (@timshadel)

		#249 [https://github.com/request/request/pull/249] Fix for the fix of your (closed) issue #89 where self.headers[content-length] is set to 0 for all methods (@sethbridges)

		#255 [https://github.com/request/request/pull/255] multipart allow body === ‘’ (the empty string) (@Filirom1)

		#260 [https://github.com/request/request/pull/260] fixed just another leak of ‘i’ (@sreuter)

		#246 [https://github.com/request/request/pull/246] Fixing the set-cookie header (@jeromegn)

		#243 [https://github.com/request/request/pull/243] Dynamic boundary (@zephrax)

		#240 [https://github.com/request/request/pull/240] don’t error when null is passed for options (@polotek)

		#211 [https://github.com/request/request/pull/211] Replace all occurrences of special chars in RFC3986 (@chriso)

		#224 [https://github.com/request/request/pull/224] Multipart content-type change (@janjongboom)

		#217 [https://github.com/request/request/pull/217] need to use Authorization (titlecase) header with Tumblr OAuth (@visnup)

		#203 [https://github.com/request/request/pull/203] Fix cookie and redirect bugs and add auth support for HTTPS tunnel (@milewise)

		#199 [https://github.com/request/request/pull/199] Tunnel (@isaacs)

		#198 [https://github.com/request/request/pull/198] Bugfix on forever usage of util.inherits (@isaacs)

		#197 [https://github.com/request/request/pull/197] Make ForeverAgent work with HTTPS (@isaacs)

		#193 [https://github.com/request/request/pull/193] Fixes GH-119 (@goatslacker)

		#188 [https://github.com/request/request/pull/188] Add abort support to the returned request (@itay)

		#176 [https://github.com/request/request/pull/176] Querystring option (@csainty)

		#182 [https://github.com/request/request/pull/182] Fix request.defaults to support (uri, options, callback) api (@twilson63)

		#180 [https://github.com/request/request/pull/180] Modified the post, put, head and del shortcuts to support uri optional param (@twilson63)

		#179 [https://github.com/request/request/pull/179] fix to add opts in .pipe(stream, opts) (@substack)

		#177 [https://github.com/request/request/pull/177] Issue #173 Support uri as first and optional config as second argument (@twilson63)

		#170 [https://github.com/request/request/pull/170] can’t create a cookie in a wrapped request (defaults) (@fabianonunes)

		#168 [https://github.com/request/request/pull/168] Picking off an EasyFix by adding some missing mimetypes. (@serby)

		#161 [https://github.com/request/request/pull/161] Fix cookie jar/headers.cookie collision (#125) (@papandreou)

		#162 [https://github.com/request/request/pull/162] Fix issue #159 (@dpetukhov)

		#90 [https://github.com/request/request/pull/90] add option followAllRedirects to follow post/put redirects (@jroes)

		#148 [https://github.com/request/request/pull/148] Retry Agent (@thejh)

		#146 [https://github.com/request/request/pull/146] Multipart should respect content-type if previously set (@apeace)

		#144 [https://github.com/request/request/pull/144] added “form” option to readme (@petejkim)

		#133 [https://github.com/request/request/pull/133] Fixed cookies parsing (@afanasy)

		#135 [https://github.com/request/request/pull/135] host vs hostname (@iangreenleaf)

		#132 [https://github.com/request/request/pull/132] return the body as a Buffer when encoding is set to null (@jahewson)

		#112 [https://github.com/request/request/pull/112] Support using a custom http-like module (@jhs)

		#104 [https://github.com/request/request/pull/104] Cookie handling contains bugs (@janjongboom)

		#121 [https://github.com/request/request/pull/121] Another patch for cookie handling regression (@jhurliman)

		#117 [https://github.com/request/request/pull/117] Remove the global i (@3rd-Eden)

		#110 [https://github.com/request/request/pull/110] Update to Iris Couch URL (@jhs)

		#86 [https://github.com/request/request/pull/86] Can’t post binary to multipart requests (@developmentseed)

		#105 [https://github.com/request/request/pull/105] added test for proxy option. (@dominictarr)

		#102 [https://github.com/request/request/pull/102] Implemented cookies - closes issue 82: https://github.com/mikeal/request/issues/82 (@alessioalex)

		#97 [https://github.com/request/request/pull/97] Typo in previous pull causes TypeError in non-0.5.11 versions (@isaacs)

		#96 [https://github.com/request/request/pull/96] Authless parsed url host support (@isaacs)

		#81 [https://github.com/request/request/pull/81] Enhance redirect handling (@danmactough)

		#78 [https://github.com/request/request/pull/78] Don’t try to do strictSSL for non-ssl connections (@isaacs)

		#76 [https://github.com/request/request/pull/76] Bug when a request fails and a timeout is set (@Marsup)

		#70 [https://github.com/request/request/pull/70] add test script to package.json (@isaacs)

		#73 [https://github.com/request/request/pull/73] Fix #71 Respect the strictSSL flag (@isaacs)

		#69 [https://github.com/request/request/pull/69] Flatten chunked requests properly (@isaacs)

		#67 [https://github.com/request/request/pull/67] fixed global variable leaks (@aheckmann)

		#66 [https://github.com/request/request/pull/66] Do not overwrite established content-type headers for read stream deliver (@voodootikigod)

		#53 [https://github.com/request/request/pull/53] Parse json: Issue #51 (@benatkin)

		#45 [https://github.com/request/request/pull/45] Added timeout option (@mbrevoort)

		#35 [https://github.com/request/request/pull/35] The “end” event isn’t emitted for some responses (@voxpelli)

		#31 [https://github.com/request/request/pull/31] Error on piping a request to a destination (@tobowers)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

This is an OPEN Open Source Project

What?

Individuals making significant and valuable contributions are given
commit-access to the project to contribute as they see fit. This project is
more like an open wiki than a standard guarded open source project.

Rules

There are a few basic ground-rules for contributors:

		No --force pushes or modifying the Git history in any way.

		Non-master branches ought to be used for ongoing work.

		External API changes and significant modifications ought to be subject
to an internal pull-request to solicit feedback from other contributors.

		Internal pull-requests to solicit feedback are encouraged for any other
non-trivial contribution but left to the discretion of the contributor.

		For significant changes wait a full 24 hours before merging so that active
contributors who are distributed throughout the world have a chance to weigh
in.

		Contributors should attempt to adhere to the prevailing code-style.

		Run npm test locally before submitting your PR, to catch any easy to miss
style & testing issues. To diagnose test failures, there are two ways to
run a single test file:
		node_modules/.bin/taper tests/test-file.js - run using the default
taper [https://github.com/nylen/taper] test reporter.

		node tests/test-file.js - view the raw
tap [https://testanything.org/] output.

Releases

Declaring formal releases remains the prerogative of the project maintainer.

Changes to this arrangement

This is an experiment and feedback is welcome! This document may also be
subject to pull-requests or changes by contributors where you believe you have
something valuable to add or change.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/form-data/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Form-Data [image: Build Status] [https://travis-ci.org/felixge/node-form-data] [image: Dependency Status] [https://gemnasium.com/felixge/node-form-data]

A module to create readable "multipart/form-data" streams. Can be used to submit forms and file uploads to other web applications.

The API of this module is inspired by the XMLHttpRequest-2 FormData Interface [http://dev.w3.org/2006/webapi/XMLHttpRequest-2/Overview.html#the-formdata-interface].

Install

npm install form-data

Usage

In this example we are constructing a form with 3 fields that contain a string,
a buffer and a file stream.

var FormData = require('form-data');
var fs = require('fs');

var form = new FormData();
form.append('my_field', 'my value');
form.append('my_buffer', new Buffer(10));
form.append('my_file', fs.createReadStream('/foo/bar.jpg'));

Also you can use http-response stream:

var FormData = require('form-data');
var http = require('http');

var form = new FormData();

http.request('http://nodejs.org/images/logo.png', function(response) {
 form.append('my_field', 'my value');
 form.append('my_buffer', new Buffer(10));
 form.append('my_logo', response);
});

Or @mikeal’s request stream:

var FormData = require('form-data');
var request = require('request');

var form = new FormData();

form.append('my_field', 'my value');
form.append('my_buffer', new Buffer(10));
form.append('my_logo', request('http://nodejs.org/images/logo.png'));

In order to submit this form to a web application, call submit(url, [callback]) method:

form.submit('http://example.org/', function(err, res) {
 // res – response object (http.IncomingMessage) //
 res.resume(); // for node-0.10.x
});

For more advanced request manipulations submit() method returns http.ClientRequest object, or you can choose from one of the alternative submission methods.

Alternative submission methods

You can use node’s http client interface:

var http = require('http');

var request = http.request({
 method: 'post',
 host: 'example.org',
 path: '/upload',
 headers: form.getHeaders()
});

form.pipe(request);

request.on('response', function(res) {
 console.log(res.statusCode);
});

Or if you would prefer the 'Content-Length' header to be set for you:

form.submit('example.org/upload', function(err, res) {
 console.log(res.statusCode);
});

To use custom headers and pre-known length in parts:

var CRLF = '\r\n';
var form = new FormData();

var options = {
 header: CRLF + '--' + form.getBoundary() + CRLF + 'X-Custom-Header: 123' + CRLF + CRLF,
 knownLength: 1
};

form.append('my_buffer', buffer, options);

form.submit('http://example.com/', function(err, res) {
 if (err) throw err;
 console.log('Done');
});

Form-Data can recognize and fetch all the required information from common types of streams (fs.readStream, http.response and mikeal's request), for some other types of streams you’d need to provide “file”-related information manually:

someModule.stream(function(err, stdout, stderr) {
 if (err) throw err;

 var form = new FormData();

 form.append('file', stdout, {
 filename: 'unicycle.jpg',
 contentType: 'image/jpg',
 knownLength: 19806
 });

 form.submit('http://example.com/', function(err, res) {
 if (err) throw err;
 console.log('Done');
 });
});

For edge cases, like POST request to URL with query string or to pass HTTP auth credentials, object can be passed to form.submit() as first parameter:

form.submit({
 host: 'example.com',
 path: '/probably.php?extra=params',
 auth: 'username:password'
}, function(err, res) {
 console.log(res.statusCode);
});

In case you need to also send custom HTTP headers with the POST request, you can use the headers key in first parameter of form.submit():

form.submit({
 host: 'example.com',
 path: '/surelynot.php',
 headers: {'x-test-header': 'test-header-value'}
}, function(err, res) {
 console.log(res.statusCode);
});

Notes

		getLengthSync() method DOESN’T calculate length for streams, use knownLength options as workaround.

		If it feels like FormData hangs after submit and you’re on node-0.10, please check Compatibility with Older Node Versions [http://nodejs.org/api/stream.html#stream_compatibility_with_older_node_versions]

TODO

		Add new streams (0.10) support and try really hard not to break it for 0.8.x.

License

Form-Data is licensed under the MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Request — Simplified HTTP client

[image: NPM] [https://nodei.co/npm/request/]

![Gitter](https://badges.gitter.im/Join Chat.svg) [https://gitter.im/request/request?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Super simple to use

Request is designed to be the simplest way possible to make http calls. It supports HTTPS and follows redirects by default.

var request = require('request');
request('http://www.google.com', function (error, response, body) {
 if (!error && response.statusCode == 200) {
 console.log(body) // Print the google web page.
 }
})

Streaming

You can stream any response to a file stream.

request('http://google.com/doodle.png').pipe(fs.createWriteStream('doodle.png'))

You can also stream a file to a PUT or POST request. This method will also check the file extension against a mapping of file extensions to content-types (in this case application/json) and use the proper content-type in the PUT request (if the headers don’t already provide one).

fs.createReadStream('file.json').pipe(request.put('http://mysite.com/obj.json'))

Request can also pipe to itself. When doing so, content-type and content-length are preserved in the PUT headers.

request.get('http://google.com/img.png').pipe(request.put('http://mysite.com/img.png'))

Request emits a “response” event when a response is received. The response argument will be an instance of http.IncomingMessage [http://nodejs.org/api/http.html#http_http_incomingmessage].

request
 .get('http://google.com/img.png')
 .on('response', function(response) {
 console.log(response.statusCode) // 200
 console.log(response.headers['content-type']) // 'image/png'
 })
 .pipe(request.put('http://mysite.com/img.png'))

To easily handle errors when streaming requests, listen to the error event before piping:

request
 .get('http://mysite.com/doodle.png')
 .on('error', function(err) {
 console.log(err)
 })
 .pipe(fs.createWriteStream('doodle.png'))

Now let’s get fancy.

http.createServer(function (req, resp) {
 if (req.url === '/doodle.png') {
 if (req.method === 'PUT') {
 req.pipe(request.put('http://mysite.com/doodle.png'))
 } else if (req.method === 'GET' || req.method === 'HEAD') {
 request.get('http://mysite.com/doodle.png').pipe(resp)
 }
 }
})

You can also pipe() from http.ServerRequest instances, as well as to http.ServerResponse instances. The HTTP method, headers, and entity-body data will be sent. Which means that, if you don’t really care about security, you can do:

http.createServer(function (req, resp) {
 if (req.url === '/doodle.png') {
 var x = request('http://mysite.com/doodle.png')
 req.pipe(x)
 x.pipe(resp)
 }
})

And since pipe() returns the destination stream in ≥ Node 0.5.x you can do one line proxying. :)

req.pipe(request('http://mysite.com/doodle.png')).pipe(resp)

Also, none of this new functionality conflicts with requests previous features, it just expands them.

var r = request.defaults({'proxy':'http://localproxy.com'})

http.createServer(function (req, resp) {
 if (req.url === '/doodle.png') {
 r.get('http://google.com/doodle.png').pipe(resp)
 }
})

You can still use intermediate proxies, the requests will still follow HTTP forwards, etc.

Proxies

If you specify a proxy option, then the request (and any subsequent
redirects) will be sent via a connection to the proxy server.

If your endpoint is an https url, and you are using a proxy, then
request will send a CONNECT request to the proxy server first, and
then use the supplied connection to connect to the endpoint.

That is, first it will make a request like:

HTTP/1.1 CONNECT endpoint-server.com:80
Host: proxy-server.com
User-Agent: whatever user agent you specify

and then the proxy server make a TCP connection to endpoint-server
on port 80, and return a response that looks like:

HTTP/1.1 200 OK

At this point, the connection is left open, and the client is
communicating directly with the endpoint-server.com machine.

See the wikipedia page on HTTP Tunneling [http://en.wikipedia.org/wiki/HTTP_tunnel]
for more information.

By default, when proxying http traffic, request will simply make a
standard proxied http request. This is done by making the url
section of the initial line of the request a fully qualified url to
the endpoint.

For example, it will make a single request that looks like:

HTTP/1.1 GET http://endpoint-server.com/some-url
Host: proxy-server.com
Other-Headers: all go here

request body or whatever

Because a pure “http over http” tunnel offers no additional security
or other features, it is generally simpler to go with a
straightforward HTTP proxy in this case. However, if you would like
to force a tunneling proxy, you may set the tunnel option to true.

If you are using a tunneling proxy, you may set the
proxyHeaderWhiteList to share certain headers with the proxy.

You can also set the proxyHeaderExclusiveList to share certain
headers only with the proxy and not with destination host.

By default, this set is:

accept
accept-charset
accept-encoding
accept-language
accept-ranges
cache-control
content-encoding
content-language
content-length
content-location
content-md5
content-range
content-type
connection
date
expect
max-forwards
pragma
proxy-authorization
referer
te
transfer-encoding
user-agent
via

Note that, when using a tunneling proxy, the proxy-authorization
header and any headers from custom proxyHeaderExclusiveList are
never sent to the endpoint server, but only to the proxy server.

Controlling proxy behaviour using environment variables

The following environment variables are respected by request:

		HTTP_PROXY / http_proxy

		HTTPS_PROXY / https_proxy

		NO_PROXY / no_proxy

When HTTP_PROXY / http_proxy are set, they will be used to proxy non-SSL requests that do not have an explicit proxy configuration option present. Similarly, HTTPS_PROXY / https_proxy will be respected for SSL requests that do not have an explicit proxy configuration option. It is valid to define a proxy in one of the environment variables, but then override it for a specific request, using the proxy configuration option. Furthermore, the proxy configuration option can be explicitly set to false / null to opt out of proxying altogether for that request.

request is also aware of the NO_PROXY/no_proxy environment variables. These variables provide a granular way to opt out of proxying, on a per-host basis. It should contain a comma separated list of hosts to opt out of proxying. It is also possible to opt of proxying when a particular destination port is used. Finally, the variable may be set to * to opt out of the implicit proxy configuration of the other environment variables.

Here’s some examples of valid no_proxy values:

		google.com - don’t proxy HTTP/HTTPS requests to Google.

		google.com:443 - don’t proxy HTTPS requests to Google, but do proxy HTTP requests to Google.

		google.com:443, yahoo.com:80 - don’t proxy HTTPS requests to Google, and don’t proxy HTTP requests to Yahoo!

		* - ignore https_proxy/http_proxy environment variables altogether.

UNIX Socket

request supports making requests to UNIX Domain Sockets [http://en.wikipedia.org/wiki/Unix_domain_socket]. To make one, use the following URL scheme:

/* Pattern */ 'http://unix:SOCKET:PATH'
/* Example */ request.get('http://unix:/absolute/path/to/unix.socket:/request/path')

Note: The SOCKET path is assumed to be absolute to the root of the host file system.

Forms

request supports application/x-www-form-urlencoded and multipart/form-data form uploads. For multipart/related refer to the multipart API.

application/x-www-form-urlencoded (URL-Encoded Forms)

URL-encoded forms are simple.

request.post('http://service.com/upload', {form:{key:'value'}})
// or
request.post('http://service.com/upload').form({key:'value'})
// or
request.post({url:'http://service.com/upload', form: {key:'value'}}, function(err,httpResponse,body){ /* ... */ })

multipart/form-data (Multipart Form Uploads)

For multipart/form-data we use the form-data [https://github.com/felixge/node-form-data] library by @felixge [https://github.com/felixge]. For the most cases, you can pass your upload form data via the formData option.

var formData = {
 // Pass a simple key-value pair
 my_field: 'my_value',
 // Pass data via Buffers
 my_buffer: new Buffer([1, 2, 3]),
 // Pass data via Streams
 my_file: fs.createReadStream(__dirname + '/unicycle.jpg'),
 // Pass multiple values /w an Array
 attachments: [
 fs.createReadStream(__dirname + '/attachment1.jpg'),
 fs.createReadStream(__dirname + '/attachment2.jpg')
],
 // Pass optional meta-data with an 'options' object with style: {value: DATA, options: OPTIONS}
 // Use case: for some types of streams, you'll need to provide "file"-related information manually.
 // See the `form-data` README for more information about options: https://github.com/felixge/node-form-data
 custom_file: {
 value: fs.createReadStream('/dev/urandom'),
 options: {
 filename: 'topsecret.jpg',
 contentType: 'image/jpg'
 }
 }
};
request.post({url:'http://service.com/upload', formData: formData}, function optionalCallback(err, httpResponse, body) {
 if (err) {
 return console.error('upload failed:', err);
 }
 console.log('Upload successful! Server responded with:', body);
});

For advanced cases, you can access the form-data object itself via r.form(). This can be modified until the request is fired on the next cycle of the event-loop. (Note that this calling form() will clear the currently set form data for that request.)

// NOTE: Advanced use-case, for normal use see 'formData' usage above
var r = request.post('http://service.com/upload', function optionalCallback(err, httpResponse, body) { // ...

var form = r.form();
form.append('my_field', 'my_value');
form.append('my_buffer', new Buffer([1, 2, 3]));
form.append('custom_file', fs.createReadStream(__dirname + '/unicycle.jpg'), {filename: 'unicycle.jpg'});

See the form-data README [https://github.com/felixge/node-form-data] for more information & examples.

multipart/related

Some variations in different HTTP implementations require a newline/CRLF before, after, or both before and after the boundary of a multipart/related request (using the multipart option). This has been observed in the .NET WebAPI version 4.0. You can turn on a boundary preambleCRLF or postamble by passing them as true to your request options.

 request({
 method: 'PUT',
 preambleCRLF: true,
 postambleCRLF: true,
 uri: 'http://service.com/upload',
 multipart: [
 {
 'content-type': 'application/json'
 body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
 },
 { body: 'I am an attachment' },
 { body: fs.createReadStream('image.png') }
],
 // alternatively pass an object containing additional options
 multipart: {
 chunked: false,
 data: [
 {
 'content-type': 'application/json',
 body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
 },
 { body: 'I am an attachment' }
]
 }
 },
 function (error, response, body) {
 if (error) {
 return console.error('upload failed:', error);
 }
 console.log('Upload successful! Server responded with:', body);
 })

HTTP Authentication

request.get('http://some.server.com/').auth('username', 'password', false);
// or
request.get('http://some.server.com/', {
 'auth': {
 'user': 'username',
 'pass': 'password',
 'sendImmediately': false
 }
});
// or
request.get('http://some.server.com/').auth(null, null, true, 'bearerToken');
// or
request.get('http://some.server.com/', {
 'auth': {
 'bearer': 'bearerToken'
 }
});

If passed as an option, auth should be a hash containing values user || username, pass || password, and sendImmediately (optional). The method form takes parameters auth(username, password, sendImmediately).

sendImmediately defaults to true, which causes a basic authentication header to be sent. If sendImmediately is false, then request will retry with a proper authentication header after receiving a 401 response from the server (which must contain a WWW-Authenticate header indicating the required authentication method).

Note that you can also use for basic authentication a trick using the URL itself, as specified in RFC 1738 [http://www.ietf.org/rfc/rfc1738.txt].
Simply pass the user:password before the host with an @ sign.

var username = 'username',
 password = 'password',
 url = 'http://' + username + ':' + password + '@some.server.com';

request({url: url}, function (error, response, body) {
 // Do more stuff with 'body' here
});

Digest authentication is supported, but it only works with sendImmediately set to false; otherwise request will send basic authentication on the initial request, which will probably cause the request to fail.

Bearer authentication is supported, and is activated when the bearer value is available. The value may be either a String or a Function returning a String. Using a function to supply the bearer token is particularly useful if used in conjuction with defaults to allow a single function to supply the last known token at the time or sending a request or to compute one on the fly.

OAuth Signing

OAuth version 1.0 [https://tools.ietf.org/html/rfc5849] is supported. The
default signing algorithm is
HMAC-SHA1 [https://tools.ietf.org/html/rfc5849#section-3.4.2]:

// Twitter OAuth
var qs = require('querystring')
 , oauth =
 { callback: 'http://mysite.com/callback/'
 , consumer_key: CONSUMER_KEY
 , consumer_secret: CONSUMER_SECRET
 }
 , url = 'https://api.twitter.com/oauth/request_token'
 ;
request.post({url:url, oauth:oauth}, function (e, r, body) {
 // Ideally, you would take the body in the response
 // and construct a URL that a user clicks on (like a sign in button).
 // The verifier is only available in the response after a user has
 // verified with twitter that they are authorizing your app.
 var access_token = qs.parse(body)
 , oauth =
 { consumer_key: CONSUMER_KEY
 , consumer_secret: CONSUMER_SECRET
 , token: access_token.oauth_token
 , verifier: access_token.oauth_verifier
 }
 , url = 'https://api.twitter.com/oauth/access_token'
 ;
 request.post({url:url, oauth:oauth}, function (e, r, body) {
 var perm_token = qs.parse(body)
 , oauth =
 { consumer_key: CONSUMER_KEY
 , consumer_secret: CONSUMER_SECRET
 , token: perm_token.oauth_token
 , token_secret: perm_token.oauth_token_secret
 }
 , url = 'https://api.twitter.com/1.1/users/show.json?'
 , params =
 { screen_name: perm_token.screen_name
 , user_id: perm_token.user_id
 }
 ;
 url += qs.stringify(params)
 request.get({url:url, oauth:oauth, json:true}, function (e, r, user) {
 console.log(user)
 })
 })
})

For RSA-SHA1 signing [https://tools.ietf.org/html/rfc5849#section-3.4.3], make
the following changes to the OAuth options object:

		Pass signature_method : 'RSA-SHA1'

		Instead of consumer_secret, specify a private_key string in
PEM format [http://how2ssl.com/articles/working_with_pem_files/]

Custom HTTP Headers

HTTP Headers, such as User-Agent, can be set in the options object.
In the example below, we call the github API to find out the number
of stars and forks for the request repository. This requires a
custom User-Agent header as well as https.

var request = require('request');

var options = {
 url: 'https://api.github.com/repos/request/request',
 headers: {
 'User-Agent': 'request'
 }
};

function callback(error, response, body) {
 if (!error && response.statusCode == 200) {
 var info = JSON.parse(body);
 console.log(info.stargazers_count + " Stars");
 console.log(info.forks_count + " Forks");
 }
}

request(options, callback);

TLS/SSL Protocol

TLS/SSL Protocol options, such as cert, key and passphrase, can be
set in the agentOptions property of the options object.
In the example below, we call an API requires client side SSL certificate
(in PEM format) with passphrase protected private key (in PEM format) and disable the SSLv3 protocol:

var fs = require('fs')
 , path = require('path')
 , certFile = path.resolve(__dirname, 'ssl/client.crt')
 , keyFile = path.resolve(__dirname, 'ssl/client.key')
 , request = require('request');

var options = {
 url: 'https://api.some-server.com/',
 agentOptions: {
 cert: fs.readFileSync(certFile),
 key: fs.readFileSync(keyFile),
 // Or use `pfx` property replacing `cert` and `key` when using private key, certificate and CA certs in PFX or PKCS12 format:
 // pfx: fs.readFileSync(pfxFilePath),
 passphrase: 'password',
 securityOptions: 'SSL_OP_NO_SSLv3'
 }
};

request.get(options);

It is able to force using SSLv3 only by specifying secureProtocol:

request.get({
 url: 'https://api.some-server.com/',
 agentOptions: {
 secureProtocol: 'SSLv3_method'
 }
});

It is possible to accept other certificates than those signed by generally allowed Certificate Authorities (CAs).
This can be useful, for example, when using self-signed certificates.
To allow a different certificate, you can specify the signing CA by adding the contents of the CA’s certificate file to the agentOptions:

request.get({
 url: 'https://api.some-server.com/',
 agentOptions: {
 ca: fs.readFileSync('ca.cert.pem')
 }
});

request(options, callback)

The first argument can be either a url or an options object. The only required option is uri; all others are optional.

		uri || url - fully qualified uri or a parsed url object from url.parse()

		qs - object containing querystring values to be appended to the uri

		useQuerystring - If true, use querystring to stringify and parse
querystrings, otherwise use qs (default: false). Set this option to
true if you need arrays to be serialized as foo=bar&foo=baz instead of the
default foo[0]=bar&foo[1]=baz.

		method - http method (default: "GET")

		headers - http headers (default: {})

		body - entity body for PATCH, POST and PUT requests. Must be a Buffer or String, unless json is true. If json is true, then body must be a JSON-serializable object.

		form - when passed an object or a querystring, this sets body to a querystring representation of value, and adds Content-type: application/x-www-form-urlencoded header. When passed no options, a FormData instance is returned (and is piped to request). See “Forms” section above.

		formData - Data to pass for a multipart/form-data request. See
Forms section above.

		multipart - array of objects which contain their own headers and body
attributes. Sends a multipart/related request. See Forms section
above.
		Alternatively you can pass in an object {chunked: false, data: []} where
chunked is used to specify whether the request is sent in
chunked transfer encoding [https://en.wikipedia.org/wiki/Chunked_transfer_encoding]
(the default is chunked: true). In non-chunked requests, data items with
body streams are not allowed.

		auth - A hash containing values user || username, pass || password, and sendImmediately (optional). See documentation above.

		json - sets body but to JSON representation of value and adds Content-type: application/json header. Additionally, parses the response body as JSON.

		jsonReviver - a reviver function [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse] that will be passed to JSON.parse() when parsing a JSON response body.

		preambleCRLF - append a newline/CRLF before the boundary of your multipart/form-data request.

		postambleCRLF - append a newline/CRLF at the end of the boundary of your multipart/form-data request.

		followRedirect - follow HTTP 3xx responses as redirects (default: true). This property can also be implemented as function which gets response object as a single argument and should return true if redirects should continue or false otherwise.

		followAllRedirects - follow non-GET HTTP 3xx responses as redirects (default: false)

		maxRedirects - the maximum number of redirects to follow (default: 10)

		encoding - Encoding to be used on setEncoding of response data. If null, the body is returned as a Buffer. Anything else (including the default value of undefined) will be passed as the encoding [http://nodejs.org/api/buffer.html#buffer_buffer] parameter to toString() (meaning this is effectively utf8 by default).

		pool - An object describing which agents to use for the request. If this option is omitted the request will use the global agent (as long as your options allow for it). Otherwise, request will search the pool for your custom agent. If no custom agent is found, a new agent will be created and added to the pool.
		A maxSockets property can also be provided on the pool object to set the max number of sockets for all agents created (ex: pool: {maxSockets: Infinity}).

		Note that if you are sending multiple requests in a loop and creating
multiple new pool objects, maxSockets will not work as intended. To
work around this, either use request.defaults
with your pool options or create the pool object with the maxSockets
property outside of the loop.

		timeout - Integer containing the number of milliseconds to wait for a request to respond before aborting the request

		proxy - An HTTP proxy to be used. Supports proxy Auth with Basic Auth, identical to support for the url parameter (by embedding the auth info in the uri)

		oauth - Options for OAuth HMAC-SHA1 signing. See documentation above.

		hawk - Options for Hawk signing [https://github.com/hueniverse/hawk]. The credentials key must contain the necessary signing info, see hawk docs for details [https://github.com/hueniverse/hawk#usage-example].

		strictSSL - If true, requires SSL certificates be valid. Note: to use your own certificate authority, you need to specify an agent that was created with that CA as an option.

		agentOptions - Object containing user agent options. See documentation above. Note: see tls API doc for TLS/SSL options [http://nodejs.org/api/tls.html#tls_tls_connect_options_callback].

		jar - If true and tough-cookie is installed, remember cookies for future use (or define your custom cookie jar; see examples section)

		aws - object containing AWS signing information. Should have the properties key, secret. Also requires the property bucket, unless you’re specifying your bucket as part of the path, or the request doesn’t use a bucket (i.e. GET Services)

		httpSignature - Options for the HTTP Signature Scheme [https://github.com/joyent/node-http-signature/blob/master/http_signing.md] using Joyent’s library [https://github.com/joyent/node-http-signature]. The keyId and key properties must be specified. See the docs for other options.

		localAddress - Local interface to bind for network connections.

		gzip - If true, add an Accept-Encoding header to request compressed content encodings from the server (if not already present) and decode supported content encodings in the response. Note: Automatic decoding of the response content is performed on the body data returned through request (both through the request stream and passed to the callback function) but is not performed on the response stream (available from the response event) which is the unmodified http.IncomingMessage object which may contain compressed data. See example below.

		tunnel - If true, then always use a tunneling proxy. If
false (default), then tunneling will only be used if the
destination is https, or if a previous request in the redirect
chain used a tunneling proxy.

		proxyHeaderWhiteList - A whitelist of headers to send to a
tunneling proxy.

		proxyHeaderExclusiveList - A whitelist of headers to send
exclusively to a tunneling proxy and not to destination.

The callback argument gets 3 arguments:

		An error when applicable (usually from http.ClientRequest [http://nodejs.org/api/http.html#http_class_http_clientrequest] object)

		An http.IncomingMessage [http://nodejs.org/api/http.html#http_http_incomingmessage] object

		The third is the response body (String or Buffer, or JSON object if the json option is supplied)

Convenience methods

There are also shorthand methods for different HTTP METHODs and some other conveniences.

request.defaults(options)

This method returns a wrapper around the normal request API that defaults
to whatever options you pass to it.

Note: request.defaults() does not modify the global request API;
instead, it returns a wrapper that has your default settings applied to it.

Note: You can call .defaults() on the wrapper that is returned from
request.defaults to add/override defaults that were previously defaulted.

For example:

//requests using baseRequest() will set the 'x-token' header
var baseRequest = request.defaults({
 headers: {x-token: 'my-token'}
})

//requests using specialRequest() will include the 'x-token' header set in
//baseRequest and will also include the 'special' header
var specialRequest = baseRequest.defaults({
 headers: {special: 'special value'}
})

request.put

Same as request(), but defaults to method: "PUT".

request.put(url)

request.patch

Same as request(), but defaults to method: "PATCH".

request.patch(url)

request.post

Same as request(), but defaults to method: "POST".

request.post(url)

request.head

Same as request() but defaults to method: "HEAD".

request.head(url)

request.del

Same as request(), but defaults to method: "DELETE".

request.del(url)

request.get

Same as request() (for uniformity).

request.get(url)

request.cookie

Function that creates a new cookie.

request.cookie('key1=value1')

request.jar()

Function that creates a new cookie jar.

request.jar()

Examples:

 var request = require('request')
 , rand = Math.floor(Math.random()*100000000).toString()
 ;
 request(
 { method: 'PUT'
 , uri: 'http://mikeal.iriscouch.com/testjs/' + rand
 , multipart:
 [{ 'content-type': 'application/json'
 , body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
 }
 , { body: 'I am an attachment' }
]
 }
 , function (error, response, body) {
 if(response.statusCode == 201){
 console.log('document saved as: http://mikeal.iriscouch.com/testjs/'+ rand)
 } else {
 console.log('error: '+ response.statusCode)
 console.log(body)
 }
 }
)

For backwards-compatibility, response compression is not supported by default.
To accept gzip-compressed responses, set the gzip option to true. Note
that the body data passed through request is automatically decompressed
while the response object is unmodified and will contain compressed data if
the server sent a compressed response.

 var request = require('request')
 request(
 { method: 'GET'
 , uri: 'http://www.google.com'
 , gzip: true
 }
 , function (error, response, body) {
 // body is the decompressed response body
 console.log('server encoded the data as: ' + (response.headers['content-encoding'] || 'identity'))
 console.log('the decoded data is: ' + body)
 }
).on('data', function(data) {
 // decompressed data as it is received
 console.log('decoded chunk: ' + data)
 })
 .on('response', function(response) {
 // unmodified http.IncomingMessage object
 response.on('data', function(data) {
 // compressed data as it is received
 console.log('received ' + data.length + ' bytes of compressed data')
 })
 })

Cookies are disabled by default (else, they would be used in subsequent requests). To enable cookies, set jar to true (either in defaults or options) and install tough-cookie.

var request = request.defaults({jar: true})
request('http://www.google.com', function () {
 request('http://images.google.com')
})

To use a custom cookie jar (instead of request’s global cookie jar), set jar to an instance of request.jar() (either in defaults or options)

var j = request.jar()
var request = request.defaults({jar:j})
request('http://www.google.com', function () {
 request('http://images.google.com')
})

OR

var j = request.jar();
var cookie = request.cookie('key1=value1');
var url = 'http://www.google.com';
j.setCookie(cookie, url);
request({url: url, jar: j}, function () {
 request('http://images.google.com')
})

To use a custom cookie store (such as a
FileCookieStore [https://github.com/mitsuru/tough-cookie-filestore]
which supports saving to and restoring from JSON files), pass it as a parameter
to request.jar():

var FileCookieStore = require('tough-cookie-filestore');
// NOTE - currently the 'cookies.json' file must already exist!
var j = request.jar(new FileCookieStore('cookies.json'));
request = request.defaults({ jar : j })
request('http://www.google.com', function() {
 request('http://images.google.com')
})

The cookie store must be a
tough-cookie [https://github.com/goinstant/tough-cookie]
store and it must support synchronous operations; see the
CookieStore API docs [https://github.com/goinstant/tough-cookie/#cookiestore-api]
for details.

To inspect your cookie jar after a request:

var j = request.jar()
request({url: 'http://www.google.com', jar: j}, function () {
 var cookie_string = j.getCookieString(uri); // "key1=value1; key2=value2; ..."
 var cookies = j.getCookies(uri);
 // [{key: 'key1', value: 'value1', domain: "www.google.com", ...}, ...]
})

Debugging

There are at least three ways to debug the operation of request:

		Launch the node process like NODE_DEBUG=request node script.js
(lib,request,otherlib works too).

		Set require('request').debug = true at any time (this does the same thing
as #1).

		Use the request-debug module [https://github.com/nylen/request-debug] to
view request and response headers and bodies.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/form-data/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

![NPM Version][npm-image] [https://npmjs.org/package/mime-types]
![NPM Downloads][downloads-image] [https://npmjs.org/package/mime-types]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-types]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/mime-types]

The ultimate javascript content-type utility.

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false,
so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus via mime-db [https://github.com/jshttp/mime-db]

		No .define() functionality

Otherwise, the API is compatible.

Install

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://github.com/jshttp/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions...] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/form-data/node_modules/mime-types/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.4 / 2014-12-10

		deps: mime-db@~1.3.0
		Add new mime types

2.0.3 / 2014-11-09

		deps: mime-db@~1.2.0
		Add new mime types

2.0.2 / 2014-09-28

		deps: mime-db@~1.1.0
		Add new mime types

		Add additional compressible

		Update charsets

2.0.1 / 2014-09-07

		Support Node.js 0.6

2.0.0 / 2014-09-02

		Use mime-db

		Remove .define()

1.0.2 / 2014-08-04

		Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

		Add text/jsx type

1.0.0 / 2014-05-12

		Return false for unknown types

		Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/form-data/node_modules/mime-types/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/multiparty/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

3.3.2

		Douglas Christopher Wilson:
		Do not invoke callback after close

		Share callback ending logic between error and close

3.3.1

		Andrew Kelley:
		update request dev dependency to latest

		remove problematic test fixtures

3.3.0

		Douglas Christopher Wilson:
		Always emit close after all parts ended

3.2.10

		Douglas Christopher Wilson:
		Expand form.parse in README

		Remove execute bit from files

		Fix callback hang in node.js 0.8 on errors

		Andrew Kelley:
		tests refactor

		Thanasis Polychronakis:
		docs: fix code error in readme

3.2.9

		Fix attaching error listeners directly after form.parse

		Fix to not synchronously invoke callback to form.parse on error

3.2.8

		Fix developer accidentally corrupting data

		Fix handling epilogue in a separate chunk

		Fix initial check errors to use supplied callback

3.2.7

		Fix errors hanging responses in callback-style

3.2.6

		Fix maxFields to error on field after max

3.2.5

		Support boundary containing equal sign (thanks [garel-a])

3.2.4

		Keep part.byteCount undefined in chunked encoding (thanks [dougwilson])

		Fix temp files not always cleaned up (thanks [dougwilson])

3.2.3

		improve parsing boundary attribute from Content-Type (thanks [dougwilson])

3.2.2

		fix error on empty payloads (thanks [dougwilson])

3.2.1

		fix maxFilesSize overcalculation bug (thanks [dougwilson] and
[timothysoehnlin])

3.2.0

		add maxFilesSize for autoFiles (thanks [dougwilson])

3.1.2

		exclude test files from npm package (thanks Dag Einar Monsen)

		fix incorrectly using autoFields value for autoFiles (thanks RG72)

3.1.1

		fix not emitting ‘close’ after all part ‘end’ events

3.1.0

		support UTF8 filename in Content-Disposition (thanks baoshan)

3.0.0

		form.parse callback API changed in a compatibility-breaking manner.
sorry, I know it sucks but the way I had it before is misleading and
inconsistent.

2.2.0

		additional callback API to support multiple files with same field name

		fix assertion crash when max field count is exceeded

		fix assertion crash when client aborts an invalid request

		(>=v0.10 only) unpipe the request when an error occurs to save resources.

		update readable-stream to ~1.1.9

		fix assertion crash when EMFILE occurrs

		(no more assertions - only ‘error’ events)

2.1.9

		relax content-type detection regex. (thanks amitaibu)

2.1.8

		replace deprecated Buffer.write(). (thanks hueniverse)

2.1.7

		add repository field to package.json

2.1.6

		expose hash as an option to Form. (thanks wookiehangover)

2.1.5

		fix possible ‘close’ event before all temp files are done

2.1.4

		fix crash for invalid requests

2.1.3

		add file.size

2.1.2

		proper backpressure support

		update s3 example

2.1.1

		fix uploads larger than 2KB

		fix both s3 and upload example

		add part.byteCount and part.byteOffset

2.1.0 (recalled)

		Complete rewrite. See README for changes and new API.

v1.0.13

		Only update hash if update method exists (Sven Lito)

		According to travis v0.10 needs to go quoted (Sven Lito)

		Bumping build node versions (Sven Lito)

		Additional fix for empty requests (Eugene Girshov)

		Change the default to 1000, to match the new Node behaviour. (OrangeDog)

		Add ability to control maxKeys in the querystring parser. (OrangeDog)

		Adjust test case to work with node 0.9.x (Eugene Girshov)

		Update package.json (Sven Lito)

		Path adjustment according to eb4468b (Markus Ast)

v1.0.12

		Emit error on aborted connections (Eugene Girshov)

		Add support for empty requests (Eugene Girshov)

		Fix name/filename handling in Content-Disposition (jesperp)

		Tolerate malformed closing boundary in multipart (Eugene Girshov)

		Ignore preamble in multipart messages (Eugene Girshov)

		Add support for application/json (Mike Frey, Carlos Rodriguez)

		Add support for Base64 encoding (Elmer Bulthuis)

		Add File#toJSON (TJ Holowaychuk)

		Remove support for Node.js 0.4 & 0.6 (Andrew Kelley)

		Documentation improvements (Sven Lito, Andre Azevedo)

		Add support for application/octet-stream (Ion Lupascu, Chris Scribner)

		Use os.tmpDir() to get tmp directory (Andrew Kelley)

		Improve package.json (Andrew Kelley, Sven Lito)

		Fix benchmark script (Andrew Kelley)

		Fix scope issue in incoming_forms (Sven Lito)

		Fix file handle leak on error (OrangeDog)

v1.0.11

		Calculate checksums for incoming files (sreuter)

		Add definition parameters to “IncomingForm” as an argument (Math-)

v1.0.10

		Make parts to be proper Streams (Matt Robenolt)

v1.0.9

		Emit progress when content length header parsed (Tim Koschützki)

		Fix Readme syntax due to GitHub changes (goob)

		Replace references to old ‘sys’ module in Readme with ‘util’ (Peter Sugihara)

v1.0.8

		Strip potentially unsafe characters when using keepExtensions: true.

		Switch to utest / urun for testing

		Add travis build

v1.0.7

		Remove file from package that was causing problems when installing on windows. (#102)

		Fix typos in Readme (Jason Davies).

v1.0.6

		Do not default to the default to the field name for file uploads where
filename=””.

v1.0.5

		Support filename=”” in multipart parts

		Explain unexpected end() errors in parser better

Note: Starting with this version, formidable emits ‘file’ events for empty
file input fields. Previously those were incorrectly emitted as regular file
input fields with value = “”.

v1.0.4

		Detect a good default tmp directory regardless of platform. (#88)

v1.0.3

		Fix problems with utf8 characters (#84) / semicolons in filenames (#58)

		Small performance improvements

		New test suite and fixture system

v1.0.2

		Exclude node_modules folder from git

		Implement new 'aborted' event

		Fix files in example folder to work with recent node versions

		Make gently a devDependency

See Commits [https://github.com/felixge/node-formidable/compare/v1.0.1...v1.0.2]

v1.0.1

		Fix package.json to refer to proper main directory. (#68, Dean Landolt)

See Commits [https://github.com/felixge/node-formidable/compare/v1.0.0...v1.0.1]

v1.0.0

		Add support for multipart boundaries that are quoted strings. (Jeff Craig)

This marks the beginning of development on version 2.0 which will include
several architectural improvements.

See Commits [https://github.com/felixge/node-formidable/compare/v0.9.11...v1.0.0]

v0.9.11

		Emit 'progress' event when receiving data, regardless of parsing it. (Tim Koschützki)

		Use W3C FileAPI Draft [http://dev.w3.org/2006/webapi/FileAPI/] properties for File class

Important: The old property names of the File class will be removed in a
future release.

See Commits [https://github.com/felixge/node-formidable/compare/v0.9.10...v0.9.11]

Older releases

These releases were done before starting to maintain the above Changelog:

		v0.9.10 [https://github.com/felixge/node-formidable/compare/v0.9.9...v0.9.10]

		v0.9.9 [https://github.com/felixge/node-formidable/compare/v0.9.8...v0.9.9]

		v0.9.8 [https://github.com/felixge/node-formidable/compare/v0.9.7...v0.9.8]

		v0.9.7 [https://github.com/felixge/node-formidable/compare/v0.9.6...v0.9.7]

		v0.9.6 [https://github.com/felixge/node-formidable/compare/v0.9.5...v0.9.6]

		v0.9.5 [https://github.com/felixge/node-formidable/compare/v0.9.4...v0.9.5]

		v0.9.4 [https://github.com/felixge/node-formidable/compare/v0.9.3...v0.9.4]

		v0.9.3 [https://github.com/felixge/node-formidable/compare/v0.9.2...v0.9.3]

		v0.9.2 [https://github.com/felixge/node-formidable/compare/v0.9.1...v0.9.2]

		v0.9.1 [https://github.com/felixge/node-formidable/compare/v0.9.0...v0.9.1]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.1.0 [https://github.com/felixge/node-formidable/commits/v0.1.0]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/multiparty/node_modules/stream-counter/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

stream-counter

Keep track of how many bytes have been written to a stream.

Usage

var StreamCounter = require('stream-counter');
var counter = new StreamCounter();
counter.on('progress', function() {
 console.log("progress", counter.bytes);
});
fs.createReadStream('foo.txt').pipe(counter);

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/multiparty/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

multiparty [image: Build Status] [https://travis-ci.org/andrewrk/node-multiparty] [image: NPM version] [http://badge.fury.io/js/multiparty]

Parse http requests with content-type multipart/form-data, also known as file uploads.

See also busboy [https://github.com/mscdex/busboy] - a
faster [https://github.com/mscdex/dicer/wiki/Benchmarks] alternative
which may be worth looking into.

Why the fork?

		This module uses the Node.js v0.10 streams properly, even in Node.js v0.8

		It will not create a temp file for you unless you want it to.

		Counts bytes and does math to help you figure out the Content-Length of
each part.

		You can easily stream uploads to s3 with
knox [https://github.com/LearnBoost/knox], for example.

		Less bugs. This code is simpler, has all deprecated functionality removed,
has cleaner tests, and does not try to do anything beyond multipart stream
parsing.

Installation

npm install multiparty

Usage

		See examples.

Parse an incoming multipart/form-data request.

var multiparty = require('multiparty')
 , http = require('http')
 , util = require('util')

http.createServer(function(req, res) {
 if (req.url === '/upload' && req.method === 'POST') {
 // parse a file upload
 var form = new multiparty.Form();

 form.parse(req, function(err, fields, files) {
 res.writeHead(200, {'content-type': 'text/plain'});
 res.write('received upload:\n\n');
 res.end(util.inspect({fields: fields, files: files}));
 });

 return;
 }

 // show a file upload form
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(
 '<form action="/upload" enctype="multipart/form-data" method="post">'+
 '<input type="text" name="title">
'+
 '<input type="file" name="upload" multiple="multiple">
'+
 '<input type="submit" value="Upload">'+
 '</form>'
);
}).listen(8080);

API

multiparty.Form

var form = new multiparty.Form(options)

Creates a new form. Options:

		encoding - sets encoding for the incoming form fields. Defaults to utf8.

		maxFieldsSize - Limits the amount of memory a field (not a file) can
allocate in bytes. If this value is exceeded, an error event is emitted.
The default size is 2MB.

		maxFields - Limits the number of fields that will be parsed before
emitting an error event. A file counts as a field in this case.
Defaults to 1000.

		maxFilesSize - Only relevant when autoFiles is true. Limits the
total bytes accepted for all files combined. If this value is exceeded,
an error event is emitted. The default is Infinity.

		autoFields - Enables field events. This is automatically set to true
if you add a field listener.

		autoFiles - Enables file events. This is automatically set to true
if you add a file listener.

		uploadDir - Only relevant when autoFiles is true. The directory for
placing file uploads in. You can move them later using fs.rename().
Defaults to os.tmpDir().

		hash - Only relevant when autoFiles is true. If you want checksums
calculated for incoming files, set this to either sha1 or md5.
Defaults to off.

form.parse(request, [cb])

Parses an incoming node.js request containing form data.This will cause
form to emit events based off the incoming request.

var count = 0;
var form = new multiparty.Form();

// Errors may be emitted
form.on('error', function(err) {
 console.log('Error parsing form: ' + err.stack);
});

// Parts are emitted when parsing the form
form.on('part', function(part) {
 // You *must* act on the part by reading it
 // NOTE: if you want to ignore it, just call "part.resume()"

 if (part.filename === null) {
 // filename is "null" when this is a field and not a file
 console.log('got field named ' + part.name);
 // ignore field's content
 part.resume();
 }

 if (part.filename !== null) {
 // filename is not "null" when this is a file
 count++;
 console.log('got file named ' + part.name);
 // ignore file's content here
 part.resume();
 }
});

// Close emitted after form parsed
form.on('close', function() {
 console.log('Upload completed!');
 res.setHeader('text/plain');
 res.end('Received ' + count + ' files');
});

// Parse req
form.parse(req);

If cb is provided, autoFields and autoFiles are set to true and all
fields and files are collected and passed to the callback, removing the need to
listen to any events on form. This is for convenience when wanted to read
everything, but be careful as this will write all uploaded files to the disk,
even ones you may not be interested in.

form.parse(req, function(err, fields, files) {
 Object.keys(fields).forEach(function(name) {
 console.log('got field named ' + name);
 });

 Object.keys(files).forEach(function(name) {
 console.log('got file named ' + name);
 });

 console.log('Upload completed!');
 res.setHeader('text/plain');
 res.end('Received ' + files.length + ' files');
});

fields is an object where the property names are field names and the values
are arrays of field values.

files is an object where the property names are field names and the values
are arrays of file objects.

form.bytesReceived

The amount of bytes received for this form so far.

form.bytesExpected

The expected number of bytes in this form.

Events

‘error’ (err)

Unless you supply a callback to form.parse, you definitely want to handle
this event. Otherwise your server will crash when users submit bogus
multipart requests!

Only one ‘error’ event can ever be emitted, and if an ‘error’ event is
emitted, then ‘close’ will not be emitted.

‘part’ (part)

Emitted when a part is encountered in the request. part is a
ReadableStream. It also has the following properties:

		headers - the headers for this part. For example, you may be interested
in content-type.

		name - the field name for this part

		filename - only if the part is an incoming file

		byteOffset - the byte offset of this part in the request body

		byteCount - assuming that this is the last part in the request,
this is the size of this part in bytes. You could use this, for
example, to set the Content-Length header if uploading to S3.
If the part had a Content-Length header then that value is used
here instead.

‘aborted’

Emitted when the request is aborted. This event will be followed shortly
by an error event. In practice you do not need to handle this event.

‘progress’ (bytesReceived, bytesExpected)

‘close’

Emitted after all parts have been parsed and emitted. Not emitted if an error
event is emitted. This is typically when you would send your response.

‘file’ (name, file)

By default multiparty will not touch your hard drive. But if you add this
listener, multiparty automatically sets form.autoFiles to true and will
stream uploads to disk for you.

The max bytes accepted per request can be specified with maxFilesSize.

		name - the field name for this file

		file - an object with these properties:
		fieldName - same as name - the field name for this file

		originalFilename - the filename that the user reports for the file

		path - the absolute path of the uploaded file on disk

		headers - the HTTP headers that were sent along with this file

		size - size of the file in bytes

If you set the form.hash option, then file will also contain a hash
property which is the checksum of the file.

‘field’ (name, value)

		name - field name

		value - string field value

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/multiparty/node_modules/readable-stream/node_modules/isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

isarray

Array#isArray for older browsers.

Usage

var isArray = require('isarray');

console.log(isArray([])); // => true
console.log(isArray({})); // => false

Installation

With npm [http://npmjs.org] do

$ npm install isarray

Then bundle for the browser with
browserify [https://github.com/substack/browserify].

With component [http://component.io] do

$ component install juliangruber/isarray

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/multiparty/node_modules/readable-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readable-stream

Node-core streams for userland

[image: NPM] [https://nodei.co/npm/readable-stream/]
[image: NPM] [https://nodei.co/npm/readable-stream/]

This package is a mirror of the Streams2 and Streams3 implementations in Node-core.

If you want to guarantee a stable streams base, regardless of what version of Node you, or the users of your libraries are using, use readable-stream only and avoid the “stream” module in Node-core.

readable-stream comes in two major versions, v1.0.x and v1.1.x. The former tracks the Streams2 implementation in Node 0.10, including bug-fixes and minor improvements as they are added. The latter tracks Streams3 as it develops in Node 0.11; we will likely see a v1.2.x branch for Node 0.12.

readable-stream uses proper patch-level versioning so if you pin to "~1.0.0" you’ll get the latest Node 0.10 Streams2 implementation, including any fixes and minor non-breaking improvements. The patch-level versions of 1.0.x and 1.1.x should mirror the patch-level versions of Node-core releases. You should prefer the 1.0.x releases for now and when you’re ready to start using Streams3, pin to "~1.1.0"

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/multiparty/node_modules/readable-stream/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/multiparty/node_modules/readable-stream/node_modules/core-util-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

core-util-is

The util.is* functions introduced in Node v0.12.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/finalhandler/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.2.0 / 2014-09-03

		Set X-Content-Type-Options: nosniff header

		deps: debug@~2.0.0

0.1.0 / 2014-07-16

		Respond after request fully read
		prevents hung responses and socket hang ups

		deps: debug@1.0.4

0.0.3 / 2014-07-11

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

0.0.2 / 2014-06-19

		Handle invalid status codes

0.0.1 / 2014-06-05

		deps: debug@1.0.2

0.0.0 / 2014-06-05

		Extracted from connect/express

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/multiparty/node_modules/readable-stream/node_modules/string_decoder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 string_decoder.js (require('string_decoder')) from Node.js core

Copyright Joyent, Inc. and other Node contributors. See LICENCE file for details.

Version numbers match the versions found in Node core, e.g. 0.10.24 matches Node 0.10.24, likewise 0.11.10 matches Node 0.11.10. Prefer the stable version over the unstable.

The build/ directory contains a build script that will scrape the source from the joyent/node [https://github.com/joyent/node] repo given a specific Node version.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/finalhandler/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

finalhandler

![NPM Version][npm-image] [https://npmjs.org/package/finalhandler]
![NPM Downloads][downloads-image] [https://npmjs.org/package/finalhandler]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/pillarjs/finalhandler]
![Test Coverage][coveralls-image] [https://coveralls.io/r/pillarjs/finalhandler?branch=master]

Node.js function to invoke as the final step to respond to HTTP request.

Installation

$ npm install finalhandler

API

var finalhandler = require('finalhandler')

finalhandler(req, res, [options])

Returns function to be invoked as the final step for the given req and res.
This function is to be invoked as fn(err). If err is falsy, the handler will
write out a 404 response to the res. If it is truthy, an error response will
be written out to the res, and res.statusCode is set from err.status.

The final handler will also unpipe anything from req when it is invoked.

options.env

By default, the environment is determined by NODE_ENV variable, but it can be
overridden by this option.

options.onerror

Provide a function to be called with the err when it exists. Can be used for
writing errors to a central location without excessive function generation. Called
as onerror(err, req, res).

Examples

always 404

var finalhandler = require('finalhandler')
var http = require('http')

var server = http.createServer(function (req, res) {
 var done = finalhandler(req, res)
 done()
})

server.listen(3000)

perform simple action

var finalhandler = require('finalhandler')
var fs = require('fs')
var http = require('http')

var server = http.createServer(function (req, res) {
 var done = finalhandler(req, res)

 fs.readFile('index.html', function (err, buf) {
 if (err) return done(err)
 res.setHeader('Content-Type', 'text/html')
 res.end(buf)
 })
})

server.listen(3000)

use with middleware-style functions

var finalhandler = require('finalhandler')
var http = require('http')
var serveStatic = require('serve-static')

var serve = serveStatic('public')

var server = http.createServer(function (req, res) {
 var done = finalhandler(req, res)
 serve(req, res, done)
})

server.listen(3000)

keep log of all errors

var finalhandler = require('finalhandler')
var fs = require('fs')
var http = require('http')

var server = http.createServer(function (req, res) {
 var done = finalhandler(req, res, {onerror: logerror})

 fs.readFile('index.html', function (err, buf) {
 if (err) return done(err)
 res.setHeader('Content-Type', 'text/html')
 res.end(buf)
 })
})

server.listen(3000)

function logerror(err) {
 console.error(err.stack || err.toString())
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/node_modules/raw-body/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.3.0 / 2014-07-20

		Fully unpipe the stream on error
		Fixes Cannot switch to old mode now error on Node.js 0.10+

1.2.3 / 2014-07-20

		deps: iconv-lite@0.4.4
		Added encoding UTF-7

1.2.2 / 2014-06-19

		Send invalid encoding error to callback

1.2.1 / 2014-06-15

		deps: iconv-lite@0.4.3
		Added encodings UTF-16BE and UTF-16 with BOM

1.2.0 / 2014-06-13

		Passing string as options interpreted as encoding

		Support all encodings from iconv-lite

1.1.7 / 2014-06-12

		use string_decoder module from npm

1.1.6 / 2014-05-27

		check encoding for old streams1

		support node.js < 0.10.6

1.1.5 / 2014-05-14

		bump bytes

1.1.4 / 2014-04-19

		allow true as an option

		bump bytes

1.1.3 / 2014-03-02

		fix case when length=null

1.1.2 / 2013-12-01

		be less strict on state.encoding check

1.1.1 / 2013-11-27

		add engines

1.1.0 / 2013-11-27

		add err.statusCode and err.type

		allow for encoding option to be true

		pause the stream instead of dumping on error

		throw if the stream’s encoding is set

1.0.1 / 2013-11-19

		dont support streams1, throw if dev set encoding

1.0.0 / 2013-11-17

		rename expected option to length

0.2.0 / 2013-11-15

		republish

0.1.1 / 2013-11-15

		use bytes

0.1.0 / 2013-11-11

		generator support

0.0.3 / 2013-10-10

		update repo

0.0.2 / 2013-09-14

		dump stream on bad headers

		listen to events after defining received and buffers

0.0.1 / 2013-09-14

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/node_modules/iconv-lite/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Pure JS character encoding conversion

		Doesn’t need native code compilation. Works on Windows and in sandboxed environments like Cloud9 [http://c9.io].

		Used in popular projects like Grunt [http://gruntjs.com/], Nodemailer [http://www.nodemailer.com/], Yeoman [http://yeoman.io/] and others.

		Faster than node-iconv [https://github.com/bnoordhuis/node-iconv] (see below for performance comparison).

		Intuitive encode/decode API

		Streaming support for Node v0.10+

		Can extend Node.js primitives (buffers, streams) to support all iconv-lite encodings.

		In-browser usage via Browserify [https://github.com/substack/node-browserify] (~180k gzip compressed with Buffer shim included).

		License: MIT.

[image: NPM Stats] [https://npmjs.org/packages/iconv-lite/]

Usage

Basic API

var iconv = require('iconv-lite');

// Convert from an encoded buffer to js string.
str = iconv.decode(new Buffer([0x68, 0x65, 0x6c, 0x6c, 0x6f]), 'win1251');

// Convert from js string to an encoded buffer.
buf = iconv.encode("Sample input string", 'win1251');

// Check if encoding is supported
iconv.encodingExists("us-ascii")

Streaming API (Node v0.10+)

// Decode stream (from binary stream to js strings)
http.createServer(function(req, res) {
 var converterStream = iconv.decodeStream('win1251');
 req.pipe(converterStream);

 converterStream.on('data', function(str) {
 console.log(str); // Do something with decoded strings, chunk-by-chunk.
 });
});

// Convert encoding streaming example
fs.createReadStream('file-in-win1251.txt')
 .pipe(iconv.decodeStream('win1251'))
 .pipe(iconv.encodeStream('ucs2'))
 .pipe(fs.createWriteStream('file-in-ucs2.txt'));

// Sugar: all encode/decode streams have .collect(cb) method to accumulate data.
http.createServer(function(req, res) {
 req.pipe(iconv.decodeStream('win1251')).collect(function(err, body) {
 assert(typeof body == 'string');
 console.log(body); // full request body string
 });
});

Extend Node.js own encodings

// After this call all Node basic primitives will understand iconv-lite encodings.
iconv.extendNodeEncodings();

// Examples:
buf = new Buffer(str, 'win1251');
buf.write(str, 'gbk');
str = buf.toString('latin1');
assert(Buffer.isEncoding('iso-8859-15'));
Buffer.byteLength(str, 'us-ascii');

http.createServer(function(req, res) {
 req.setEncoding('big5');
 req.collect(function(err, body) {
 console.log(body);
 });
});

fs.createReadStream("file.txt", "shift_jis");

// External modules are also supported (if they use Node primitives, which they probably do).
request = require('request');
request({
 url: "http://github.com/",
 encoding: "cp932"
});

// To remove extensions
iconv.undoExtendNodeEncodings();

Supported encodings

		All node.js native encodings: utf8, ucs2 / utf16-le, ascii, binary, base64, hex.

		Additional unicode encodings: utf16, utf16-be, utf-7, utf-7-imap.

		All widespread singlebyte encodings: Windows 125x family, ISO-8859 family,
IBM/DOS codepages, Macintosh family, KOI8 family, all others supported by iconv library.
Aliases like ‘latin1’, ‘us-ascii’ also supported.

		All widespread multibyte encodings: CP932, CP936, CP949, CP950, GB2313, GBK, GB18030, Big5, Shift_JIS, EUC-JP.

See all supported encodings on wiki [https://github.com/ashtuchkin/iconv-lite/wiki/Supported-Encodings].

Most singlebyte encodings are generated automatically from node-iconv [https://github.com/bnoordhuis/node-iconv]. Thank you Ben Noordhuis and libiconv authors!

Multibyte encodings are generated from Unicode.org mappings [http://www.unicode.org/Public/MAPPINGS/] and WHATWG Encoding Standard mappings [http://encoding.spec.whatwg.org/]. Thank you, respective authors!

Encoding/decoding speed

Comparison with node-iconv module (1000x256kb, on MacBook Pro, Core i5/2.6 GHz, Node v0.10.26).
Note: your results may vary, so please always check on your hardware.

operation iconv@2.1.4 iconv-lite@0.4.0
--
encode('win1251') ~130 Mb/s ~380 Mb/s
decode('win1251') ~127 Mb/s ~210 Mb/s

Notes

When decoding, be sure to supply a Buffer to decode() method, otherwise bad things usually happen [https://github.com/ashtuchkin/iconv-lite/wiki/Use-Buffers-when-decoding].Untranslatable characters are set to � or ?. No transliteration is currently supported.

Testing

$ git clone git@github.com:ashtuchkin/iconv-lite.git
$ cd iconv-lite
$ npm install
$ npm test

$ # To view performance:
$ node test/performance.js

Adoption

[image: NPM] [https://nodei.co/npm/iconv-lite/]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/node_modules/on-finished/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.0 / 2014-08-16

		Check if socket is detached

		Return undefined for isFinished if state unknown

2.0.0 / 2014-08-16

		Add isFinished function

		Move to jshttp organization

		Remove support for plain socket argument

		Rename to on-finished

		Support both req and res as arguments

		deps: ee-first@1.0.5

1.2.2 / 2014-06-10

		Reduce listeners added to emitters
		avoids “event emitter leak” warnings when used multiple times on same request

1.2.1 / 2014-06-08

		Fix returned value when already finished

1.2.0 / 2014-06-05

		Call callback when called on already-finished socket

1.1.4 / 2014-05-27

		Support node.js 0.8

1.1.3 / 2014-04-30

		Make sure errors passed as instanceof Error

1.1.2 / 2014-04-18

		Default the socket to passed-in object

1.1.1 / 2014-01-16

		Rename module to finished

1.1.0 / 2013-12-25

		Call callback when called on already-errored socket

1.0.1 / 2013-12-20

		Actually pass the error to the callback

1.0.0 / 2013-12-20

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/node_modules/raw-body/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

raw-body

[image: NPM version] [http://badge.fury.io/js/raw-body]
[image: Build Status] [https://travis-ci.org/stream-utils/raw-body]
[image: Coverage Status] [https://coveralls.io/r/stream-utils/raw-body]

Gets the entire buffer of a stream either as a Buffer or a string.
Validates the stream’s length against an expected length and maximum limit.
Ideal for parsing request bodies.

API

var getRawBody = require('raw-body')
var typer = require('media-typer')

app.use(function (req, res, next) {
 getRawBody(req, {
 length: req.headers['content-length'],
 limit: '1mb',
 encoding: typer.parse(req.headers['content-type']).parameters.charset
 }, function (err, string) {
 if (err)
 return next(err)

 req.text = string
 next()
 })
})

or in a Koa generator:

app.use(function* (next) {
 var string = yield getRawBody(this.req, {
 length: this.length,
 limit: '1mb',
 encoding: this.charset
 })
})

getRawBody(stream, [options], [callback])

Returns a thunk for yielding with generators.

Options:

		length - The length length of the stream.
If the contents of the stream do not add up to this length,
an 400 error code is returned.

		limit - The byte limit of the body.
If the body ends up being larger than this limit,
a 413 error code is returned.

		encoding - The requested encoding.
By default, a Buffer instance will be returned.
Most likely, you want utf8.
You can use any type of encoding supported by iconv-lite [https://www.npmjs.org/package/iconv-lite#readme].

You can also pass a string in place of options to just specify the encoding.

callback(err, res):

		err - the following attributes will be defined if applicable:
		limit - the limit in bytes

		length and expected - the expected length of the stream

		received - the received bytes

		encoding - the invalid encoding

		status and statusCode - the corresponding status code for the error

		type - either entity.too.large, request.size.invalid, stream.encoding.set, or encoding.unsupported

		res - the result, either as a String if an encoding was set or a Buffer otherwise.

If an error occurs, the stream will be paused, everything unpiped,
and you are responsible for correctly disposing the stream.
For HTTP requests, no handling is required if you send a response.
For streams that use file descriptors, you should stream.destroy() or stream.close() to prevent leaks.

License

The MIT License (MIT)

Copyright (c) 2013 Jonathan Ong me@jongleberry.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/node_modules/on-finished/node_modules/ee-first/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

EE First

![NPM version][npm-image] [https://npmjs.org/package/ee-first]
![Build status][travis-image] [https://travis-ci.org/jonathanong/ee-first]
![Test coverage][coveralls-image] [https://coveralls.io/r/jonathanong/ee-first?branch=master]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/ee-first]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Get the first event in a set of event emitters and event pairs,
then clean up after itself.

Install

$ npm install ee-first

API

var first = require('ee-first')

first(arr, listener)

Invoke listener on the first event from the list specified in arr. arr is
an array of arrays, with each array in the format [ee, ...event]. listener
will be called only once, the first time any of the given events are emitted. If
error is one of the listened events, then if that fires first, the listener
will be given the err argument.

The listener is invoked as listener(err, ee, event, args), where err is the
first argument emitted from an error event, if applicable; ee is the event
emitter that fired; event is the string event name that fired; and args is an
array of the arguments that were emitted on the event.

var ee1 = new EventEmitter()
var ee2 = new EventEmitter()

first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/node_modules/on-finished/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

on-finished

[image: NPM Version] [https://www.npmjs.org/package/on-finished]
[image: Node.js Version] [http://nodejs.org/download/]
[image: Build Status] [https://travis-ci.org/jshttp/on-finished]
[image: Coverage Status] [https://coveralls.io/r/jshttp/on-finished]

Execute a callback when a request closes, finishes, or errors.

Install

$ npm install on-finished

API

var onFinished = require('on-finished')

onFinished(res, listener)

Attach a listener to listen for the response to finish. The listener will
be invoked only once when the response finished. If the response finished
to to an error, the first argument will contain the error.

Listening to the end of a response would be used to close things associated
with the response, like open files.

onFinished(res, function (err) {
 // clean up open fds, etc.
})

onFinished(req, listener)

Attach a listener to listen for the request to finish. The listener will
be invoked only once when the request finished. If the request finished
to to an error, the first argument will contain the error.

Listening to the end of a request would be used to know when to continue
after reading the data.

var data = ''

req.setEncoding('utf8')
res.on('data', function (str) {
 data += str
})

onFinished(req, function (err) {
 // data is read unless there is err
})

onFinished.isFinished(res)

Determine if res is already finished. This would be useful to check and
not even start certain operations if the response has already finished.

onFinished.isFinished(req)

Determine if req is already finished. This would be useful to check and
not even start certain operations if the request has already finished.

Example

The following code ensures that file descriptors are always closed
once the response finishes.

var destroy = require('destroy')
var http = require('http')
var onFinished = require('finished')

http.createServer(function onRequest(req, res) {
 var stream = fs.createReadStream('package.json')
 stream.pipe(res)
 onFinished(res, function (err) {
 destroy(stream)
 })
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/parseurl/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

parseurl

[image: NPM version] [http://badge.fury.io/js/parseurl]
[image: Build Status] [https://travis-ci.org/expressjs/parseurl]
[image: Coverage Status] [https://coveralls.io/r/expressjs/parseurl]

Parse a URL with memoization.

Install

$ npm install parseurl

API

var parseurl = require('parseurl')

parseurl(req)

Parse the URL of the given request object (looks at the req.url property)
and return the result. The result is the same as url.parse in Node.js core.
Calling this function multiple times on the same req where req.url does
not change will return a cached parsed object, rather than parsing again.

parseurl.original(req)

Parse the original URL of the given request object and return the result.
This works by trying to parse req.originalUrl if it is a string, otherwise
parses req.url. The result is the same as url.parse in Node.js core.
Calling this function multiple times on the same req where req.originalUrl
does not change will return a cached parsed object, rather than parsing again.

Benchmark

$ npm run-script bench

> parseurl@1.3.0 bench nodejs-parseurl
> node benchmark/index.js

> node benchmark/fullurl.js

 Parsing URL "http://localhost:8888/foo/bar?user=tj&pet=fluffy"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 1,290,780 ops/sec ±0.46% (195 runs sampled)
 nativeurl x 56,401 ops/sec ±0.22% (196 runs sampled)
 parseurl x 55,231 ops/sec ±0.22% (194 runs sampled)

> node benchmark/pathquery.js

 Parsing URL "/foo/bar?user=tj&pet=fluffy"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 1,986,668 ops/sec ±0.27% (190 runs sampled)
 nativeurl x 98,740 ops/sec ±0.21% (195 runs sampled)
 parseurl x 2,628,171 ops/sec ±0.36% (195 runs sampled)

> node benchmark/samerequest.js

 Parsing URL "/foo/bar?user=tj&pet=fluffy" on same request object

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 2,184,468 ops/sec ±0.40% (194 runs sampled)
 nativeurl x 99,437 ops/sec ±0.71% (194 runs sampled)
 parseurl x 10,498,005 ops/sec ±0.61% (186 runs sampled)

> node benchmark/simplepath.js

 Parsing URL "/foo/bar"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 4,535,825 ops/sec ±0.27% (191 runs sampled)
 nativeurl x 98,769 ops/sec ±0.54% (191 runs sampled)
 parseurl x 4,164,865 ops/sec ±0.34% (192 runs sampled)

> node benchmark/slash.js

 Parsing URL "/"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 4,908,405 ops/sec ±0.42% (191 runs sampled)
 nativeurl x 100,945 ops/sec ±0.59% (188 runs sampled)
 parseurl x 4,333,208 ops/sec ±0.27% (194 runs sampled)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/parseurl/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.3.0 / 2014-08-09

		Add parseurl.original for parsing req.originalUrl with fallback

		Return undefined if req.url is undefined

1.2.0 / 2014-07-21

		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

1.1.3 / 2014-07-08

		Fix typo

1.1.2 / 2014-07-08

		Seriously fix Node.js 0.8 compatibility

1.1.1 / 2014-07-08

		Fix Node.js 0.8 compatibility

1.1.0 / 2014-07-08

		Incorporate URL href-only parse fast-path

1.0.1 / 2014-03-08

		Add missing require

1.0.0 / 2014-03-08

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/depd/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.4.5 / 2014-09-09

		Improve call speed to functions using the function wrapper

		Support Node.js 0.6

0.4.4 / 2014-07-27

		Work-around v8 generating empty stack traces

0.4.3 / 2014-07-26

		Fix exception when global Error.stackTraceLimit is too low

0.4.2 / 2014-07-19

		Correct call site for wrapped functions and properties

0.4.1 / 2014-07-19

		Improve automatic message generation for function properties

0.4.0 / 2014-07-19

		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		Support deprecate.property(fn, prop, message)

0.3.0 / 2014-06-16

		Add NO_DEPRECATION environment variable

0.2.0 / 2014-06-15

		Add deprecate.property(obj, prop, message)

		Remove supports-color dependency for node.js 0.8

0.1.0 / 2014-06-15

		Add deprecate.function(fn, message)

		Add process.on('deprecation', fn) emitter

		Automatically generate message when omitted from deprecate()

0.0.1 / 2014-06-15

		Fix warning for dynamic calls at singe call site

0.0.0 / 2014-06-15

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/depd/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

depd

![NPM Version][npm-version-image] [https://npmjs.org/package/depd]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/depd]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/dougwilson/nodejs-depd]
![Coverage Status][coveralls-image] [https://coveralls.io/r/dougwilson/nodejs-depd?branch=master]
![Gittip][gittip-image] [https://www.gittip.com/dougwilson/]

Deprecate all the things

With great modules comes great responsibility; mark things deprecated!

Install

$ npm install depd

API

var deprecate = require('depd')('my-module')

This library allows you to display deprecation messages to your users.
This library goes above and beyond with deprecation warnings by
introspecting the call stack (but only the bits that it is interested
in).

Instead of just warning on the first invocation of a deprecated
function and never again, this module will warn on the first invocation
of a deprecated function per unique call site, making it ideal to alert
users of all deprecated uses across the code base, rather than just
whatever happens to execute first.

The deprecation warnings from this module also include the file and line
information for the call into the module that the deprecated function was
in.

depd(namespace)

Create a new deprecate function that uses the given namespace name in the
messages and will display the call site prior to the stack entering the
file this function was called from. It is highly suggested you use the
name of your module as the namespace.

deprecate(message)

Call this function from deprecated code to display a deprecation message.
This message will appear once per unique caller site. Caller site is the
first call site in the stack in a different file from the caller of this
function.

If the message is omitted, a message is generated for you based on the site
of the deprecate() call and will display the name of the function called,
similar to the name displayed in a stack trace.

deprecate.function(fn, message)

Call this function to wrap a given function in a deprecation message on any
call to the function. An optional message can be supplied to provide a custom
message.

deprecate.property(obj, prop, message)

Call this function to wrap a given property on object in a deprecation message
on any accessing or setting of the property. An optional message can be supplied
to provide a custom message.

The method must be called on the object where the property belongs (not
inherited from the prototype).

If the property is a data descriptor, it will be converted to an accessor
descriptor in order to display the deprecation message.

process.on(‘deprecation’, fn)

This module will allow easy capturing of deprecation errors by emitting the
errors as the type “deprecation” on the global process. If there are no
listeners for this type, the errors are written to STDERR as normal, but if
there are any listeners, nothing will be written to STDERR and instead only
emitted. From there, you can write the errors in a different format or to a
logging source.

The error represents the deprecation and is emitted only once with the same
rules as writing to STDERR. The error has the following properties:

		message - This is the message given by the library

		name - This is always 'DeprecationError'

		namespace - This is the namespace the deprecation came from

		stack - This is the stack of the call to the deprecated thing

Example error.stack output:

DeprecationError: my-cool-module deprecated oldfunction
 at Object.<anonymous> ([eval]-wrapper:6:22)
 at Module._compile (module.js:456:26)
 at evalScript (node.js:532:25)
 at startup (node.js:80:7)
 at node.js:902:3

process.env.NO_DEPRECATION

As a user of modules that are deprecated, the environment variable NO_DEPRECATION
is provided as a quick solution to silencing deprecation warnings from being
output. The format of this is similar to that of DEBUG:

$ NO_DEPRECATION=my-module,othermod node app.js

This will suppress deprecations from being output for “my-module” and “othermod”.
The value is a list of comma-separated namespaces. To suppress every warning
across all namespaces, use the value * for a namespace.

Providing the argument --no-deprecation to the node executable will suppress
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not suppress the deperecations given to any “deprecation”
event listeners, just the output to STDERR.

process.env.TRACE_DEPRECATION

As a user of modules that are deprecated, the environment variable TRACE_DEPRECATION
is provided as a solution to getting more detailed location information in deprecation
warnings by including the entire stack trace. The format of this is the same as
NO_DEPRECATION:

$ TRACE_DEPRECATION=my-module,othermod node app.js

This will include stack traces for deprecations being output for “my-module” and
“othermod”. The value is a list of comma-separated namespaces. To trace every
warning across all namespaces, use the value * for a namespace.

Providing the argument --trace-deprecation to the node executable will trace
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not trace the deperecations silenced by NO_DEPRECATION.

Display

[image: message]

When a user calls a function in your library that you mark deprecated, they
will see the following written to STDERR (in the given colors, similar colors
and layout to the debug module):

bright cyan bright yellow
| | reset cyan
| | | |
▼ ▼ ▼ ▼
my-cool-module deprecated oldfunction [eval]-wrapper:6:22
▲ ▲ ▲ ▲
| | | |
namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

If the user redirects their STDERR to a file or somewhere that does not support
colors, they see (similar layout to the debug module):

Sun, 15 Jun 2014 05:21:37 GMT my-cool-module deprecated oldfunction at [eval]-wrapper:6:22
▲ ▲ ▲ ▲ ▲
| | | | |
timestamp of message namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

Examples

Deprecating all calls to a function

This will display a deprecated message about “oldfunction” being deprecated
from “my-module” on STDERR.

var deprecate = require('depd')('my-cool-module')

// message automatically derived from function name
// Object.oldfunction
exports.oldfunction = deprecate.function(function oldfunction() {
 // all calls to function are deprecated
})

// specific message
exports.oldfunction = deprecate.function(function () {
 // all calls to function are deprecated
}, 'oldfunction')

Conditionally deprecating a function call

This will display a deprecated message about “weirdfunction” being deprecated
from “my-module” on STDERR when called with less than 2 arguments.

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 }
}

When calling deprecate as a function, the warning is counted per call site
within your own module, so you can display different deprecations depending
on different situations and the users will still get all the warnings:

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 } else if (typeof arguments[0] !== 'string') {
 // calls with non-string first argument are deprecated
 deprecate('weirdfunction non-string first arg')
 }
}

Deprecating property access

This will display a deprecated message about “oldprop” being deprecated
from “my-module” on STDERR when accessed. A deprecation will be displayed
when setting the value and when getting the value.

var deprecate = require('depd')('my-cool-module')

exports.oldprop = 'something'

// message automatically derives from property name
deprecate.property(exports, 'oldprop')

// explicit message
deprecate.property(exports, 'oldprop', 'oldprop >= 0.10')

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/etag/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.4.0 / 2014-09-21

		Support “fake” stats objects

		Support Node.js 0.6

1.3.1 / 2014-09-14

		Use the (new and improved) crc for crc32

1.3.0 / 2014-08-29

		Default strings to strong ETags

		Improve speed for weak ETags over 1KB

1.2.1 / 2014-08-29

		Use the (much faster) buffer-crc32 for crc32

1.2.0 / 2014-08-24

		Add support for file stat objects

1.1.0 / 2014-08-24

		Add fast-path for empty entity

		Add weak ETag generation

		Shrink size of generated ETags

1.0.1 / 2014-08-24

		Fix behavior of string containing Unicode

1.0.0 / 2014-05-18

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/on-finished/node_modules/ee-first/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

EE First

![NPM version][npm-image] [https://npmjs.org/package/ee-first]
![Build status][travis-image] [https://travis-ci.org/jonathanong/ee-first]
![Test coverage][coveralls-image] [https://coveralls.io/r/jonathanong/ee-first?branch=master]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/ee-first]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Get the first event in a set of event emitters and event pairs,
then clean up after itself.

Install

$ npm install ee-first

API

var first = require('ee-first')

first(arr, listener)

Invoke listener on the first event from the list specified in arr. arr is
an array of arrays, with each array in the format [ee, ...event]. listener
will be called only once, the first time any of the given events are emitted. If
error is one of the listened events, then if that fires first, the listener
will be given the err argument.

The listener is invoked as listener(err, ee, event, args), where err is the
first argument emitted from an error event, if applicable; ee is the event
emitter that fired; event is the string event name that fired; and args is an
array of the arguments that were emitted on the event.

var ee1 = new EventEmitter()
var ee2 = new EventEmitter()

first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/etag/node_modules/crc/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

crc

[image: GitTip] [https://www.gittip.com/alexgorbatchev/]
[image: Dependency status] [https://david-dm.org/alexgorbatchev/node-crc]
[image: devDependency Status] [https://david-dm.org/alexgorbatchev/node-crc#info=devDependencies]
[image: Build Status] [https://travis-ci.org/alexgorbatchev/node-crc]

[image: NPM] [https://npmjs.org/package/node-crc]

Module for calculating Cyclic Redundancy Check (CRC).

Features

		Version 3 is 3-4 times faster than version 2.

		Pure JavaScript implementation, no dependencies.

		Provides CRC Tables for optimized calculations.

		Provides support for the following CRC algorithms:
		CRC1 crc.crc1(…)

		CRC8 crc.crc8(…)

		CRC8 1-Wire crc.crc81wire(…)

		CRC16 crc.crc16(…)

		CRC16 CCITT crc.crc16ccitt(…)

		CRC16 Modbus crc.crc16modbus(…)

		CRC24 crc.crc24(…)

		CRC32 crc.crc32(…)

Installation

npm install crc

Running tests

$ npm install
$ npm test

Usage Example

Calculate a CRC32:

var crc = require('crc');

crc.crc32('hello').toString(16);
=> "3610a686"

Calculate a CRC32 of a file:

crc.crc32(fs.readFileSync('README.md', 'utf8')).toString(16);
=> "127ad531"

Or using a Buffer:

crc.crc32(fs.readFileSync('README.md')).toString(16);
=> "127ad531"

Incrementally calculate a CRC32:

value = crc32('one');
value = crc32('two', value);
value = crc32('three', value);
value.toString(16);
=> "09e1c092"

Thanks!

pycrc [http://www.tty1.net/pycrc/] library is which the source of all of the CRC tables.

License

The MIT License (MIT)

Copyright (c) 2014 Alex Gorbatchev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/etag/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

etag

![NPM Version][npm-image] [https://npmjs.org/package/etag]
![NPM Downloads][downloads-image] [https://npmjs.org/package/etag]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/etag]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/etag?branch=master]

Create simple ETags

Installation

$ npm install etag

API

var etag = require('etag')

etag(entity, [options])

Generate a strong ETag for the given entity. This should be the complete
body of the entity. Strings, Buffers, and fs.Stats are accepted. By
default, a strong ETag is generated except for fs.Stats, which will
generate a weak ETag (this can be overwritten by options.weak).

res.setHeader('ETag', etag(body))

Options

etag accepts these properties in the options object.

weak

Specifies if a “strong” or a “weak” ETag will be generated. The ETag can only
really be a strong as the given input.

Testing

$ npm test

Benchmark

$ npm run-script bench

> etag@1.2.0 bench nodejs-etag
> node benchmark/index.js

> node benchmark/body0-100b.js

 100B body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 518,895 ops/sec ±1.71% (185 runs sampled)
* buffer - weak x 1,917,975 ops/sec ±0.34% (195 runs sampled)
 string - strong x 245,251 ops/sec ±0.90% (190 runs sampled)
 string - weak x 442,232 ops/sec ±0.21% (196 runs sampled)

> node benchmark/body1-1kb.js

 1KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 309,748 ops/sec ±0.99% (191 runs sampled)
* buffer - weak x 352,402 ops/sec ±0.20% (198 runs sampled)
 string - strong x 159,058 ops/sec ±1.83% (191 runs sampled)
 string - weak x 184,052 ops/sec ±1.30% (189 runs sampled)

> node benchmark/body2-5kb.js

 5KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

* buffer - strong x 110,157 ops/sec ±0.60% (194 runs sampled)
* buffer - weak x 111,333 ops/sec ±0.67% (194 runs sampled)
 string - strong x 62,091 ops/sec ±3.92% (186 runs sampled)
 string - weak x 60,681 ops/sec ±3.98% (186 runs sampled)

> node benchmark/body3-10kb.js

 10KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

* buffer - strong x 61,843 ops/sec ±0.44% (197 runs sampled)
* buffer - weak x 61,687 ops/sec ±0.52% (197 runs sampled)
 string - strong x 41,377 ops/sec ±3.33% (189 runs sampled)
 string - weak x 41,368 ops/sec ±3.29% (190 runs sampled)

> node benchmark/body4-100kb.js

 100KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

* buffer - strong x 6,874 ops/sec ±0.17% (198 runs sampled)
* buffer - weak x 6,880 ops/sec ±0.15% (198 runs sampled)
 string - strong x 5,382 ops/sec ±2.17% (192 runs sampled)
 string - weak x 5,361 ops/sec ±2.23% (192 runs sampled)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/range-parser/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

range-parser

![NPM Version][npm-image] [https://npmjs.org/package/range-parser]
![NPM Downloads][downloads-image] [https://npmjs.org/package/range-parser]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/range-parser]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/range-parser]

Range header field parser.

Installation

$ npm install range-parser

Examples

assert(-1 == parse(200, 'bytes=500-20'));
assert(-2 == parse(200, 'bytes=malformed'));
parse(200, 'bytes=0-499').should.eql(arr('bytes', [{ start: 0, end: 199 }]));
parse(1000, 'bytes=0-499').should.eql(arr('bytes', [{ start: 0, end: 499 }]));
parse(1000, 'bytes=40-80').should.eql(arr('bytes', [{ start: 40, end: 80 }]));
parse(1000, 'bytes=-500').should.eql(arr('bytes', [{ start: 500, end: 999 }]));
parse(1000, 'bytes=-400').should.eql(arr('bytes', [{ start: 600, end: 999 }]));
parse(1000, 'bytes=500-').should.eql(arr('bytes', [{ start: 500, end: 999 }]));
parse(1000, 'bytes=400-').should.eql(arr('bytes', [{ start: 400, end: 999 }]));
parse(1000, 'bytes=0-0').should.eql(arr('bytes', [{ start: 0, end: 0 }]));
parse(1000, 'bytes=-1').should.eql(arr('bytes', [{ start: 999, end: 999 }]));
parse(1000, 'items=0-5').should.eql(arr('items', [{ start: 0, end: 5 }]));
parse(1000, 'bytes=40-80,-1').should.eql(arr('bytes', [{ start: 40, end: 80 }, { start: 999, end: 999 }]));

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/range-parser/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.2 / 2014-09-08

		Support Node.js 0.6

1.0.1 / 2014-09-07

		Move repository to jshttp

1.0.0 / 2013-12-11

		Add repository to package.json

		Add MIT license

0.0.4 / 2012-06-17

		Change ret -1 for unsatisfiable and -2 when invalid

0.0.3 / 2012-06-17

		Fix last-byte-pos default to len - 1

0.0.2 / 2012-06-14

		Add .type

0.0.1 / 2012-06-11

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/utils-merge/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

utils-merge

Merges the properties from a source object into a destination object.

Install

$ npm install utils-merge

Usage

var a = { foo: 'bar' }
 , b = { bar: 'baz' };

merge(a, b);
// => { foo: 'bar', bar: 'baz' }

Tests

$ npm install
$ npm test

[image: Build Status] [http://travis-ci.org/jaredhanson/utils-merge]

Credits

		Jared Hanson [http://github.com/jaredhanson]

License

The MIT License [http://opensource.org/licenses/MIT]

Copyright (c) 2013 Jared Hanson <http://jaredhanson.net/>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/escape-html/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

escape-html

Escape HTML entities

Example

var escape = require('escape-html');
escape(str);

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/response-time/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

response-time

[image: NPM version] [https://badge.fury.io/js/response-time]
[image: Build Status] [https://travis-ci.org/expressjs/response-time]
[image: Coverage Status] [https://coveralls.io/r/expressjs/response-time]

Response time middleware extracted from connect.

Installation

$ npm install response-time

API

var responseTime = require('response-time')

// time starts ticking from the moment req goes through the middleware
app.use(responseTime(5))

responseTime(digits)

Returns middleware that adds a X-Response-Time header to responses.

		digits - the fixed number of digits to include. (default: 3)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/response-time/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.1 / 2014-08-10

		deps: on-headers@~1.0.0

2.0.0 / 2014-05-31

		add digits argument

		do not override existing X-Response-Time header

		timer not subject to clock drift

		timer resolution down to nanoseconds

		use on-headers module

1.0.0 / 2014-02-08

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/on-finished/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

on-finished

[image: NPM Version] [https://www.npmjs.org/package/on-finished]
[image: Node.js Version] [http://nodejs.org/download/]
[image: Build Status] [https://travis-ci.org/jshttp/on-finished]
[image: Coverage Status] [https://coveralls.io/r/jshttp/on-finished]

Execute a callback when a request closes, finishes, or errors.

Install

$ npm install on-finished

API

var onFinished = require('on-finished')

onFinished(res, listener)

Attach a listener to listen for the response to finish. The listener will
be invoked only once when the response finished. If the response finished
to to an error, the first argument will contain the error.

Listening to the end of a response would be used to close things associated
with the response, like open files.

onFinished(res, function (err) {
 // clean up open fds, etc.
})

onFinished(req, listener)

Attach a listener to listen for the request to finish. The listener will
be invoked only once when the request finished. If the request finished
to to an error, the first argument will contain the error.

Listening to the end of a request would be used to know when to continue
after reading the data.

var data = ''

req.setEncoding('utf8')
res.on('data', function (str) {
 data += str
})

onFinished(req, function (err) {
 // data is read unless there is err
})

onFinished.isFinished(res)

Determine if res is already finished. This would be useful to check and
not even start certain operations if the response has already finished.

onFinished.isFinished(req)

Determine if req is already finished. This would be useful to check and
not even start certain operations if the request has already finished.

Example

The following code ensures that file descriptors are always closed
once the response finishes.

var destroy = require('destroy')
var http = require('http')
var onFinished = require('finished')

http.createServer(function onRequest(req, res) {
 var stream = fs.createReadStream('package.json')
 stream.pipe(res)
 onFinished(res, function (err) {
 destroy(stream)
 })
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-favicon/node_modules/etag/node_modules/crc/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

crc

[image: GitTip] [https://www.gittip.com/alexgorbatchev/]
[image: Dependency status] [https://david-dm.org/alexgorbatchev/node-crc]
[image: devDependency Status] [https://david-dm.org/alexgorbatchev/node-crc#info=devDependencies]
[image: Build Status] [https://travis-ci.org/alexgorbatchev/node-crc]

[image: NPM] [https://npmjs.org/package/node-crc]

Module for calculating Cyclic Redundancy Check (CRC).

Features

		Version 3 is 3-4 times faster than version 2.

		Pure JavaScript implementation, no dependencies.

		Provides CRC Tables for optimized calculations.

		Provides support for the following CRC algorithms:
		CRC1 crc.crc1(…)

		CRC8 crc.crc8(…)

		CRC8 1-Wire crc.crc81wire(…)

		CRC16 crc.crc16(…)

		CRC16 CCITT crc.crc16ccitt(…)

		CRC16 Modbus crc.crc16modbus(…)

		CRC24 crc.crc24(…)

		CRC32 crc.crc32(…)

Installation

npm install crc

Running tests

$ npm install
$ npm test

Usage Example

Calculate a CRC32:

var crc = require('crc');

crc.crc32('hello').toString(16);
=> "3610a686"

Calculate a CRC32 of a file:

crc.crc32(fs.readFileSync('README.md', 'utf8')).toString(16);
=> "127ad531"

Or using a Buffer:

crc.crc32(fs.readFileSync('README.md')).toString(16);
=> "127ad531"

Incrementally calculate a CRC32:

value = crc32('one');
value = crc32('two', value);
value = crc32('three', value);
value.toString(16);
=> "09e1c092"

Thanks!

pycrc [http://www.tty1.net/pycrc/] library is which the source of all of the CRC tables.

License

The MIT License (MIT)

Copyright (c) 2014 Alex Gorbatchev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.6.4 / 2014-10-08

		Fix redirect loop when index file serving disabled

1.6.3 / 2014-09-24

		deps: send@0.9.3
		deps: etag@~1.4.0

1.6.2 / 2014-09-15

		deps: send@0.9.2
		deps: depd@0.4.5

		deps: etag@~1.3.1

		deps: range-parser@~1.0.2

1.6.1 / 2014-09-07

		deps: send@0.9.1
		deps: fresh@0.2.4

1.6.0 / 2014-09-07

		deps: send@0.9.0
		Add lastModified option

		Use etag to generate ETag header

		deps: debug@~2.0.0

1.5.4 / 2014-09-04

		deps: send@0.8.5
		Fix a path traversal issue when using root

		Fix malicious path detection for empty string path

1.5.3 / 2014-08-17

		deps: send@0.8.3

1.5.2 / 2014-08-14

		deps: send@0.8.2
		Work around fd leak in Node.js 0.10 for fs.ReadStream

1.5.1 / 2014-08-09

		Fix parsing of weird req.originalUrl values

		deps: parseurl@~1.3.0

		deps: utils-merge@1.0.0

1.5.0 / 2014-08-05

		deps: send@0.8.1
		Add extensions option

1.4.4 / 2014-08-04

		deps: send@0.7.4
		Fix serving index files without root dir

1.4.3 / 2014-07-29

		deps: send@0.7.3
		Fix incorrect 403 on Windows and Node.js 0.11

1.4.2 / 2014-07-27

		deps: send@0.7.2
		deps: depd@0.4.4

1.4.1 / 2014-07-26

		deps: send@0.7.1
		deps: depd@0.4.3

1.4.0 / 2014-07-21

		deps: parseurl@~1.2.0
		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

		deps: send@0.7.0
		Add dotfiles option

		deps: debug@1.0.4

		deps: depd@0.4.2

1.3.2 / 2014-07-11

		deps: send@0.6.0
		Cap maxAge value to 1 year

		deps: debug@1.0.3

1.3.1 / 2014-07-09

		deps: parseurl@~1.1.3
		faster parsing of href-only URLs

1.3.0 / 2014-06-28

		Add setHeaders option

		Include HTML link in redirect response

		deps: send@0.5.0
		Accept string for maxAge (converted by ms)

1.2.3 / 2014-06-11

		deps: send@0.4.3
		Do not throw un-catchable error on file open race condition

		Use escape-html for HTML escaping

		deps: debug@1.0.2

		deps: finished@1.2.2

		deps: fresh@0.2.2

1.2.2 / 2014-06-09

		deps: send@0.4.2
		fix “event emitter leak” warnings

		deps: debug@1.0.1

		deps: finished@1.2.1

1.2.1 / 2014-06-02

		use escape-html for escaping

		deps: send@0.4.1
		Send max-age in Cache-Control in correct format

1.2.0 / 2014-05-29

		deps: send@0.4.0
		Calculate ETag with md5 for reduced collisions

		Fix wrong behavior when index file matches directory

		Ignore stream errors after request ends

		Skip directories in index file search

		deps: debug@0.8.1

1.1.0 / 2014-04-24

		Accept options directly to send module

		deps: send@0.3.0

1.0.4 / 2014-04-07

		Resolve relative paths at middleware setup

		Use parseurl to parse the URL from request

1.0.3 / 2014-03-20

		Do not rely on connect-like environments

1.0.2 / 2014-03-06

		deps: send@0.2.0

1.0.1 / 2014-03-05

		Add mime export for back-compat

1.0.0 / 2014-03-05

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/cookie/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie [image: Build Status] [http://travis-ci.org/defunctzombie/node-cookie]

cookie is a basic cookie parser and serializer. It doesn’t make assumptions about how you are going to deal with your cookies. It basically just provides a way to read and write the HTTP cookie headers.

See RFC6265 [http://tools.ietf.org/html/rfc6265] for details about the http header for cookies.

how?

npm install cookie

var cookie = require('cookie');

var hdr = cookie.serialize('foo', 'bar');
// hdr = 'foo=bar';

var cookies = cookie.parse('foo=bar; cat=meow; dog=ruff');
// cookies = { foo: 'bar', cat: 'meow', dog: 'ruff' };

more

The serialize function takes a third parameter, an object, to set cookie options. See the RFC for valid values.

path

cookie path

expires

absolute expiration date for the cookie (Date object)

maxAge

relative max age of the cookie from when the client receives it (seconds)

domain

domain for the cookie

secure

true or false

httpOnly

true or false

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

send

![NPM Version][npm-image] [https://npmjs.org/package/send]
![NPM Downloads][downloads-image] [https://npmjs.org/package/send]
![Build Status][travis-image] [https://travis-ci.org/visionmedia/send]
![Test Coverage][coveralls-image] [https://coveralls.io/r/visionmedia/send?branch=master]
![Gittip][gittip-image] [https://www.gittip.com/dougwilson/]

Send is Connect’s static() extracted for generalized use, a streaming static file
server supporting partial responses (Ranges), conditional-GET negotiation, high test coverage, and granular events which may be leveraged to take appropriate actions in your application or framework.

Installation

$ npm install send

API

var send = require('send')

send(req, path, [options])

Create a new SendStream for the given path to send to a res. The req is
the Node.js HTTP request and the path is a urlencoded path to send (urlencoded,
not the actual file-system path).

Options

dotfiles

Set how “dotfiles” are treated when encountered. A dotfile is a file
or directory that begins with a dot (”.”). Note this check is done on
the path itself without checking if the path actually exists on the
disk. If root is specified, only the dotfiles above the root are
checked (i.e. the root itself can be within a dotfile when when set
to “deny”).

The default value is 'ignore'.

		'allow' No special treatment for dotfiles.

		'deny' Send a 403 for any request for a dotfile.

		'ignore' Pretend like the dotfile does not exist and 404.

etag

Enable or disable etag generation, defaults to true.

extensions

If a given file doesn’t exist, try appending one of the given extensions,
in the given order. By default, this is disabled (set to false). An
example value that will serve extension-less HTML files: ['html', 'htm'].
This is skipped if the requested file already has an extension.

index

By default send supports “index.html” files, to disable this
set false or to supply a new index pass a string or an array
in preferred order.

lastModified

Enable or disable Last-Modified header, defaults to true. Uses the file
system’s last modified value.

maxAge

Provide a max-age in milliseconds for http caching, defaults to 0.
This can also be a string accepted by the
ms [https://www.npmjs.org/package/ms#readme] module.

root

Serve files relative to path.

Events

The SendStream is an event emitter and will emit the following events:

		error an error occurred (err)

		directory a directory was requested

		file a file was requested (path, stat)

		headers the headers are about to be set on a file (res, path, stat)

		stream file streaming has started (stream)

		end streaming has completed

.pipe

The pipe method is used to pipe the response into the Node.js HTTP response
object, typically send(req, path, options).pipe(res).

Error-handling

By default when no error listeners are present an automatic response will be made, otherwise you have full control over the response, aka you may show a 5xx page etc.

Caching

It does not perform internal caching, you should use a reverse proxy cache such
as Varnish for this, or those fancy things called CDNs. If your application is small enough that it would benefit from single-node memory caching, it’s small enough that it does not need caching at all ;).

Debugging

To enable debug() instrumentation output export DEBUG:

$ DEBUG=send node app

Running tests

$ npm install
$ npm test

Examples

Small:

var http = require('http');
var send = require('send');

var app = http.createServer(function(req, res){
 send(req, req.url).pipe(res);
}).listen(3000);

Serving from a root directory with custom error-handling:

var http = require('http');
var send = require('send');
var url = require('url');

var app = http.createServer(function(req, res){
 // your custom error-handling logic:
 function error(err) {
 res.statusCode = err.status || 500;
 res.end(err.message);
 }

 // your custom headers
 function headers(res, path, stat) {
 // serve all files for download
 res.setHeader('Content-Disposition', 'attachment');
 }

 // your custom directory handling logic:
 function redirect() {
 res.statusCode = 301;
 res.setHeader('Location', req.url + '/');
 res.end('Redirecting to ' + req.url + '/');
 }

 // transfer arbitrary files from within
 // /www/example.com/public/*
 send(req, url.parse(req.url).pathname, {root: '/www/example.com/public'})
 .on('error', error)
 .on('directory', redirect)
 .on('headers', headers)
 .pipe(res);
}).listen(3000);

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

serve-static

![NPM Version][npm-image] [https://npmjs.org/package/serve-static]
![NPM Downloads][downloads-image] [https://npmjs.org/package/serve-static]
![Build Status][travis-image] [https://travis-ci.org/expressjs/serve-static]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/serve-static]
![Gratipay][gratipay-image] [https://gratipay.com/dougwilson/]

Install

$ npm install serve-static

API

var serveStatic = require('serve-static')

serveStatic(root, options)

Create a new middleware function to serve files from within a given root
directory. The file to serve will be determined by combining req.url
with the provided root directory. When a file is not found, instead of
sending a 404 response, this module will instead call next() to move on
to the next middleware, allowing for stacking and fall-backs.

Options

dotfiles

Set how “dotfiles” are treated when encountered. A dotfile is a file
or directory that begins with a dot (”.”). Note this check is done on
the path itself without checking if the path actually exists on the
disk. If root is specified, only the dotfiles above the root are
checked (i.e. the root itself can be within a dotfile when when set
to “deny”).

The default value is 'ignore'.

		'allow' No special treatment for dotfiles.

		'deny' Send a 403 for any request for a dotfile.

		'ignore' Pretend like the dotfile does not exist and call next().

etag

Enable or disable etag generation, defaults to true.

extensions

Set file extension fallbacks. When set, if a file is not found, the given
extensions will be added to the file name and search for. The first that
exists will be served. Example: ['html', 'htm'].

The default value is false.

index

By default this module will send “index.html” files in response to a request
on a directory. To disable this set false or to supply a new index pass a
string or an array in preferred order.

lastModified

Enable or disable Last-Modified header, defaults to true. Uses the file
system’s last modified value.

maxAge

Provide a max-age in milliseconds for http caching, defaults to 0. This
can also be a string accepted by the ms [https://www.npmjs.org/package/ms#readme]
module.

redirect

Redirect to trailing “/” when the pathname is a dir. Defaults to true.

setHeaders

Function to set custom headers on response.

Examples

Serve files with vanilla node.js http server

var finalhandler = require('finalhandler')
var http = require('http')
var serveStatic = require('serve-static')

// Serve up public/ftp folder
var serve = serveStatic('public/ftp', {'index': ['index.html', 'index.htm']})

// Create server
var server = http.createServer(function(req, res){
 var done = finalhandler(req, res)
 serve(req, res, done)
})

// Listen
server.listen(3000)

Serve all files as downloads

var contentDisposition = require('content-disposition')
var finalhandler = require('finalhandler')
var http = require('http')
var serveStatic = require('serve-static')

// Serve up public/ftp folder
app.use(serveStatic('public/ftp', {
 'index': false,
 'setHeaders': setHeaders
}))

// Set header to force download
function setHeaders(res, path) {
 res.setHeader('Content-Disposition', contentDisposition(path))
}

// Create server
var server = http.createServer(function(req, res){
 var done = finalhandler(req, res)
 serve(req, res, done)
})

// Listen
server.listen(3000)

Serving using express

var connect = require('connect')
var serveStatic = require('serve-static')

var app = connect()

app.use(serveStatic('public/ftp', {'index': ['default.html', 'default.htm']}))
app.listen(3000)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/destroy/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Destroy

![NPM version][npm-image] [https://npmjs.org/package/destroy]
![Build status][travis-image] [https://travis-ci.org/stream-utils/destroy]
![Test coverage][coveralls-image] [https://coveralls.io/r/stream-utils/destroy?branch=master]
![Dependency Status][david-image] [https://david-dm.org/stream-utils/destroy]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/destroy]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Destroy a stream.

API

var destroy = require('destroy')

var fs = require('fs')
var stream = fs.createReadStream('package.json')
destroy(stream)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.9.3 / 2014-09-24

		deps: etag@~1.4.0
		Support “fake” stats objects

0.9.2 / 2014-09-15

		deps: depd@0.4.5

		deps: etag@~1.3.1

		deps: range-parser@~1.0.2

0.9.1 / 2014-09-07

		deps: fresh@0.2.4

0.9.0 / 2014-09-07

		Add lastModified option

		Use etag to generate ETag header

		deps: debug@~2.0.0

0.8.5 / 2014-09-04

		Fix malicious path detection for empty string path

0.8.4 / 2014-09-04

		Fix a path traversal issue when using root

0.8.3 / 2014-08-16

		deps: destroy@1.0.3
		renamed from dethroy

		deps: on-finished@2.1.0

0.8.2 / 2014-08-14

		Work around fd leak in Node.js 0.10 for fs.ReadStream

		deps: dethroy@1.0.2

0.8.1 / 2014-08-05

		Fix extensions behavior when file already has extension

0.8.0 / 2014-08-05

		Add extensions option

0.7.4 / 2014-08-04

		Fix serving index files without root dir

0.7.3 / 2014-07-29

		Fix incorrect 403 on Windows and Node.js 0.11

0.7.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

0.7.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

0.7.0 / 2014-07-20

		Deprecate hidden option; use dotfiles option

		Add dotfiles option

		deps: debug@1.0.4

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

0.6.0 / 2014-07-11

		Deprecate from option; use root option

		Deprecate send.etag() – use etag in options

		Deprecate send.hidden() – use hidden in options

		Deprecate send.index() – use index in options

		Deprecate send.maxage() – use maxAge in options

		Deprecate send.root() – use root in options

		Cap maxAge value to 1 year

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

0.5.0 / 2014-06-28

		Accept string for maxAge (converted by ms)

		Add headers event

		Include link in default redirect response

		Use EventEmitter.listenerCount to count listeners

0.4.3 / 2014-06-11

		Do not throw un-catchable error on file open race condition

		Use escape-html for HTML escaping

		deps: debug@1.0.2
		fix some debugging output colors on node.js 0.8

		deps: finished@1.2.2

		deps: fresh@0.2.2

0.4.2 / 2014-06-09

		fix “event emitter leak” warnings

		deps: debug@1.0.1

		deps: finished@1.2.1

0.4.1 / 2014-06-02

		Send max-age in Cache-Control in correct format

0.4.0 / 2014-05-27

		Calculate ETag with md5 for reduced collisions

		Fix wrong behavior when index file matches directory

		Ignore stream errors after request ends
		Goodbye EBADF, read

		Skip directories in index file search

		deps: debug@0.8.1

0.3.0 / 2014-04-24

		Fix sending files with dots without root set

		Coerce option types

		Accept API options in options object

		Set etags to “weak”

		Include file path in etag

		Make “Can’t set headers after they are sent.” catchable

		Send full entity-body for multi range requests

		Default directory access to 403 when index disabled

		Support multiple index paths

		Support “If-Range” header

		Control whether to generate etags

		deps: mime@1.2.11

0.2.0 / 2014-01-29

		update range-parser and fresh

0.1.4 / 2013-08-11

		update fresh

0.1.3 / 2013-07-08

		Revert “Fix fd leak”

0.1.2 / 2013-07-03

		Fix fd leak

0.1.0 / 2012-08-25

		add options parameter to send() that is passed to fs.createReadStream() [kanongil]

0.0.4 / 2012-08-16

		allow custom “Accept-Ranges” definition

0.0.3 / 2012-07-16

		fix normalization of the root directory. Closes #3

0.0.2 / 2012-07-09

		add passing of req explicitly for now (YUCK)

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/on-finished/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.0 / 2014-08-16

		Check if socket is detached

		Return undefined for isFinished if state unknown

2.0.0 / 2014-08-16

		Add isFinished function

		Move to jshttp organization

		Remove support for plain socket argument

		Rename to on-finished

		Support both req and res as arguments

		deps: ee-first@1.0.5

1.2.2 / 2014-06-10

		Reduce listeners added to emitters
		avoids “event emitter leak” warnings when used multiple times on same request

1.2.1 / 2014-06-08

		Fix returned value when already finished

1.2.0 / 2014-06-05

		Call callback when called on already-finished socket

1.1.4 / 2014-05-27

		Support node.js 0.8

1.1.3 / 2014-04-30

		Make sure errors passed as instanceof Error

1.1.2 / 2014-04-18

		Default the socket to passed-in object

1.1.1 / 2014-01-16

		Rename module to finished

1.1.0 / 2013-12-25

		Call callback when called on already-errored socket

1.0.1 / 2013-12-20

		Actually pass the error to the callback

1.0.0 / 2013-12-20

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-static/node_modules/send/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-favicon/node_modules/etag/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

etag

![NPM Version][npm-image] [https://npmjs.org/package/etag]
![NPM Downloads][downloads-image] [https://npmjs.org/package/etag]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/etag]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/etag?branch=master]

Create simple ETags

Installation

$ npm install etag

API

var etag = require('etag')

etag(entity, [options])

Generate a strong ETag for the given entity. This should be the complete
body of the entity. Strings, Buffers, and fs.Stats are accepted. By
default, a strong ETag is generated except for fs.Stats, which will
generate a weak ETag (this can be overwritten by options.weak).

res.setHeader('ETag', etag(body))

Options

etag accepts these properties in the options object.

weak

Specifies if a “strong” or a “weak” ETag will be generated. The ETag can only
really be a strong as the given input.

Testing

$ npm test

Benchmark

$ npm run-script bench

> etag@1.5.0-pre bench nodejs-etag
> node benchmark/index.js

> node benchmark/body0-100b.js

 100B body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 425,962 ops/sec ±1.21% (186 runs sampled)
* buffer - weak x 1,094,538 ops/sec ±0.35% (197 runs sampled)
 string - strong x 437,636 ops/sec ±1.31% (183 runs sampled)
 string - weak x 316,978 ops/sec ±1.55% (188 runs sampled)

> node benchmark/body1-1kb.js

 1KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 278,712 ops/sec ±1.00% (193 runs sampled)
* buffer - weak x 300,008 ops/sec ±0.30% (196 runs sampled)
 string - strong x 276,016 ops/sec ±1.13% (188 runs sampled)
 string - weak x 166,522 ops/sec ±1.47% (192 runs sampled)

> node benchmark/body2-5kb.js

 5KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 105,233 ops/sec ±0.65% (195 runs sampled)
* buffer - weak x 108,091 ops/sec ±0.81% (194 runs sampled)
 string - strong x 102,725 ops/sec ±0.80% (192 runs sampled)
 string - weak x 102,649 ops/sec ±0.85% (193 runs sampled)

> node benchmark/body3-10kb.js

 10KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 59,673 ops/sec ±0.46% (195 runs sampled)
* buffer - weak x 61,525 ops/sec ±0.54% (194 runs sampled)
 string - strong x 57,557 ops/sec ±0.62% (194 runs sampled)
 string - weak x 58,627 ops/sec ±0.59% (195 runs sampled)

> node benchmark/body4-100kb.js

 100KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 6,733 ops/sec ±0.26% (196 runs sampled)
* buffer - weak x 6,920 ops/sec ±0.40% (197 runs sampled)
 string - strong x 6,344 ops/sec ±0.47% (193 runs sampled)
 string - weak x 6,236 ops/sec ±1.03% (189 runs sampled)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-favicon/node_modules/etag/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.5.0 / 2014-10-14

		Improve string performance

		Slightly improve speed for weak ETags over 1KB

1.4.0 / 2014-09-21

		Support “fake” stats objects

		Support Node.js 0.6

1.3.1 / 2014-09-14

		Use the (new and improved) crc for crc32

1.3.0 / 2014-08-29

		Default strings to strong ETags

		Improve speed for weak ETags over 1KB

1.2.1 / 2014-08-29

		Use the (much faster) buffer-crc32 for crc32

1.2.0 / 2014-08-24

		Add support for file stat objects

1.1.0 / 2014-08-24

		Add fast-path for empty entity

		Add weak ETag generation

		Shrink size of generated ETags

1.0.1 / 2014-08-24

		Fix behavior of string containing Unicode

1.0.0 / 2014-05-18

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/compressible/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

compressible

![NPM Version][npm-image] [https://npmjs.org/package/compressible]
![NPM Downloads][downloads-image] [https://npmjs.org/package/compressible]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/compressible]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/compressible?branch=master]

Compressible Content-Type / mime checking.

Installation

$ npm install compressible

API

compressible(type)

Checks if the given content-type is compressible.

var compressible = require('compressible')

compressible('text/html') // => true
compressible('image/png') // => false

MIT Licensed

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/vary/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-08-10

		Accept valid Vary header string as field

		Add vary.append for low-level string manipulation

		Move to jshttp orgainzation

0.1.0 / 2014-06-05

		Support array of fields to set

0.0.0 / 2014-06-04

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/accepts/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.1.3 / 2014-11-09

		deps: mime-types@~2.0.3
		deps: mime-db@~1.2.0

1.1.2 / 2014-10-14

		deps: negotiator@0.4.9
		Fix error when media type has invalid parameter

1.1.1 / 2014-09-28

		deps: mime-types@~2.0.2
		deps: mime-db@~1.1.0

		deps: negotiator@0.4.8
		Fix all negotiations to be case-insensitive

		Stable sort preferences of same quality according to client order

1.1.0 / 2014-09-02

		update mime-types

1.0.7 / 2014-07-04

		Fix wrong type returned from type when match after unknown extension

1.0.6 / 2014-06-24

		deps: negotiator@0.4.7

1.0.5 / 2014-06-20

		fix crash when unknown extension given

1.0.4 / 2014-06-19

		use mime-types

1.0.3 / 2014-06-11

		deps: negotiator@0.4.6
		Order by specificity when quality is the same

1.0.2 / 2014-05-29

		Fix interpretation when header not in request

		deps: pin negotiator@0.4.5

1.0.1 / 2014-01-18

		Identity encoding isn’t always acceptable

		deps: negotiator@~0.4.0

1.0.0 / 2013-12-27

		Genesis

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/compressible/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/accepts/node_modules/negotiator/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

negotiator

![NPM Version][npm-image] [https://npmjs.org/package/negotiator]
![NPM Downloads][downloads-image] [https://npmjs.org/package/negotiator]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/negotiator]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/negotiator?branch=master]

An HTTP content negotiator for Node.js

Installation

$ npm install negotiator

API

var Negotiator = require('negotiator')

Accept Negotiation

availableMediaTypes = ['text/html', 'text/plain', 'application/json']

// The negotiator constructor receives a request object
negotiator = new Negotiator(request)

// Let's say Accept header is 'text/html, application/*;q=0.2, image/jpeg;q=0.8'

negotiator.mediaTypes()
// -> ['text/html', 'image/jpeg', 'application/*']

negotiator.mediaTypes(availableMediaTypes)
// -> ['text/html', 'application/json']

negotiator.mediaType(availableMediaTypes)
// -> 'text/html'

You can check a working example at examples/accept.js.

Methods

mediaTypes(availableMediaTypes):

Returns an array of preferred media types ordered by priority from a list of available media types.

mediaType(availableMediaType):

Returns the top preferred media type from a list of available media types.

Accept-Language Negotiation

negotiator = new Negotiator(request)

availableLanguages = 'en', 'es', 'fr'

// Let's say Accept-Language header is 'en;q=0.8, es, pt'

negotiator.languages()
// -> ['es', 'pt', 'en']

negotiator.languages(availableLanguages)
// -> ['es', 'en']

language = negotiator.language(availableLanguages)
// -> 'es'

You can check a working example at examples/language.js.

Methods

languages(availableLanguages):

Returns an array of preferred languages ordered by priority from a list of available languages.

language(availableLanguages):

Returns the top preferred language from a list of available languages.

Accept-Charset Negotiation

availableCharsets = ['utf-8', 'iso-8859-1', 'iso-8859-5']

negotiator = new Negotiator(request)

// Let's say Accept-Charset header is 'utf-8, iso-8859-1;q=0.8, utf-7;q=0.2'

negotiator.charsets()
// -> ['utf-8', 'iso-8859-1', 'utf-7']

negotiator.charsets(availableCharsets)
// -> ['utf-8', 'iso-8859-1']

negotiator.charset(availableCharsets)
// -> 'utf-8'

You can check a working example at examples/charset.js.

Methods

charsets(availableCharsets):

Returns an array of preferred charsets ordered by priority from a list of available charsets.

charset(availableCharsets):

Returns the top preferred charset from a list of available charsets.

Accept-Encoding Negotiation

availableEncodings = ['identity', 'gzip']

negotiator = new Negotiator(request)

// Let's say Accept-Encoding header is 'gzip, compress;q=0.2, identity;q=0.5'

negotiator.encodings()
// -> ['gzip', 'identity', 'compress']

negotiator.encodings(availableEncodings)
// -> ['gzip', 'identity']

negotiator.encoding(availableEncodings)
// -> 'gzip'

You can check a working example at examples/encoding.js.

Methods

encodings(availableEncodings):

Returns an array of preferred encodings ordered by priority from a list of available encodings.

encoding(availableEncodings):

Returns the top preferred encoding from a list of available encodings.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/accepts/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

accepts

![NPM Version][npm-image] [https://npmjs.org/package/accepts]
![NPM Downloads][downloads-image] [https://npmjs.org/package/accepts]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/accepts]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/accepts]

Higher level content negotation based on negotiator [https://github.com/federomero/negotiator]. Extracted from koa [https://github.com/koajs/koa] for general use.

In addition to negotatior, it allows:

		Allows types as an array or arguments list, ie (['text/html', 'application/json']) as well as ('text/html', 'application/json').

		Allows type shorthands such as json.

		Returns false when no types match

		Treats non-existent headers as *

API

var accept = new Accepts(req)

var accepts = require('accepts')

http.createServer(function (req, res) {
 var accept = accepts(req)
})

accept[property]()

Returns all the explicitly accepted content property as an array in descending priority.

		accept.types()

		accept.encodings()

		accept.charsets()

		accept.languages()

They are also aliased in singular form such as accept.type(). accept.languages() is also aliased as accept.langs(), etc.

Note: you should almost never do this in a real app as it defeats the purpose of content negotiation.

Example:

// in Google Chrome
var encodings = accept.encodings() // -> ['sdch', 'gzip', 'deflate']

Since you probably don’t support sdch, you should just supply the encodings you support:

var encoding = accept.encodings('gzip', 'deflate') // -> 'gzip', probably

accept[property](values, ...)

You can either have values be an array or have an argument list of values.

If the client does not accept any values, false will be returned.
If the client accepts any values, the preferred value will be return.

For accept.types(), shorthand mime types are allowed.

Example:

// req.headers.accept = 'application/json'

accept.types('json') // -> 'json'
accept.types('html', 'json') // -> 'json'
accept.types('html') // -> false

// req.headers.accept = ''
// which is equivalent to `*`

accept.types() // -> [], no explicit types
accept.types('text/html', 'text/json') // -> 'text/html', since it was first

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/accepts/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

![NPM Version][npm-image] [https://npmjs.org/package/mime-types]
![NPM Downloads][downloads-image] [https://npmjs.org/package/mime-types]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-types]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/mime-types]

The ultimate javascript content-type utility.

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false,
so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus via mime-db [https://github.com/jshttp/mime-db]

		No .define() functionality

Otherwise, the API is compatible.

Install

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://github.com/jshttp/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions...] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/accepts/node_modules/mime-types/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.3 / 2014-11-09

		deps: mime-db@~1.2.0
		Add new mime types

2.0.2 / 2014-09-28

		deps: mime-db@~1.1.0
		Add new mime types

		Add additional compressible

		Update charsets

2.0.1 / 2014-09-07

		Support Node.js 0.6

2.0.0 / 2014-09-02

		Use mime-db

		Remove .define()

1.0.2 / 2014-08-04

		Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

		Add text/jsx type

1.0.0 / 2014-05-12

		Return false for unknown types

		Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/bytes/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-bytes

Byte string parser / formatter.

Example:

bytes('1kb')
// => 1024

bytes('2mb')
// => 2097152

bytes('1gb')
// => 1073741824

bytes(1073741824)
// => 1gb

bytes(1099511627776)
// => 1tb

Installation

$ npm install bytes
$ component install visionmedia/bytes.js

License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/accepts/node_modules/mime-types/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/type-is/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.5.3 / 2014-11-09

		deps: mime-types@~2.0.3
		Add new mime types

		deps: mime-db@~1.2.0

1.5.2 / 2014-09-28

		deps: mime-types@~2.0.2
		Add new mime types

		deps: mime-db@~1.1.0

1.5.1 / 2014-09-07

		Support Node.js 0.6

		deps: media-typer@0.3.0

		deps: mime-types@~2.0.1
		Support Node.js 0.6

1.5.0 / 2014-09-05

		fix hasbody to be true for content-length: 0

1.4.0 / 2014-09-02

		update mime-types

1.3.2 / 2014-06-24

		use ~ range on mime-types

1.3.1 / 2014-06-19

		fix global variable leak

1.3.0 / 2014-06-19

		improve type parsing
		invalid media type never matches

		media type not case-sensitive

		extra LWS does not affect results

1.2.2 / 2014-06-19

		fix behavior on unknown type argument

1.2.1 / 2014-06-03

		switch dependency from mime to mime-types@1.0.0

1.2.0 / 2014-05-11

		support suffix matching:
		+json matches application/vnd+json

		*/vnd+json matches application/vnd+json

		application/*+json matches application/vnd+json

1.1.0 / 2014-04-12

		add non-array values support

		expose internal utilities:
		.is()

		.hasBody()

		.normalize()

		.match()

1.0.1 / 2014-03-30

		add multipart as a shorthand

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/type-is/node_modules/mime-types/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.3 / 2014-11-09

		deps: mime-db@~1.2.0
		Add new mime types

2.0.2 / 2014-09-28

		deps: mime-db@~1.1.0
		Add new mime types

		Add additional compressible

		Update charsets

2.0.1 / 2014-09-07

		Support Node.js 0.6

2.0.0 / 2014-09-02

		Use mime-db

		Remove .define()

1.0.2 / 2014-08-04

		Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

		Add text/jsx type

1.0.0 / 2014-05-12

		Return false for unknown types

		Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/type-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

type-is

![NPM Version][npm-image] [https://npmjs.org/package/type-is]
![NPM Downloads][downloads-image] [https://npmjs.org/package/type-is]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/type-is]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/type-is?branch=master]

Infer the content-type of a request.

Install

$ npm install type-is

API

var http = require('http')
var is = require('type-is')

http.createServer(function (req, res) {
 var istext = is(req, ['text/*'])
 res.end('you ' + (istext ? 'sent' : 'did not send') + ' me text')
})

type = is(request, types)

request is the node HTTP request. types is an array of types.

// req.headers.content-type = 'application/json'

is(req, ['json']) // 'json'
is(req, ['html', 'json']) // 'json'
is(req, ['application/*']) // 'application/json'
is(req, ['application/json']) // 'application/json'

is(req, ['html']) // false

Each type can be:

		An extension name such as json. This name will be returned if matched.

		A mime type such as application/json.

		A mime type with a wildcard such as */json or application/*. The full mime type will be returned if matched

		A suffix such as +json. This can be combined with a wildcard such as */vnd+json or application/*+json. The full mime type will be returned if matched.

false will be returned if no type matches.

Examples

Example body parser

var is = require('type-is');

function bodyParser(req, res, next) {
 if (!is.hasBody(req)) {
 return next()
 }

 switch (is(req, ['urlencoded', 'json', 'multipart'])) {
 case 'urlencoded':
 // parse urlencoded body
 throw new Error('implement urlencoded body parsing')
 break
 case 'json':
 // parse json body
 throw new Error('implement json body parsing')
 break
 case 'multipart':
 // parse multipart body
 throw new Error('implement multipart body parsing')
 break
 default:
 // 415 error code
 res.statusCode = 415
 res.end()
 return
 }
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/type-is/node_modules/mime-types/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/type-is/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

![NPM Version][npm-image] [https://npmjs.org/package/mime-types]
![NPM Downloads][downloads-image] [https://npmjs.org/package/mime-types]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-types]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/mime-types]

The ultimate javascript content-type utility.

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false,
so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus via mime-db [https://github.com/jshttp/mime-db]

		No .define() functionality

Otherwise, the API is compatible.

Install

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://github.com/jshttp/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions...] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/cookie-signature/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.4 / 2014-06-25

		corrected avoidance of timing attacks (thanks @tenbits!)

1.0.3 / 2014-01-28

		[incorrect] fix for timing attacks

1.0.2 / 2014-01-28

		fix missing repository warning

		fix typo in test

1.0.1 / 2013-04-15

		Revert “Changed underlying HMAC algo. to sha512.”

		Revert “Fix for timing attacks on MAC verification.”

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/cookie-signature/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie-signature

Sign and unsign cookies.

Example

var cookie = require('cookie-signature');

var val = cookie.sign('hello', 'tobiiscool');
val.should.equal('hello.DGDUkGlIkCzPz+C0B064FNgHdEjox7ch8tOBGslZ5QI');

var val = cookie.sign('hello', 'tobiiscool');
cookie.unsign(val, 'tobiiscool').should.equal('hello');
cookie.unsign(val, 'luna').should.be.false;

License

(The MIT License)

Copyright (c) 2012 LearnBoost

<

tj@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

compression

![NPM Version][npm-image] [https://npmjs.org/package/compression]
![NPM Downloads][downloads-image] [https://npmjs.org/package/compression]
![Build Status][travis-image] [https://travis-ci.org/expressjs/compression]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/compression?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Node.js compression middleware.

Install

$ npm install compression

API

var compression = require('compression')

compression(options)

Returns the compression middleware using the given options.

app.use(compression({
 threshold: 512
}))

Options

		threshold <1kb> - response is only compressed if the byte size is at or above this threshold.

		filter - a filtering callback function. Uses Compressible [https://github.com/expressjs/compressible] by default.

In addition to these, zlib [http://nodejs.org/api/zlib.html] options may be passed in to the options object.

res.flush

This module adds a res.flush() method to force the partially-compressed
response to be flushed to the client.

Examples

express/connect

When using this module with express or connect, simply app.use the module as
high as you like. Requests that pass through the middleware will be compressed.

var compression = require('compression')
var express = require('express')

var app = express()

// compress all requests
app.use(compression())

// add alll routes

Server-Sent Events

Because of the nature of compression this module does not work out of the box
with server-sent events. To compress content, a window of the output needs to
be buffered up in order to get good compression. Typically when using server-sent
events, there are certain block of data that need to reach the client.

You can achieve this by calling res.flush() when you need the data written to
actually make it to the client.

var compression = require('compression')
var express = require('express')

var app = express()

// compress responses
app.use(compression())

// server-sent event stream
app.get('/events', function (req, res) {
 res.setHeader('Content-Type', 'text/event-stream')
 res.setHeader('Cache-Control', 'no-cache')

 // send a ping approx eveny 2 seconds
 var timer = setInterval(function () {
 res.write('data: ping\n\n')

 // !!! this is the important part
 res.flush()
 }, 2000)

 res.on('close', function () {
 clearInterval(timer)
 })
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.1.2 / 2014-10-15

		deps: accepts@~1.1.2
		Fix error when media type has invalid parameter

		deps: negotiator@0.4.9

1.1.1 / 2014-10-12

		deps: accepts@~1.1.1
		deps: mime-types@~2.0.2

		deps: negotiator@0.4.8

		deps: compressible@~2.0.1
		deps: mime-db@1.x

1.1.0 / 2014-09-07

		deps: accepts@~1.1.0

		deps: compressible@~2.0.0

		deps: debug@~2.0.0

1.0.11 / 2014-08-10

		deps: on-headers@~1.0.0

		deps: vary@~1.0.0

1.0.10 / 2014-08-05

		deps: compressible@~1.1.1
		Fix upper-case Content-Type characters prevent compression

1.0.9 / 2014-07-20

		Add debug messages

		deps: accepts@~1.0.7
		deps: negotiator@0.4.7

1.0.8 / 2014-06-20

		deps: accepts@~1.0.5
		use mime-types

1.0.7 / 2014-06-11

		use vary module for better Vary behavior

		deps: accepts@1.0.3

		deps: compressible@1.1.0

1.0.6 / 2014-06-03

		fix regression when negotiation fails

1.0.5 / 2014-06-03

		fix listeners for delayed stream creation
		fixes regression for certain stream.pipe(res) situations

1.0.4 / 2014-06-03

		fix adding Vary when value stored as array

		fix back-pressure behavior

		fix length check for res.end

1.0.3 / 2014-05-29

		use accepts for negotiation

		use on-headers to handle header checking

		deps: bytes@1.0.0

1.0.2 / 2014-04-29

		only version compatible with node.js 0.8

		support headers given to res.writeHead

		deps: bytes@0.3.0

		deps: negotiator@0.4.3

1.0.1 / 2014-03-08

		bump negotiator

		use compressible

		use .headersSent (drops 0.8 support)

		handle identity;q=0 case

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/compression/node_modules/vary/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

vary

[image: NPM Version] [https://www.npmjs.org/package/vary]
[image: Node.js Version] [http://nodejs.org/download/]
[image: Build Status] [https://travis-ci.org/jshttp/vary]
[image: Coverage Status] [https://coveralls.io/r/jshttp/vary]
[image: Gittip] [https://www.gittip.com/dougwilson/]

Manipulate the HTTP Vary header

Install

$ npm install vary

API

var vary = require('vary')

vary(res, field)

Adds the given header field to the Vary response header of res.
This can be a string of a single field, a string of a valid Vary
header, or an array of multiple fields.

This will append the header if not already listed, otherwise leaves
it listed in the current location.

// Append "Origin" to the Vary header of the response
vary(res, 'Origin')

vary.append(header, field)

Adds the given header field to the Vary response header string header.
This can be a string of a single field, a string of a valid Vary header,
or an array of multiple fields.

This will append the header if not already listed, otherwise leaves
it listed in the current location. The new header string is returned.

// Get header string appending "Origin" to "Accept, User-Agent"
vary.append('Accept, User-Agent', 'Origin')

Testing

$ npm test

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/etag/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.5.0 / 2014-10-14

		Improve string performance

		Slightly improve speed for weak ETags over 1KB

1.4.0 / 2014-09-21

		Support “fake” stats objects

		Support Node.js 0.6

1.3.1 / 2014-09-14

		Use the (new and improved) crc for crc32

1.3.0 / 2014-08-29

		Default strings to strong ETags

		Improve speed for weak ETags over 1KB

1.2.1 / 2014-08-29

		Use the (much faster) buffer-crc32 for crc32

1.2.0 / 2014-08-24

		Add support for file stat objects

1.1.0 / 2014-08-24

		Add fast-path for empty entity

		Add weak ETag generation

		Shrink size of generated ETags

1.0.1 / 2014-08-24

		Fix behavior of string containing Unicode

1.0.0 / 2014-05-18

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/on-finished/node_modules/ee-first/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

EE First

![NPM version][npm-image] [https://npmjs.org/package/ee-first]
![Build status][travis-image] [https://travis-ci.org/jonathanong/ee-first]
![Test coverage][coveralls-image] [https://coveralls.io/r/jonathanong/ee-first?branch=master]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/ee-first]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Get the first event in a set of event emitters and event pairs,
then clean up after itself.

Install

$ npm install ee-first

API

var first = require('ee-first')

first(arr, listener)

Invoke listener on the first event from the list specified in arr. arr is
an array of arrays, with each array in the format [ee, ...event]. listener
will be called only once, the first time any of the given events are emitted. If
error is one of the listened events, then if that fires first, the listener
will be given the err argument.

The listener is invoked as listener(err, ee, event, args), where err is the
first argument emitted from an error event, if applicable; ee is the event
emitter that fired; event is the string event name that fired; and args is an
array of the arguments that were emitted on the event.

var ee1 = new EventEmitter()
var ee2 = new EventEmitter()

first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

.cancel()

The group of listeners can be cancelled before being invoked and have all the event
listeners removed from the underlying event emitters.

var thunk = first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

// cancel and clean up
thunk.cancel()

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/node_modules/uid-safe/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

UID Safe

Create cryptographically secure UIDs safe for both cookie and URL usage.
This is in contrast to modules such as rand-token [https://github.com/sehrope/node-rand-token]
and uid2 [https://github.com/coreh/uid2] whose UIDs are actually skewed
due to the use of % and unnecessarily truncate the UID.
Use this if you could still use UIDs with - and _ in them.

API

var uid = require('uid-safe')

uid(byteLength, [cb])

Asynchronously create a UID with a specific byte length.
Because base64 encoding is used underneath, this is not the string length!
For example, to create a UID of length 24, you want a byte length of 18!

If cb is not defined, a promise is returned.
However, to use promises, you must either install bluebird [https://github.com/petkaantonov/bluebird]
or use a version of node.js that has native promises,
otherwise your process will crash and die.

uid(18).then(function (string) {
 // do something with the string
})

uid(18, function (err, string) {
 if (err) throw err
 // do something with the string
})

uid.sync(byteLength)

A synchronous version of above.

var string = uid.sync(18)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/etag/node_modules/crc/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

crc

[image: GitTip] [https://www.gittip.com/alexgorbatchev/]
[image: Dependency status] [https://david-dm.org/alexgorbatchev/node-crc]
[image: devDependency Status] [https://david-dm.org/alexgorbatchev/node-crc#info=devDependencies]
[image: Build Status] [https://travis-ci.org/alexgorbatchev/node-crc]

[image: NPM] [https://npmjs.org/package/node-crc]

Module for calculating Cyclic Redundancy Check (CRC).

Features

		Version 3 is 3-4 times faster than version 2.

		Pure JavaScript implementation, no dependencies.

		Provides CRC Tables for optimized calculations.

		Provides support for the following CRC algorithms:
		CRC1 crc.crc1(…)

		CRC8 crc.crc8(…)

		CRC8 1-Wire crc.crc81wire(…)

		CRC16 crc.crc16(…)

		CRC16 CCITT crc.crc16ccitt(…)

		CRC16 Modbus crc.crc16modbus(…)

		CRC24 crc.crc24(…)

		CRC32 crc.crc32(…)

Installation

npm install crc

Running tests

$ npm install
$ npm test

Usage Example

Calculate a CRC32:

var crc = require('crc');

crc.crc32('hello').toString(16);
=> "3610a686"

Calculate a CRC32 of a file:

crc.crc32(fs.readFileSync('README.md', 'utf8')).toString(16);
=> "127ad531"

Or using a Buffer:

crc.crc32(fs.readFileSync('README.md')).toString(16);
=> "127ad531"

Incrementally calculate a CRC32:

value = crc32('one');
value = crc32('two', value);
value = crc32('three', value);
value.toString(16);
=> "09e1c092"

Thanks!

pycrc [http://www.tty1.net/pycrc/] library is which the source of all of the CRC tables.

License

The MIT License (MIT)

Copyright (c) 2014 Alex Gorbatchev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

CSRF

![NPM Version][npm-image] [https://npmjs.org/package/csrf]
![NPM Downloads][downloads-image] [https://npmjs.org/package/csrf]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/pillarjs/csrf]
![Test Coverage][coveralls-image] [https://coveralls.io/r/pillarjs/csrf?branch=master]

Logic behind CSRF token creation and verification.
Read Understanding-CSRF [http://www.jongleberry.com/understanding-csrf.html] for more information on CSRF.
Use this module to create custom CSRF middleware and what not.

Install

$ npm install csrf

API

var csrf = require('csrf')(options)

var secret = csrf.secretSync()
var token = csrf.create(secret)
var valid = csrf.verify(secret, token)

Options

		secretLength: 24 - the byte length of the secret key

		saltLength: 8 - the string length of the salt

		tokensize: (secret, salt) => token - a custom token creation function

csrf.secret([cb])

Asynchronously create a new secret of length secretLength.
If cb is not defined, a promise is returned.
You don’t have to use this.

csrf.secret().then(function (secret) {

})

csrf.secret(function (err, secret) {

})

var secret = csrf.secretSync()

Synchronous version of csrf.secret()

var token = csrf.token(secret)

Create a CSRF token based on a secret.
This is the token you pass to clients.

var valid = csrf.verify(secret, token)

Check whether a CSRF token is valid based on a secret.
If it’s not valid, you should probably throw a 403 error.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/etag/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

etag

![NPM Version][npm-image] [https://npmjs.org/package/etag]
![NPM Downloads][downloads-image] [https://npmjs.org/package/etag]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/etag]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/etag?branch=master]

Create simple ETags

Installation

$ npm install etag

API

var etag = require('etag')

etag(entity, [options])

Generate a strong ETag for the given entity. This should be the complete
body of the entity. Strings, Buffers, and fs.Stats are accepted. By
default, a strong ETag is generated except for fs.Stats, which will
generate a weak ETag (this can be overwritten by options.weak).

res.setHeader('ETag', etag(body))

Options

etag accepts these properties in the options object.

weak

Specifies if a “strong” or a “weak” ETag will be generated. The ETag can only
really be a strong as the given input.

Testing

$ npm test

Benchmark

$ npm run-script bench

> etag@1.5.0-pre bench nodejs-etag
> node benchmark/index.js

> node benchmark/body0-100b.js

 100B body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 425,962 ops/sec ±1.21% (186 runs sampled)
* buffer - weak x 1,094,538 ops/sec ±0.35% (197 runs sampled)
 string - strong x 437,636 ops/sec ±1.31% (183 runs sampled)
 string - weak x 316,978 ops/sec ±1.55% (188 runs sampled)

> node benchmark/body1-1kb.js

 1KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 278,712 ops/sec ±1.00% (193 runs sampled)
* buffer - weak x 300,008 ops/sec ±0.30% (196 runs sampled)
 string - strong x 276,016 ops/sec ±1.13% (188 runs sampled)
 string - weak x 166,522 ops/sec ±1.47% (192 runs sampled)

> node benchmark/body2-5kb.js

 5KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 105,233 ops/sec ±0.65% (195 runs sampled)
* buffer - weak x 108,091 ops/sec ±0.81% (194 runs sampled)
 string - strong x 102,725 ops/sec ±0.80% (192 runs sampled)
 string - weak x 102,649 ops/sec ±0.85% (193 runs sampled)

> node benchmark/body3-10kb.js

 10KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 59,673 ops/sec ±0.46% (195 runs sampled)
* buffer - weak x 61,525 ops/sec ±0.54% (194 runs sampled)
 string - strong x 57,557 ops/sec ±0.62% (194 runs sampled)
 string - weak x 58,627 ops/sec ±0.59% (195 runs sampled)

> node benchmark/body4-100kb.js

 100KB body

 1 test completed.
 2 tests completed.
 3 tests completed.
 4 tests completed.

 buffer - strong x 6,733 ops/sec ±0.26% (196 runs sampled)
* buffer - weak x 6,920 ops/sec ±0.40% (197 runs sampled)
 string - strong x 6,344 ops/sec ±0.47% (193 runs sampled)
 string - weak x 6,236 ops/sec ±1.03% (189 runs sampled)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/node_modules/uid-safe/node_modules/mz/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

MZ - Modernize node.js

![NPM version][npm-image] [https://npmjs.org/package/mz]
![Build status][travis-image] [https://travis-ci.org/normalize/mz]
![Test coverage][coveralls-image] [https://coveralls.io/r/normalize/mz?branch=master]
![Dependency Status][david-image] [https://david-dm.org/normalize/mz]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/mz]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Modernize node.js to current ECMAScript specifications!
node.js will not update their API to ES6+ for a while [https://github.com/joyent/node/issues/7549].
This library is a wrapper for various aspects of node.js’ API.

Installation and Usage

Set mz as a dependency and install it.

npm i mz

Then prefix the relevant require()s with mz/:

var fs = require('mz/fs')

fs.exists(__filename).then(function (exists) {
 if (exists) // do something
})

Personally, I use this with generator-based control flow libraries such as co [https://github.com/visionmedia/co] so I don’t need to use implementation-specific wrappers like co-fs [https://github.com/visionmedia/co-fs].

var co = require('co')
var fs = require('mz/fs')

co(function* () {
 if (yield fs.exists(__filename)) // do something
})()

Promisification

Many node methods are converted into promises.
Any properties that are deprecated or aren’t asynchronous will simply be proxied.
The modules wrapped are:

		child_process

		crypto

		dns

		fs

		zlib

var exec = require('mz/child_process').exec

exec('node --version').then(function (stdout) {
 console.log(stdout)
})

Promise Engine

If you’ve installed bluebird [https://github.com/petkaantonov/bluebird],
bluebird [https://github.com/petkaantonov/bluebird] will be used.
mz does not install bluebird [https://github.com/petkaantonov/bluebird] for you.

Otherwise, if you’re using a node that has native v8 Promises (v0.11.13+),
then that will be used.

Otherwise, this library will crash the process and exit,
so you might as well install bluebird [https://github.com/petkaantonov/bluebird] as a dependency!

FAQ

Can I use this in production?

If you do, you should probably install bluebird [https://github.com/petkaantonov/bluebird] as
native v8 promises are still pretty raw.

Will this make my app faster?

Nope, probably slower actually.

Can I add more features?

Sure.
Open an issue.

Currently, the plans are to eventually support:

		ECMAScript7 Streams

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/serve-static/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.7.1 / 2014-10-22

		deps: send@0.10.1
		deps: on-finished@~2.1.1

1.7.0 / 2014-10-15

		deps: send@0.10.0
		deps: debug@~2.1.0

		deps: depd@~1.0.0

		deps: etag@~1.5.0

1.6.4 / 2014-10-08

		Fix redirect loop when index file serving disabled

1.6.3 / 2014-09-24

		deps: send@0.9.3
		deps: etag@~1.4.0

1.6.2 / 2014-09-15

		deps: send@0.9.2
		deps: depd@0.4.5

		deps: etag@~1.3.1

		deps: range-parser@~1.0.2

1.6.1 / 2014-09-07

		deps: send@0.9.1
		deps: fresh@0.2.4

1.6.0 / 2014-09-07

		deps: send@0.9.0
		Add lastModified option

		Use etag to generate ETag header

		deps: debug@~2.0.0

1.5.4 / 2014-09-04

		deps: send@0.8.5
		Fix a path traversal issue when using root

		Fix malicious path detection for empty string path

1.5.3 / 2014-08-17

		deps: send@0.8.3

1.5.2 / 2014-08-14

		deps: send@0.8.2
		Work around fd leak in Node.js 0.10 for fs.ReadStream

1.5.1 / 2014-08-09

		Fix parsing of weird req.originalUrl values

		deps: parseurl@~1.3.0

		deps: utils-merge@1.0.0

1.5.0 / 2014-08-05

		deps: send@0.8.1
		Add extensions option

1.4.4 / 2014-08-04

		deps: send@0.7.4
		Fix serving index files without root dir

1.4.3 / 2014-07-29

		deps: send@0.7.3
		Fix incorrect 403 on Windows and Node.js 0.11

1.4.2 / 2014-07-27

		deps: send@0.7.2
		deps: depd@0.4.4

1.4.1 / 2014-07-26

		deps: send@0.7.1
		deps: depd@0.4.3

1.4.0 / 2014-07-21

		deps: parseurl@~1.2.0
		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

		deps: send@0.7.0
		Add dotfiles option

		deps: debug@1.0.4

		deps: depd@0.4.2

1.3.2 / 2014-07-11

		deps: send@0.6.0
		Cap maxAge value to 1 year

		deps: debug@1.0.3

1.3.1 / 2014-07-09

		deps: parseurl@~1.1.3
		faster parsing of href-only URLs

1.3.0 / 2014-06-28

		Add setHeaders option

		Include HTML link in redirect response

		deps: send@0.5.0
		Accept string for maxAge (converted by ms)

1.2.3 / 2014-06-11

		deps: send@0.4.3
		Do not throw un-catchable error on file open race condition

		Use escape-html for HTML escaping

		deps: debug@1.0.2

		deps: finished@1.2.2

		deps: fresh@0.2.2

1.2.2 / 2014-06-09

		deps: send@0.4.2
		fix “event emitter leak” warnings

		deps: debug@1.0.1

		deps: finished@1.2.1

1.2.1 / 2014-06-02

		use escape-html for escaping

		deps: send@0.4.1
		Send max-age in Cache-Control in correct format

1.2.0 / 2014-05-29

		deps: send@0.4.0
		Calculate ETag with md5 for reduced collisions

		Fix wrong behavior when index file matches directory

		Ignore stream errors after request ends

		Skip directories in index file search

		deps: debug@0.8.1

1.1.0 / 2014-04-24

		Accept options directly to send module

		deps: send@0.3.0

1.0.4 / 2014-04-07

		Resolve relative paths at middleware setup

		Use parseurl to parse the URL from request

1.0.3 / 2014-03-20

		Do not rely on connect-like environments

1.0.2 / 2014-03-06

		deps: send@0.2.0

1.0.1 / 2014-03-05

		Add mime export for back-compat

1.0.0 / 2014-03-05

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/node_modules/uid-safe/node_modules/mz/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-06-18

		use bluebird by default if found

		support node 0.8

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/cookie/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie [image: Build Status] [http://travis-ci.org/defunctzombie/node-cookie]

cookie is a basic cookie parser and serializer. It doesn’t make assumptions about how you are going to deal with your cookies. It basically just provides a way to read and write the HTTP cookie headers.

See RFC6265 [http://tools.ietf.org/html/rfc6265] for details about the http header for cookies.

how?

npm install cookie

var cookie = require('cookie');

var hdr = cookie.serialize('foo', 'bar');
// hdr = 'foo=bar';

var cookies = cookie.parse('foo=bar; cat=meow; dog=ruff');
// cookies = { foo: 'bar', cat: 'meow', dog: 'ruff' };

more

The serialize function takes a third parameter, an object, to set cookie options. See the RFC for valid values.

path

cookie path

expires

absolute expiration date for the cookie (Date object)

maxAge

relative max age of the cookie from when the client receives it (seconds)

domain

domain for the cookie

secure

true or false

httpOnly

true or false

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/node_modules/scmp/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

scmp [image: Build Status] [https://travis-ci.org/freewil/scmp]

Safe, constant-time comparison of strings.

Install

npm install scmp

Why?

To minimize vulnerability against timing attacks [http://codahale.com/a-lesson-in-timing-attacks/].

Examples

var scmp = require('scmp');

var hash = 'e727d1464ae12436e899a726da5b2f11d8381b26';
var givenHash = 'e727e1b80e448a213b392049888111e1779a52db';

if (scmp(hash, givenHash)) {
 console.log('good hash');
} else {
 console.log('bad hash');
}

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/content-disposition/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.5.0 / 2014-10-11

		Add parse function

0.4.0 / 2014-09-21

		Expand non-Unicode filename to the full ISO-8859-1 charset

0.3.0 / 2014-09-20

		Add fallback option

		Add type option

0.2.0 / 2014-09-19

		Reduce ambiguity of file names with hex escape in buggy browsers

0.1.2 / 2014-09-19

		Fix periodic invalid Unicode filename header

0.1.1 / 2014-09-19

		Fix invalid characters appearing in filename* parameter

0.1.0 / 2014-09-18

		Make the filename argument optional

0.0.0 / 2014-09-18

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/node_modules/uid-safe/node_modules/mz/node_modules/native-or-bluebird/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

native-or-bluebird

![NPM version][npm-image] [https://npmjs.org/package/native-or-bluebird]
![Build status][travis-image] [https://travis-ci.org/normalize/native-or-bluebird]
![Test coverage][coveralls-image] [https://coveralls.io/r/normalize/native-or-bluebird?branch=master]
![Dependency Status][david-image] [https://david-dm.org/normalize/native-or-bluebird]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/native-or-bluebird]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Use either bluebird or the native Promise implementation.
If no implementation is found, an error will be thrown:

var Promise = require('native-or-bluebird');

The goal of this library is to be able to eventually remove this line
from your code and use native Promises, allowing you to
to write future-compatible code with ease.
You should install bluebird in your libraries for maximum compatibility.

If you do not want an error to be thrown,
require() the Promise implementation directly.
If no implementation is found, undefined will be returned.

var Promise = require('native-or-bluebird/promise');
if (Promise) // do stuff with promises

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/serve-static/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

serve-static

![NPM Version][npm-image] [https://npmjs.org/package/serve-static]
![NPM Downloads][downloads-image] [https://npmjs.org/package/serve-static]
![Build Status][travis-image] [https://travis-ci.org/expressjs/serve-static]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/serve-static]
![Gratipay][gratipay-image] [https://gratipay.com/dougwilson/]

Install

$ npm install serve-static

API

var serveStatic = require('serve-static')

serveStatic(root, options)

Create a new middleware function to serve files from within a given root
directory. The file to serve will be determined by combining req.url
with the provided root directory. When a file is not found, instead of
sending a 404 response, this module will instead call next() to move on
to the next middleware, allowing for stacking and fall-backs.

Options

dotfiles

Set how “dotfiles” are treated when encountered. A dotfile is a file
or directory that begins with a dot (”.”). Note this check is done on
the path itself without checking if the path actually exists on the
disk. If root is specified, only the dotfiles above the root are
checked (i.e. the root itself can be within a dotfile when when set
to “deny”).

The default value is 'ignore'.

		'allow' No special treatment for dotfiles.

		'deny' Send a 403 for any request for a dotfile.

		'ignore' Pretend like the dotfile does not exist and call next().

etag

Enable or disable etag generation, defaults to true.

extensions

Set file extension fallbacks. When set, if a file is not found, the given
extensions will be added to the file name and search for. The first that
exists will be served. Example: ['html', 'htm'].

The default value is false.

index

By default this module will send “index.html” files in response to a request
on a directory. To disable this set false or to supply a new index pass a
string or an array in preferred order.

lastModified

Enable or disable Last-Modified header, defaults to true. Uses the file
system’s last modified value.

maxAge

Provide a max-age in milliseconds for http caching, defaults to 0. This
can also be a string accepted by the ms [https://www.npmjs.org/package/ms#readme]
module.

redirect

Redirect to trailing “/” when the pathname is a dir. Defaults to true.

setHeaders

Function to set custom headers on response.

Examples

Serve files with vanilla node.js http server

var finalhandler = require('finalhandler')
var http = require('http')
var serveStatic = require('serve-static')

// Serve up public/ftp folder
var serve = serveStatic('public/ftp', {'index': ['index.html', 'index.htm']})

// Create server
var server = http.createServer(function(req, res){
 var done = finalhandler(req, res)
 serve(req, res, done)
})

// Listen
server.listen(3000)

Serve all files as downloads

var contentDisposition = require('content-disposition')
var finalhandler = require('finalhandler')
var http = require('http')
var serveStatic = require('serve-static')

// Serve up public/ftp folder
var serve = serveStatic('public/ftp', {
 'index': false,
 'setHeaders': setHeaders
})

// Set header to force download
function setHeaders(res, path) {
 res.setHeader('Content-Disposition', contentDisposition(path))
}

// Create server
var server = http.createServer(function(req, res){
 var done = finalhandler(req, res)
 serve(req, res, done)
})

// Listen
server.listen(3000)

Serving using express

var connect = require('connect')
var serveStatic = require('serve-static')

var app = connect()

app.use(serveStatic('public/ftp', {'index': ['default.html', 'default.htm']}))
app.listen(3000)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/media-typer/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

media-typer

![NPM Version][npm-image] [https://npmjs.org/package/media-typer]
![NPM Downloads][downloads-image] [https://npmjs.org/package/media-typer]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/media-typer]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/media-typer]

Simple RFC 6838 media type parser

Installation

$ npm install media-typer

API

var typer = require('media-typer')

typer.parse(string)

var obj = typer.parse('image/svg+xml; charset=utf-8')

Parse a media type string. This will return an object with the following
properties (examples are shown for the string 'image/svg+xml; charset=utf-8'):

		type: The type of the media type (always lower case). Example: 'image'

		subtype: The subtype of the media type (always lower case). Example: 'svg'

		suffix: The suffix of the media type (always lower case). Example: 'xml'

		parameters: An object of the parameters in the media type (name of parameter always lower case). Example: {charset: 'utf-8'}

typer.parse(req)

var obj = typer.parse(req)

Parse the content-type header from the given req. Short-cut for
typer.parse(req.headers['content-type']).

typer.parse(res)

var obj = typer.parse(res)

Parse the content-type header set on the given res. Short-cut for
typer.parse(res.getHeader('content-type')).

typer.format(obj)

var obj = typer.format({type: 'image', subtype: 'svg', suffix: 'xml'})

Format an object into a media type string. This will return a string of the
mime type for the given object. For the properties of the object, see the
documentation for typer.parse(string).

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/on-finished/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.1 / 2014-10-22

		Fix handling of pipelined requests

2.1.0 / 2014-08-16

		Check if socket is detached

		Return undefined for isFinished if state unknown

2.0.0 / 2014-08-16

		Add isFinished function

		Move to jshttp organization

		Remove support for plain socket argument

		Rename to on-finished

		Support both req and res as arguments

		deps: ee-first@1.0.5

1.2.2 / 2014-06-10

		Reduce listeners added to emitters
		avoids “event emitter leak” warnings when used multiple times on same request

1.2.1 / 2014-06-08

		Fix returned value when already finished

1.2.0 / 2014-06-05

		Call callback when called on already-finished socket

1.1.4 / 2014-05-27

		Support node.js 0.8

1.1.3 / 2014-04-30

		Make sure errors passed as instanceof Error

1.1.2 / 2014-04-18

		Default the socket to passed-in object

1.1.1 / 2014-01-16

		Rename module to finished

1.1.0 / 2013-12-25

		Call callback when called on already-errored socket

1.0.1 / 2013-12-20

		Actually pass the error to the callback

1.0.0 / 2013-12-20

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/media-typer/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.3.0 / 2014-09-07

		Support Node.js 0.6

		Throw error when parameter format invalid on parse

0.2.0 / 2014-06-18

		Add typer.format() to format media types

0.1.0 / 2014-06-17

		Accept req as argument to parse

		Accept res as argument to parse

		Parse media type with extra LWS between type and first parameter

0.0.0 / 2014-06-13

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/proxy-addr/node_modules/ipaddr.js/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ipaddr.js — an IPv6 and IPv4 address manipulation library

ipaddr.js is a small (1.9K minified and gzipped) library for manipulating
IP addresses in JavaScript environments. It runs on both CommonJS runtimes
(e.g. nodejs [http://nodejs.org]) and in a web browser.

ipaddr.js allows you to verify and parse string representation of an IP
address, match it against a CIDR range or range list, determine if it falls
into some reserved ranges (examples include loopback and private ranges),
and convert between IPv4 and IPv4-mapped IPv6 addresses.

Installation

npm install ipaddr.js

API

ipaddr.js defines one object in the global scope: ipaddr. In CommonJS,
it is exported from the module:

var ipaddr = require('ipaddr.js');

The API consists of several global methods and two classes: ipaddr.IPv6 and ipaddr.IPv4.

Global methods

There are three global methods defined: ipaddr.isValid, ipaddr.parse and
ipaddr.process. All of them receive a string as a single parameter.

The ipaddr.isValid method returns true if the address is a valid IPv4 or
IPv6 address, and false otherwise. It does not throw any exceptions.

The ipaddr.parse method returns an object representing the IP address,
or throws an Error if the passed string is not a valid representation of an
IP address.

The ipaddr.process method works just like the ipaddr.parse one, but it
automatically converts IPv4-mapped IPv6 addresses to their IPv4 couterparts
before returning. It is useful when you have a Node.js instance listening
on an IPv6 socket, and the net.ivp6.bindv6only sysctl parameter (or its
equivalent on non-Linux OS) is set to 0. In this case, you can accept IPv4
connections on your IPv6-only socket, but the remote address will be mangled.
Use ipaddr.process method to automatically demangle it.

Object representation

Parsing methods return an object which descends from ipaddr.IPv6 or
ipaddr.IPv4. These objects share some properties, but most of them differ.

Shared properties

One can determine the type of address by calling addr.kind(). It will return
either "ipv6" or "ipv4".

An address can be converted back to its string representation with addr.toString().
Note that this method:

		does not return the original string used to create the object (in fact, there is
no way of getting that string)

		returns a compact representation (when it is applicable)

A match(range, bits) method can be used to check if the address falls into a
certain CIDR range.
Note that an address can be (obviously) matched only against an address of the same type.

For example:

var addr = ipaddr.parse("2001:db8:1234::1");
var range = ipaddr.parse("2001:db8::");

addr.match(range, 32); // => true

A range() method returns one of predefined names for several special ranges defined
by IP protocols. The exact names (and their respective CIDR ranges) can be looked up
in the source: IPv6 ranges [https://github.com/whitequark/ipaddr.js/blob/master/src/ipaddr.coffee#L186] and IPv4 ranges [https://github.com/whitequark/ipaddr.js/blob/master/src/ipaddr.coffee#L71]. Some common ones include "unicast"
(the default one) and "reserved".

You can match against your own range list by using
ipaddr.subnetMatch(address, rangeList, defaultName) method. It can work with both
IPv6 and IPv4 addresses, and accepts a name-to-subnet map as the range list. For example:

var rangeList = {
 documentationOnly: [ipaddr.parse('2001:db8::'), 32],
 tunnelProviders: [
 [ipaddr.parse('2001:470::'), 32], // he.net
 [ipaddr.parse('2001:5c0::'), 32] // freenet6
]
};
ipaddr.subnetMatch(ipaddr.parse('2001:470:8:66::1'), rangeList, 'unknown'); // => "he.net"

The addresses can be converted to their byte representation with toByteArray().
(Actually, JavaScript mostly does not know about byte buffers. They are emulated with
arrays of numbers, each in range of 0..255.)

var bytes = ipaddr.parse('2a00:1450:8007::68').toByteArray(); // ipv6.google.com
bytes // => [42, 0x00, 0x14, 0x50, 0x80, 0x07, 0x00, <zeroes...>, 0x00, 0x68]

The ipaddr.IPv4 and ipaddr.IPv6 objects have some methods defined, too. All of them
have the same interface for both protocols, and are similar to global methods.

ipaddr.IPvX.isValid(string) can be used to check if the string is a valid address
for particular protocol, and ipaddr.IPvX.parse(string) is the error-throwing parser.

IPv6 properties

Sometimes you will want to convert IPv6 not to a compact string representation (with
the :: substitution); the toNormalizedString() method will return an address where
all zeroes are explicit.

For example:

var addr = ipaddr.parse("2001:0db8::0001");
addr.toString(); // => "2001:db8::1"
addr.toNormalizedString(); // => "2001:db8:0:0:0:0:0:1"

The isIPv4MappedAddress() method will return true if this address is an IPv4-mapped
one, and toIPv4Address() will return an IPv4 object address.

To access the underlying binary representation of the address, use addr.parts.

var addr = ipaddr.parse("2001:db8:10::1234:DEAD");
addr.parts // => [0x2001, 0xdb8, 0x10, 0, 0, 0, 0x1234, 0xdead]

IPv4 properties

toIPv4MappedAddress() will return a corresponding IPv4-mapped IPv6 address.

To access the underlying representation of the address, use addr.octets.

var addr = ipaddr.parse("192.168.1.1");
addr.octets // => [192, 168, 1, 1]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

csurf

![NPM Version][npm-image] [https://npmjs.org/package/csurf]
![NPM Downloads][downloads-image] [https://npmjs.org/package/csurf]
![Build status][travis-image] [https://travis-ci.org/expressjs/csurf]
![Test coverage][coveralls-image] [https://coveralls.io/r/expressjs/csurf?branch=master]

Node.js CSRF [https://en.wikipedia.org/wiki/Cross-site_request_forgery] protection middleware.

Requires either a session middleware or cookie-parser [https://github.com/expressjs/cookie-parser] to be initialized first.

		session [https://github.com/expressjs/session]

		cookie-session [https://github.com/expressjs/cookie-session]

Install

$ npm install csurf

API

var csrf = require('csurf')

csrf(options)

This middleware adds a req.csrfToken() function to make a token which should be added to requests which mutate state, within a hidden form field, query-string etc. This token is validated against the visitor’s session or csrf cookie.

Options

		value a function accepting the request, returning the token.
		The default function checks four possible token locations:
		_csrf parameter in req.body generated by the body-parser middleware.

		_csrf parameter in req.query generated by query().

		x-csrf-token and x-xsrf-token header fields.

		cookie set to a truthy value to enable cookie-based instead of session-based csrf secret storage.
		If cookie is an object, these options can be configured, otherwise defaults are used:
		key the name of the cookie to use (defaults to _csrf) to store the csrf secret

		any other res.cookie [http://expressjs.com/4x/api.html#res.cookie] options can be set

		ignoreMethods An array of the methods CSRF token checking will disabled.
(default: ['GET', 'HEAD', 'OPTIONS'])

req.csrfToken()

Lazy-loads the token associated with the request.

Example

Simple express example

The following is an example of some server-side code that protects all
non-GET/HEAD/OPTIONS routes with a CSRF token.

var express = require('express')
var csrf = require('csurf')

var app = express()
app.use(csrf())

// error handler
app.use(function (err, req, res, next) {
 if (err.code !== 'EBADCSRFTOKEN') return next(err)

 // handle CSRF token errors here
 res.status(403)
 res.send('session has expired or form tampered with')
})

// pass the csrfToken to the view
app.get('/form', function(req, res) {
 res.render('send', { csrfToken: req.csrfToken() })
})

Inside the view (depending on your template language; handlebars-style
is demonstrated here), set the csrfToken value as the value of a hidden
input field named _csrf:

<form action="/process" method="POST">
 <input type="hidden" name="_csrf" value="{{csrfToken}}">

 Favorite color: <input type="text" name="favoriteColor">
 <button type="submit">Submit</button>
</form>

Custom error handling

var express = require('express')
var csrf = require('csurf')

var app = express()
app.use(csrf())

// error handler
app.use(function (err, req, res, next) {
 if (err.code !== 'EBADCSRFTOKEN') return next(err)

 // handle CSRF token errors here
 res.status(403)
 res.send('session has expired or form tampered with')
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.6.3 / 2014-11-09

		bump csrf

		bump http-errors

1.6.2 / 2014-10-14

		bump http-errors

		fix cookie name when using cookie: true

1.6.1 / 2014-09-05

		bump cookie-signature

1.6.0 / 2014-09-03

		set code property on CSRF token errors

1.5.0 / 2014-08-24

		add ignoreMethods option

1.4.1 / 2014-08-22

		csrf-tokens -> csrf

1.4.0 / 2014-07-30

		Support changing req.session after csurf middleware
		Calling res.csrfToken() after req.session.destroy() will now work

1.3.0 / 2014-07-03

		add support for environments without res.cookie (connect@3)

1.2.2 / 2014-06-18

		bump csrf-tokens

1.2.1 / 2014-06-09

		refactor to use csrf-tokens

1.2.0 / 2014-05-13

		add support for double-submit cookie

1.1.0 / 2014-04-06

		add constant-time string compare

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/on-finished/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

on-finished

![NPM Version][npm-image] [https://npmjs.org/package/on-finished]
![NPM Downloads][downloads-image] [https://npmjs.org/package/on-finished]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/on-finished]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/on-finished?branch=master]

Execute a callback when a request closes, finishes, or errors.

Install

$ npm install on-finished

API

var onFinished = require('on-finished')

onFinished(res, listener)

Attach a listener to listen for the response to finish. The listener will
be invoked only once when the response finished. If the response finished
to to an error, the first argument will contain the error.

Listening to the end of a response would be used to close things associated
with the response, like open files.

onFinished(res, function (err) {
 // clean up open fds, etc.
})

onFinished(req, listener)

Attach a listener to listen for the request to finish. The listener will
be invoked only once when the request finished. If the request finished
to to an error, the first argument will contain the error.

Listening to the end of a request would be used to know when to continue
after reading the data.

var data = ''

req.setEncoding('utf8')
res.on('data', function (str) {
 data += str
})

onFinished(req, function (err) {
 // data is read unless there is err
})

onFinished.isFinished(res)

Determine if res is already finished. This would be useful to check and
not even start certain operations if the response has already finished.

onFinished.isFinished(req)

Determine if req is already finished. This would be useful to check and
not even start certain operations if the request has already finished.

Example

The following code ensures that file descriptors are always closed
once the response finishes.

var destroy = require('destroy')
var http = require('http')
var onFinished = require('on-finished')

http.createServer(function onRequest(req, res) {
 var stream = fs.createReadStream('package.json')
 stream.pipe(res)
 onFinished(res, function (err) {
 destroy(stream)
 })
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.2 / 2014-11-09

		update scmp to 1.0.0

2.0.1 / 2014-08-22

		rename to csrf

2.0.0 / 2014-06-18

		use uid-safe

		use base64-url

		remove sync .secret(), use .secretSync() instead

1.0.4 / 2014-06-11

		make sure CSRF tokens are URL safe

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/debug/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

debug

tiny node.js debugging utility modelled after node core’s debugging technique.

Installation

$ npm install debug

Usage

With debug you simply invoke the exported function to generate your debug function, passing it a name which will determine if a noop function is returned, or a decorated console.error, so all of the console format string goodies you’re used to work fine. A unique color is selected per-function for visibility.

Example app.js:

var debug = require('debug')('http')
 , http = require('http')
 , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
 debug(req.method + ' ' + req.url);
 res.end('hello\n');
}).listen(3000, function(){
 debug('listening');
});

// fake worker of some kind

require('./worker');

Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
 debug('doing some work');
}, 1000);

The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: debug http and worker]

[image: debug worker]

Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image:]

When stdout is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:

[image:]

Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use ”:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.

Wildcards

The * character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect.compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character. For example, DEBUG=*,-connect:* would include all debuggers except those starting with “connect:”.

Browser support

Debug works in the browser as well, currently persisted by localStorage. For example if you have worker:a and worker:b as shown below, and wish to debug both type debug.enable('worker:*') in the console and refresh the page, this will remain until you disable with debug.disable().

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
 a('doing some work');
}, 1000);

setInterval(function(){
 b('doing some work');
}, 1200);

Web Inspector Colors

Colors are also enabled on “Web Inspectors” that understand the %c formatting
option. These are WebKit web inspectors, Firefox (since version
31 [https://hacks.mozilla.org/2014/05/editable-box-model-multiple-selection-sublime-text-keys-much-more-firefox-developer-tools-episode-31/])
and the Firebug plugin for Firefox (any version).

Colored output looks something like:

[image:]

stderr vs stdout

You can set an alternative logging method per-namespace by overriding the log method on a per-namespace or globally:

Example stderr.js:

var debug = require('../');
var log = debug('app:log');

// by default console.log is used
log('goes to stdout!');

var error = debug('app:error');
// set this namespace to log via console.error
error.log = console.error.bind(console); // don't forget to bind to console!
error('goes to stderr');
log('still goes to stdout!');

// set all output to go via console.warn
// overrides all per-namespace log settings
debug.log = console.warn.bind(console);
log('now goes to stderr via console.warn');
error('still goes to stderr, but via console.warn now');

Authors

		TJ Holowaychuk

		Nathan Rajlich

License

(The MIT License)

Copyright (c) 2014 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/method-override/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

method-override

![NPM Version][npm-image] [https://npmjs.org/package/method-override]
![NPM Downloads][downloads-image] [https://npmjs.org/package/method-override]
![Build Status][travis-image] [https://travis-ci.org/expressjs/method-override]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/method-override?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Lets you use HTTP verbs such as PUT or DELETE in places where the client doesn’t support it.

Install

$ npm install method-override

API

NOTE It is very important that this module is used before any module that
needs to know the method of the request (for example, it must be used prior to
the csurf module).

methodOverride(getter, options)

Create a new middleware function to override the req.method property with a new
value. This value will be pulled from the provided getter.

		getter - The getter to use to look up the overridden request method for the request. (default: X-HTTP-Method-Override)

		options.methods - The allowed methods the original request must be in to check for a method override value. (default: ['POST'])

If the found method is supported by node.js core, then req.method will be set to
this value, as if it has originally been that value. The previous req.method
value will be stored in req.originalMethod.

getter

This is the method of getting the override value from the request. If a function is provided,
the req is passed as the first argument, the `res as the second argument and the method is
expected to be returned. If a string is provided, the string is used to look up the method
with the following rules:

		If the string starts with X-, then it is treated as the name of a header and that header
is used for the method override. If the request contains the same header multiple times, the
first occurrence is used.

		All other strings are treated as a key in the URL query string.

options.methods

This allows the specification of what methods(s) the request MUST be in in order to check for
the method override value. This defaults to only POST methods, which is the only method the
override should arrive in. More methods may be specified here, but it may introduce security
issues and cause weird behavior when requests travel through caches. This value is an array
of methods in upper-case. null can be specified to allow all methods.

Examples

override using a header

To use a header to override the method, specify the header name
as a string argument to the methodOverride function. To then make
the call, send a POST request to a URL with the overridden method
as the value of that header. This method of using a header would
typically be used in conjunction with XMLHttpRequest on implementations
that do not support the method you are trying to use.

var connect = require('connect')
var methodOverride = require('method-override')

// override with the X-HTTP-Method-Override header in the request
app.use(methodOverride('X-HTTP-Method-Override'))

Example call with header override using XMLHttpRequest:

var xhr = new XMLHttpRequest()
xhr.onload = onload
xhr.open('post', '/resource', true)
xhr.setRequestHeader('X-HTTP-Method-Override', 'DELETE')
xhr.send()

function onload() {
 alert('got response: ' + this.responseText)
}

override using a query value

To use a query string value to override the method, specify the query
string key as a string argument to the methodOverride function. To
then make the call, send a POST request to a URL with the overridden
method as the value of that query string key. This method of using a
query value would typically be used in conjunction with plain HTML
<form> elements when trying to support legacy browsers but still use
newer methods.

var connect = require('connect')
var methodOverride = require('method-override')

// override with POST having ?_method=DELETE
app.use(methodOverride('_method'))

Example call with query override using HTML <form>:

<form method="POST" action="/resource?_method=DELETE">
 <button type="submit">Delete resource</button>
</form>

multiple format support

var connect = require('connect')
var methodOverride = require('method-override')

// override with different headers; last one takes precedence
app.use(methodOverride('X-HTTP-Method')) // Microsoft
app.use(methodOverride('X-HTTP-Method-Override')) // Google/GData
app.use(methodOverride('X-Method-Override')) // IBM

custom logic

You can implement any kind of custom logic with a function for the getter. The following
implements the logic for looking in req.body that was in method-override@1:

var bodyParser = require('body-parser')
var connect = require('connect')
var methodOverride = require('method-override')

// NOTE: when using req.body, you must fully parse the request body
// before you call methodOverride() in your middleware stack,
// otherwise req.body will not be populated.
app.use(bodyParser.urlencoded())
app.use(methodOverride(function(req, res){
 if (req.body && typeof req.body === 'object' && '_method' in req.body) {
 // look in urlencoded POST bodies and delete it
 var method = req.body._method
 delete req.body._method
 return method
 }
}))

Example call with query override using HTML <form>:

<!-- enctype must be set to the type you will parse before methodOverride() -->
<form method="POST" action="/resource" enctype="application/x-www-form-urlencoded">
 <input type="hidden" name="_method" value="DELETE">
 <button type="submit">Delete resource</button>
</form>

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/debug/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/debug/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.0 / 2014-10-15

		node: implement DEBUG_FD env variable support

		package: update “browserify” to v6.1.0

		package: add “license” field to package.json (#135, @panuhorsmalahti)

2.0.0 / 2014-09-01

		package: update “browserify” to v5.11.0

		node: use stderr rather than stdout for logging (#29, @stephenmathieson)

1.0.4 / 2014-07-15

		dist: recompile

		example: remove console.info() log usage

		example: add “Content-Type” UTF-8 header to browser example

		browser: place %c marker after the space character

		browser: reset the “content” color via color: inherit

		browser: add colors support for Firefox >= v31

		debug: prefer an instance log() function over the global one (#119)

		Readme: update documentation about styled console logs for FF v31 (#116, @wryk)

1.0.3 / 2014-07-09

		Add support for multiple wildcards in namespaces (#122, @seegno)

		browser: fix lint

1.0.2 / 2014-06-10

		browser: update color palette (#113, @gscottolson)

		common: make console logging function configurable (#108, @timoxley)

		node: fix %o colors on old node <= 0.8.x

		Makefile: find node path using shell/which (#109, @timoxley)

1.0.1 / 2014-06-06

		browser: use removeItem() to clear localStorage

		browser, node: don’t set DEBUG if namespaces is undefined (#107, @leedm777)

		package: add “contributors” section

		node: fix comment typo

		README: list authors

1.0.0 / 2014-06-04

		make ms diff be global, not be scope

		debug: ignore empty strings in enable()

		node: make DEBUG_COLORS able to disable coloring

		*: export the colors array

		npmignore: don’t publish the dist dir

		Makefile: refactor to use browserify

		package: add “browserify” as a dev dependency

		Readme: add Web Inspector Colors section

		node: reset terminal color for the debug content

		node: map “%o” to util.inspect()

		browser: map “%j” to JSON.stringify()

		debug: add custom “formatters”

		debug: use “ms” module for humanizing the diff

		Readme: add “bash” syntax highlighting

		browser: add Firebug color support

		browser: add colors for WebKit browsers

		node: apply log to console

		rewrite: abstract common logic for Node & browsers

		add .jshintrc file

0.8.1 / 2014-04-14

		package: re-add the “component” section

0.8.0 / 2014-03-30

		add enable() method for nodejs. Closes #27

		change from stderr to stdout

		remove unnecessary index.js file

0.7.4 / 2013-11-13

		remove “browserify” key from package.json (fixes something in browserify)

0.7.3 / 2013-10-30

		fix: catch localStorage security error when cookies are blocked (Chrome)

		add debug(err) support. Closes #46

		add .browser prop to package.json. Closes #42

0.7.2 / 2013-02-06

		fix package.json

		fix: Mobile Safari (private mode) is broken with debug

		fix: Use unicode to send escape character to shell instead of octal to work with strict mode javascript

0.7.1 / 2013-02-05

		add repository URL to package.json

		add DEBUG_COLORED to force colored output

		add browserify support

		fix component. Closes #24

0.7.0 / 2012-05-04

		Added .component to package.json

		Added debug.component.js build

0.6.0 / 2012-03-16

		Added support for “-” prefix in DEBUG [Vinay Pulim]

		Added .enabled flag to the node version [TooTallNate]

0.5.0 / 2012-02-02

		Added: humanize diffs. Closes #8

		Added debug.disable() to the CS variant

		Removed padding. Closes #10

		Fixed: persist client-side variant again. Closes #9

0.4.0 / 2012-02-01

		Added browser variant support for older browsers [TooTallNate]

		Added debug.enable('project:*') to browser variant [TooTallNate]

		Added padding to diff (moved it to the right)

0.3.0 / 2012-01-26

		Added millisecond diff when isatty, otherwise UTC string

0.2.0 / 2012-01-22

		Added wildcard support

0.1.0 / 2011-12-02

		Added: remove colors unless stderr isatty [TooTallNate]

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/method-override/node_modules/vary/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-08-10

		Accept valid Vary header string as field

		Add vary.append for low-level string manipulation

		Move to jshttp orgainzation

0.1.0 / 2014-06-05

		Support array of fields to set

0.0.0 / 2014-06-04

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/proxy-addr/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

proxy-addr

![NPM Version][npm-image] [https://npmjs.org/package/proxy-addr]
![NPM Downloads][downloads-image] [https://npmjs.org/package/proxy-addr]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/proxy-addr]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/proxy-addr?branch=master]

Determine address of proxied request

Install

$ npm install proxy-addr

API

var proxyaddr = require('proxy-addr')

proxyaddr(req, trust)

Return the address of the request, using the given trust parameter.

The trust argument is a function that returns true if you trust
the address, false if you don’t. The closest untrusted address is
returned.

proxyaddr(req, function(addr){ return addr === '127.0.0.1' })
proxyaddr(req, function(addr, i){ return i < 1 })

The trust arugment may also be a single IP address string or an
array of trusted addresses, as plain IP addresses, CIDR-formatted
strings, or IP/netmask strings.

proxyaddr(req, '127.0.0.1')
proxyaddr(req, ['127.0.0.0/8', '10.0.0.0/8'])
proxyaddr(req, ['127.0.0.0/255.0.0.0', '192.168.0.0/255.255.0.0'])

This module also supports IPv6. Your IPv6 addresses will be normalized
automatically (i.e. fe80::00ed:1 equals fe80:0:0:0:0:0:ed:1).

proxyaddr(req, '::1')
proxyaddr(req, ['::1/128', 'fe80::/10'])
proxyaddr(req, ['fe80::/ffc0::'])

This module will automatically work with IPv4-mapped IPv6 addresses
as well to support node.js in IPv6-only mode. This means that you do
not have to specify both ::ffff:a00:1 and 10.0.0.1.

As a convenience, this module also takes certain pre-defined names
in addition to IP addresses, which expand into IP addresses:

proxyaddr(req, 'loopback')
proxyaddr(req, ['loopback', 'fc00:ac:1ab5:fff::1/64'])

		loopback: IPv4 and IPv6 loopback addresses (like ::1 and
127.0.0.1).

		linklocal: IPv4 and IPv6 link-local addresses (like
fe80::1:1:1:1 and 169.254.0.1).

		uniquelocal: IPv4 private addresses and IPv6 unique-local
addresses (like fc00:ac:1ab5:fff::1 and 192.168.0.1).

When trust is specified as a function, it will be called for each
address to determine if it is a trusted address. The function is
given two arguments: addr and i, where addr is a string of
the address to check and i is a number that represents the distance
from the socket address.

proxyaddr.all(req, [trust])

Return all the addresses of the request, optionally stopping at the
first untrusted. This array is ordered from closest to furthest
(i.e. arr[0] === req.connection.remoteAddress).

proxyaddr.all(req)

The optional trust argument takes the same arguments as trust
does in proxyaddr(req, trust).

proxyaddr.all(req, 'loopback')

proxyaddr.compile(val)

Compiles argument val into a trust function. This function takes
the same arguments as trust does in proxyaddr(req, trust) and
returns a function suitable for proxyaddr(req, trust).

var trust = proxyaddr.compile('localhost')
var addr = proxyaddr(req, trust)

This function is meant to be optimized for use against every request.
It is recommend to compile a trust function up-front for the trusted
configuration and pass that to proxyaddr(req, trust) for each request.

Testing

$ npm test

Benchmarks

$ npm run-script bench

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/method-override/node_modules/vary/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

vary

[image: NPM Version] [https://www.npmjs.org/package/vary]
[image: Node.js Version] [http://nodejs.org/download/]
[image: Build Status] [https://travis-ci.org/jshttp/vary]
[image: Coverage Status] [https://coveralls.io/r/jshttp/vary]
[image: Gittip] [https://www.gittip.com/dougwilson/]

Manipulate the HTTP Vary header

Install

$ npm install vary

API

var vary = require('vary')

vary(res, field)

Adds the given header field to the Vary response header of res.
This can be a string of a single field, a string of a valid Vary
header, or an array of multiple fields.

This will append the header if not already listed, otherwise leaves
it listed in the current location.

// Append "Origin" to the Vary header of the response
vary(res, 'Origin')

vary.append(header, field)

Adds the given header field to the Vary response header string header.
This can be a string of a single field, a string of a valid Vary header,
or an array of multiple fields.

This will append the header if not already listed, otherwise leaves
it listed in the current location. The new header string is returned.

// Get header string appending "Origin" to "Accept, User-Agent"
vary.append('Accept, User-Agent', 'Origin')

Testing

$ npm test

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/proxy-addr/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.3 / 2014-09-21

		Use forwarded npm module

1.0.2 / 2014-09-18

		Fix a global leak when multiple subnets are trusted

		Support Node.js 0.6

		deps: ipaddr.js@0.1.3

1.0.1 / 2014-06-03

		Fix links in npm package

1.0.0 / 2014-05-08

		Add trust argument to determine proxy trust on
		Accepts custom function

		Accepts IPv4/IPv6 address(es)

		Accepts subnets

		Accepts pre-defined names

		Add optional trust argument to proxyaddr.all to
stop at first untrusted

		Add proxyaddr.compile to pre-compile trust function
to make subsequent calls faster

0.0.1 / 2014-05-04

		Fix bad npm publish

0.0.0 / 2014-05-04

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/method-override/node_modules/methods/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.1.0 / 2014-07-05

		add CONNECT

1.0.1 / 2014-06-02

		fix index.js to work with harmony transform

1.0.0 / 2014-05-08

		add PURGE. Closes #9

0.1.0 / 2013-10-28

		add http.METHODS support

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/proxy-addr/node_modules/forwarded/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

forwarded

![NPM Version][npm-image] [https://npmjs.org/package/forwarded]
![NPM Downloads][downloads-image] [https://npmjs.org/package/forwarded]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/forwarded]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/forwarded?branch=master]

Parse HTTP X-Forwarded-For header

Installation

$ npm install forwarded

API

var forwarded = require('forwarded')

forwarded(req)

var addresses = forwarded(req)

Parse the X-Forwarded-For header from the request. Returns an array
of the addresses, including the socket address for the req. In reverse
order (i.e. index 0 is the socket address and the last index is the
furthest address, typically the end-user).

Testing

$ npm test

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/method-override/node_modules/methods/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Methods

HTTP verbs that node core’s parser supports.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/proxy-addr/node_modules/forwarded/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.1.0 / 2014-09-21

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/node_modules/uid-safe/node_modules/mz/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

MZ - Modernize node.js

![NPM version][npm-image] [https://npmjs.org/package/mz]
![Build status][travis-image] [https://travis-ci.org/normalize/mz]
![Test coverage][coveralls-image] [https://coveralls.io/r/normalize/mz?branch=master]
![Dependency Status][david-image] [https://david-dm.org/normalize/mz]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/mz]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Modernize node.js to current ECMAScript specifications!
node.js will not update their API to ES6+ for a while [https://github.com/joyent/node/issues/7549].
This library is a wrapper for various aspects of node.js’ API.

Installation and Usage

Set mz as a dependency and install it.

npm i mz

Then prefix the relevant require()s with mz/:

var fs = require('mz/fs')

fs.exists(__filename).then(function (exists) {
 if (exists) // do something
})

Personally, I use this with generator-based control flow libraries such as co [https://github.com/visionmedia/co] so I don’t need to use implementation-specific wrappers like co-fs [https://github.com/visionmedia/co-fs].

var co = require('co')
var fs = require('mz/fs')

co(function* () {
 if (yield fs.exists(__filename)) // do something
})()

Promisification

Many node methods are converted into promises.
Any properties that are deprecated or aren’t asynchronous will simply be proxied.
The modules wrapped are:

		child_process

		crypto

		dns

		fs

		zlib

var exec = require('mz/child_process').exec

exec('node --version').then(function (stdout) {
 console.log(stdout)
})

Promise Engine

If you’ve installed bluebird [https://github.com/petkaantonov/bluebird],
bluebird [https://github.com/petkaantonov/bluebird] will be used.
mz does not install bluebird [https://github.com/petkaantonov/bluebird] for you.

Otherwise, if you’re using a node that has native v8 Promises (v0.11.13+),
then that will be used.

Otherwise, this library will crash the process and exit,
so you might as well install bluebird [https://github.com/petkaantonov/bluebird] as a dependency!

FAQ

Can I use this in production?

If you do, you should probably install bluebird [https://github.com/petkaantonov/bluebird] as
native v8 promises are still pretty raw.

Will this make my app faster?

Nope, probably slower actually.

Can I add more features?

Sure.
Open an issue.

Currently, the plans are to eventually support:

		ECMAScript7 Streams

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/send/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/countrycodes/node_modules/assert/node_modules/util/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/node_modules/uid-safe/node_modules/mz/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-06-18

		use bluebird by default if found

		support node 0.8

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/send/node_modules/mime/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime

Comprehensive MIME type mapping API. Includes all 600+ types and 800+ extensions defined by the Apache project, plus additional types submitted by the node.js community.

Install

Install with npm [http://github.com/isaacs/npm]:

npm install mime

API - Queries

mime.lookup(path)

Get the mime type associated with a file, if no mime type is found application/octet-stream is returned. Performs a case-insensitive lookup using the extension in path (the substring after the last ‘/’ or ‘.’). E.g.

var mime = require('mime');

mime.lookup('/path/to/file.txt'); // => 'text/plain'
mime.lookup('file.txt'); // => 'text/plain'
mime.lookup('.TXT'); // => 'text/plain'
mime.lookup('htm'); // => 'text/html'

mime.default_type

Sets the mime type returned when mime.lookup fails to find the extension searched for. (Default is application/octet-stream.)

mime.extension(type)

Get the default extension for type

mime.extension('text/html'); // => 'html'
mime.extension('application/octet-stream'); // => 'bin'

mime.charsets.lookup()

Map mime-type to charset

mime.charsets.lookup('text/plain'); // => 'UTF-8'

(The logic for charset lookups is pretty rudimentary. Feel free to suggest improvements.)

API - Defining Custom Types

The following APIs allow you to add your own type mappings within your project. If you feel a type should be included as part of node-mime, see requesting new types [https://github.com/broofa/node-mime/wiki/Requesting-New-Types].

mime.define()

Add custom mime/extension mappings

mime.define({
 'text/x-some-format': ['x-sf', 'x-sft', 'x-sfml'],
 'application/x-my-type': ['x-mt', 'x-mtt'],
 // etc ...
});

mime.lookup('x-sft'); // => 'text/x-some-format'

The first entry in the extensions array is returned by mime.extension(). E.g.

mime.extension('text/x-some-format'); // => 'x-sf'

mime.load(filepath)

Load mappings from an Apache ”.types” format file

mime.load('./my_project.types');

The .types file format is simple - See the types dir for examples.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/countrycodes/node_modules/assert/node_modules/util/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

util

[image: Build Status] [https://travis-ci.org/defunctzombie/node-util]

node.js util [http://nodejs.org/api/util.html] module as a module

install via npm

npm install util

browser support

This module also works in modern browsers. If you need legacy browser support you will need to polyfill ES5 features.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/node_modules/uid-safe/node_modules/base64-url/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

base64-url

Base64 encode, decode, escape and unescape for URL applications.

[image:]

[image: Build Status] [https://travis-ci.org/joaquimserafim/base64-url]

V1

####API

> base64url.encode('Node.js is awesome.');
Tm9kZS5qcyBpcyBhd2Vzb21lLg

> base64url.decode('Tm9kZS5qcyBpcyBhd2Vzb21lLg');
Node.js is awesome.

> base64url.escape(This+is/goingto+escape==);
This-is_goingto-escape

> base64url.unescape('This-is_goingto-escape');
This+is/goingto+escape==

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/media-typer/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

media-typer

![NPM Version][npm-image] [https://npmjs.org/package/media-typer]
![NPM Downloads][downloads-image] [https://npmjs.org/package/media-typer]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/media-typer]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/media-typer]

Simple RFC 6838 media type parser

Installation

$ npm install media-typer

API

var typer = require('media-typer')

typer.parse(string)

var obj = typer.parse('image/svg+xml; charset=utf-8')

Parse a media type string. This will return an object with the following
properties (examples are shown for the string 'image/svg+xml; charset=utf-8'):

		type: The type of the media type (always lower case). Example: 'image'

		subtype: The subtype of the media type (always lower case). Example: 'svg'

		suffix: The suffix of the media type (always lower case). Example: 'xml'

		parameters: An object of the parameters in the media type (name of parameter always lower case). Example: {charset: 'utf-8'}

typer.parse(req)

var obj = typer.parse(req)

Parse the content-type header from the given req. Short-cut for
typer.parse(req.headers['content-type']).

typer.parse(res)

var obj = typer.parse(res)

Parse the content-type header set on the given res. Short-cut for
typer.parse(res.getHeader('content-type')).

typer.format(obj)

var obj = typer.format({type: 'image', subtype: 'svg', suffix: 'xml'})

Format an object into a media type string. This will return a string of the
mime type for the given object. For the properties of the object, see the
documentation for typer.parse(string).

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/node_modules/uid-safe/node_modules/mz/node_modules/native-or-bluebird/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

native-or-bluebird

![NPM version][npm-image] [https://npmjs.org/package/native-or-bluebird]
![Build status][travis-image] [https://travis-ci.org/normalize/native-or-bluebird]
![Test coverage][coveralls-image] [https://coveralls.io/r/normalize/native-or-bluebird?branch=master]
![Dependency Status][david-image] [https://david-dm.org/normalize/native-or-bluebird]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/native-or-bluebird]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Use either bluebird or the native Promise implementation.
If no implementation is found, an error will be thrown:

var Promise = require('native-or-bluebird');

The goal of this library is to be able to eventually remove this line
from your code and use native Promises, allowing you to
to write future-compatible code with ease.
You should install bluebird in your libraries for maximum compatibility.

If you do not want an error to be thrown,
require() the Promise implementation directly.
If no implementation is found, undefined will be returned.

var Promise = require('native-or-bluebird/promise');
if (Promise) // do stuff with promises

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/media-typer/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.3.0 / 2014-09-07

		Support Node.js 0.6

		Throw error when parameter format invalid on parse

0.2.0 / 2014-06-18

		Add typer.format() to format media types

0.1.0 / 2014-06-17

		Accept req as argument to parse

		Accept res as argument to parse

		Parse media type with extra LWS between type and first parameter

0.0.0 / 2014-06-13

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/method-override/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.2.0 / 2014-09-02

		deps: debug@~2.0.0

2.1.3 / 2014-08-10

		deps: parseurl@~1.3.0

		deps: vary@~1.0.0

2.1.2 / 2014-07-22

		deps: debug@1.0.4

		deps: parseurl@~1.2.0
		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

2.1.1 / 2014-07-11

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

2.1.0 / 2014-07-08

		add simple debug output

		deps: methods@1.1.0
		add CONNECT

		deps: parseurl@~1.1.3
		faster parsing of href-only URLs

2.0.2 / 2014-06-05

		use vary module for better Vary behavior

2.0.1 / 2014-06-02

		deps: methods@1.0.1

2.0.0 / 2014-06-01

		Default behavior only checks X-HTTP-Method-Override header

		New interface, less magic
		Can specify what header to look for override in, if wanted

		Can specify custom function to get method from request

		Only POST requests are examined by default

		Remove req.body support for more standard query param support
		Use custom getter function if req.body support is needed

		Set Vary header when using built-in header checking

1.0.2 / 2014-05-22

		Handle req.body key referencing array or object

		Handle multiple HTTP headers

1.0.1 / 2014-05-17

		deps: pin dependency versions

1.0.0 / 2014-03-03

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/node_modules/utils-merge/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

utils-merge

Merges the properties from a source object into a destination object.

Install

$ npm install utils-merge

Usage

var a = { foo: 'bar' }
 , b = { bar: 'baz' };

merge(a, b);
// => { foo: 'bar', bar: 'baz' }

Tests

$ npm install
$ npm test

[image: Build Status] [http://travis-ci.org/jaredhanson/utils-merge]

Credits

		Jared Hanson [http://github.com/jaredhanson]

License

The MIT License [http://opensource.org/licenses/MIT]

Copyright (c) 2013 Jared Hanson <http://jaredhanson.net/>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/path-to-regexp/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.1.3 / 2014-07-06

		Better array support

		Improved support for trailing slash in non-ending mode

0.1.0 / 2014-03-06

		add options.end

0.0.2 / 2013-02-10

		Update to match current express

		add .license property to component.json

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/path-to-regexp/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Path-to-RegExp

Turn an Express-style path string such as /user/:name into a regular expression.

Usage

var pathToRegexp = require('path-to-regexp');

pathToRegexp(path, keys, options)

		path A string in the express format, an array of such strings, or a regular expression

		keys An array to be populated with the keys present in the url. Once the function completes, this will be an array of strings.

		options
		options.sensitive Defaults to false, set this to true to make routes case sensitive

		options.strict Defaults to false, set this to true to make the trailing slash matter.

		options.end Defaults to true, set this to false to only match the prefix of the URL.

var keys = [];
var exp = pathToRegexp('/foo/:bar', keys);
//keys = ['bar']
//exp = /^\/foo\/(?:([^\/]+?))\/?$/i

Live Demo

You can see a live demo of this library in use at express-route-tester [http://forbeslindesay.github.com/express-route-tester/].

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/debug/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.0 / 2014-09-01

		package: update “browserify” to v5.11.0

		node: use stderr rather than stdout for logging (#29, @stephenmathieson)

1.0.4 / 2014-07-15

		dist: recompile

		example: remove console.info() log usage

		example: add “Content-Type” UTF-8 header to browser example

		browser: place %c marker after the space character

		browser: reset the “content” color via color: inherit

		browser: add colors support for Firefox >= v31

		debug: prefer an instance log() function over the global one (#119)

		Readme: update documentation about styled console logs for FF v31 (#116, @wryk)

1.0.3 / 2014-07-09

		Add support for multiple wildcards in namespaces (#122, @seegno)

		browser: fix lint

1.0.2 / 2014-06-10

		browser: update color palette (#113, @gscottolson)

		common: make console logging function configurable (#108, @timoxley)

		node: fix %o colors on old node <= 0.8.x

		Makefile: find node path using shell/which (#109, @timoxley)

1.0.1 / 2014-06-06

		browser: use removeItem() to clear localStorage

		browser, node: don’t set DEBUG if namespaces is undefined (#107, @leedm777)

		package: add “contributors” section

		node: fix comment typo

		README: list authors

1.0.0 / 2014-06-04

		make ms diff be global, not be scope

		debug: ignore empty strings in enable()

		node: make DEBUG_COLORS able to disable coloring

		*: export the colors array

		npmignore: don’t publish the dist dir

		Makefile: refactor to use browserify

		package: add “browserify” as a dev dependency

		Readme: add Web Inspector Colors section

		node: reset terminal color for the debug content

		node: map “%o” to util.inspect()

		browser: map “%j” to JSON.stringify()

		debug: add custom “formatters”

		debug: use “ms” module for humanizing the diff

		Readme: add “bash” syntax highlighting

		browser: add Firebug color support

		browser: add colors for WebKit browsers

		node: apply log to console

		rewrite: abstract common logic for Node & browsers

		add .jshintrc file

0.8.1 / 2014-04-14

		package: re-add the “component” section

0.8.0 / 2014-03-30

		add enable() method for nodejs. Closes #27

		change from stderr to stdout

		remove unnecessary index.js file

0.7.4 / 2013-11-13

		remove “browserify” key from package.json (fixes something in browserify)

0.7.3 / 2013-10-30

		fix: catch localStorage security error when cookies are blocked (Chrome)

		add debug(err) support. Closes #46

		add .browser prop to package.json. Closes #42

0.7.2 / 2013-02-06

		fix package.json

		fix: Mobile Safari (private mode) is broken with debug

		fix: Use unicode to send escape character to shell instead of octal to work with strict mode javascript

0.7.1 / 2013-02-05

		add repository URL to package.json

		add DEBUG_COLORED to force colored output

		add browserify support

		fix component. Closes #24

0.7.0 / 2012-05-04

		Added .component to package.json

		Added debug.component.js build

0.6.0 / 2012-03-16

		Added support for “-” prefix in DEBUG [Vinay Pulim]

		Added .enabled flag to the node version [TooTallNate]

0.5.0 / 2012-02-02

		Added: humanize diffs. Closes #8

		Added debug.disable() to the CS variant

		Removed padding. Closes #10

		Fixed: persist client-side variant again. Closes #9

0.4.0 / 2012-02-01

		Added browser variant support for older browsers [TooTallNate]

		Added debug.enable('project:*') to browser variant [TooTallNate]

		Added padding to diff (moved it to the right)

0.3.0 / 2012-01-26

		Added millisecond diff when isatty, otherwise UTC string

0.2.0 / 2012-01-22

		Added wildcard support

0.1.0 / 2011-12-02

		Added: remove colors unless stderr isatty [TooTallNate]

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/range-parser/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

range-parser

![NPM Version][npm-image] [https://npmjs.org/package/range-parser]
![NPM Downloads][downloads-image] [https://npmjs.org/package/range-parser]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/range-parser]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/range-parser]

Range header field parser.

Installation

$ npm install range-parser

Examples

assert(-1 == parse(200, 'bytes=500-20'));
assert(-2 == parse(200, 'bytes=malformed'));
parse(200, 'bytes=0-499').should.eql(arr('bytes', [{ start: 0, end: 199 }]));
parse(1000, 'bytes=0-499').should.eql(arr('bytes', [{ start: 0, end: 499 }]));
parse(1000, 'bytes=40-80').should.eql(arr('bytes', [{ start: 40, end: 80 }]));
parse(1000, 'bytes=-500').should.eql(arr('bytes', [{ start: 500, end: 999 }]));
parse(1000, 'bytes=-400').should.eql(arr('bytes', [{ start: 600, end: 999 }]));
parse(1000, 'bytes=500-').should.eql(arr('bytes', [{ start: 500, end: 999 }]));
parse(1000, 'bytes=400-').should.eql(arr('bytes', [{ start: 400, end: 999 }]));
parse(1000, 'bytes=0-0').should.eql(arr('bytes', [{ start: 0, end: 0 }]));
parse(1000, 'bytes=-1').should.eql(arr('bytes', [{ start: 999, end: 999 }]));
parse(1000, 'items=0-5').should.eql(arr('items', [{ start: 0, end: 5 }]));
parse(1000, 'bytes=40-80,-1').should.eql(arr('bytes', [{ start: 40, end: 80 }, { start: 999, end: 999 }]));

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/debug/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

debug

tiny node.js debugging utility modelled after node core’s debugging technique.

Installation

$ npm install debug

Usage

With debug you simply invoke the exported function to generate your debug function, passing it a name which will determine if a noop function is returned, or a decorated console.error, so all of the console format string goodies you’re used to work fine. A unique color is selected per-function for visibility.

Example app.js:

var debug = require('debug')('http')
 , http = require('http')
 , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
 debug(req.method + ' ' + req.url);
 res.end('hello\n');
}).listen(3000, function(){
 debug('listening');
});

// fake worker of some kind

require('./worker');

Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
 debug('doing some work');
}, 1000);

The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: debug http and worker]

[image: debug worker]

Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image:]

When stdout is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:

[image:]

Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use ”:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.

Wildcards

The * character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect.compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character. For example, DEBUG=*,-connect:* would include all debuggers except those starting with “connect:”.

Browser support

Debug works in the browser as well, currently persisted by localStorage. For example if you have worker:a and worker:b as shown below, and wish to debug both type debug.enable('worker:*') in the console and refresh the page, this will remain until you disable with debug.disable().

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
 a('doing some work');
}, 1000);

setInterval(function(){
 b('doing some work');
}, 1200);

Web Inspector Colors

Colors are also enabled on “Web Inspectors” that understand the %c formatting
option. These are WebKit web inspectors, Firefox (since version
31 [https://hacks.mozilla.org/2014/05/editable-box-model-multiple-selection-sublime-text-keys-much-more-firefox-developer-tools-episode-31/])
and the Firebug plugin for Firefox (any version).

Colored output looks something like:

[image:]

stderr vs stdout

You can set an alternative logging method per-namespace by overriding the log method on a per-namespace or globally:

Example stderr.js:

var debug = require('../');
var log = debug('app:log');

// by default console.log is used
log('goes to stdout!');

var error = debug('app:error');
// set this namespace to log via console.error
error.log = console.error.bind(console); // don't forget to bind to console!
error('goes to stderr');
log('still goes to stdout!');

// set all output to go via console.warn
// overrides all per-namespace log settings
debug.log = console.warn.bind(console);
log('now goes to stderr via console.warn');
error('still goes to stderr, but via console.warn now');

Authors

		TJ Holowaychuk

		Nathan Rajlich

License

(The MIT License)

Copyright (c) 2014 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/range-parser/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.2 / 2014-09-08

		Support Node.js 0.6

1.0.1 / 2014-09-07

		Move repository to jshttp

1.0.0 / 2013-12-11

		Add repository to package.json

		Add MIT license

0.0.4 / 2012-06-17

		Change ret -1 for unsatisfiable and -2 when invalid

0.0.3 / 2012-06-17

		Fix last-byte-pos default to len - 1

0.0.2 / 2012-06-14

		Add .type

0.0.1 / 2012-06-11

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/on-headers/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

on-headers

[image: NPM Version] [https://www.npmjs.org/package/on-headers]
[image: Node.js Version] [http://nodejs.org/download/]
[image: Build Status] [https://travis-ci.org/jshttp/on-headers]
[image: Coverage Status] [https://coveralls.io/r/jshttp/on-headers]
[image: Gittip] [https://www.gittip.com/dougwilson/]

Execute a listener when a response is about to write headers.

Install

$ npm install on-headers

API

var onHeaders = require('on-headers')

onHeaders(res, listener)

This will add the listener listener to fire when headers are emitted for res.
The listener is passed the response object as it’s context (this). Headers are
considered to be emitted only once, right before they are sent to the client.

When this is called multiple times on the same res, the listeners are fired
in the reverse order they were added.

Examples

var http = require('http')
var onHeaders = require('on-headers')

http
.createServer(onRequest)
.listen(3000)

function addPoweredBy() {
 // add if not set by end of request
 if (!this.getHeader('X-Powered-By')) {
 this.addHeader('X-Powered-By', 'Node.js')
 }
}

function onRequest(req, res) {
 onHeaders(res, addPoweredBy)

 res.setHeader('Content-Type', 'text/plain')
 res.end('hello!')
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/diff/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

jsdiff

[image: Build Status] [http://travis-ci.org/kpdecker/jsdiff]

A javascript text differencing implementation.

Based on the algorithm proposed in
“An O(ND) Difference Algorithm and its Variations” (Myers, 1986) [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.6927].

Installation

npm install diff

or

git clone git://github.com/kpdecker/jsdiff.git

API

		JsDiff.diffChars(oldStr, newStr) - diffs two blocks of text, comparing character by character.

Returns a list of change objects (See below).

		JsDiff.diffWords(oldStr, newStr) - diffs two blocks of text, comparing word by word.

Returns a list of change objects (See below).

		JsDiff.diffLines(oldStr, newStr) - diffs two blocks of text, comparing line by line.

Returns a list of change objects (See below).

		JsDiff.diffCss(oldStr, newStr) - diffs two blocks of text, comparing CSS tokens.

Returns a list of change objects (See below).

		JsDiff.createPatch(fileName, oldStr, newStr, oldHeader, newHeader) - creates a unified diff patch.

Parameters:

		fileName : String to be output in the filename sections of the patch

		oldStr : Original string value

		newStr : New string value

		oldHeader : Additional information to include in the old file header

		newHeader : Additional information to include in thew new file header

		JsDiff.applyPatch(oldStr, diffStr) - applies a unified diff patch.

Return a string containing new version of provided data.

		convertChangesToXML(changes) - converts a list of changes to a serialized XML format

Change Objects

Many of the methods above return change objects. These objects are consist of the following fields:

		value: Text content

		added: True if the value was inserted into the new string

		removed: True of the value was removed from the old string

Note that some cases may omit a particular flag field. Comparison on the flag fields should always be done in a truthy or falsy manner.

Examples

Basic example in Node

require('colors')
var jsdiff = require('diff');

var one = 'beep boop';
var other = 'beep boob blah';

var diff = jsdiff.diffChars(one, other);

diff.forEach(function(part){
 // green for additions, red for deletions
 // grey for common parts
 var color = part.added ? 'green' :
 part.removed ? 'red' : 'grey';
 process.stderr.write(part.value[color]);
});

console.log()

Running the above program should yield

[image: Node Example]

Basic example in a web page

<pre id="display"></pre>
<script src="diff.js"></script>
<script>
var one = 'beep boop';
var other = 'beep boob blah';

var diff = JsDiff.diffChars(one, other);

diff.forEach(function(part){
 // green for additions, red for deletions
 // grey for common parts
 var color = part.added ? 'green' :
 part.removed ? 'red' : 'grey';
 var span = document.createElement('span');
 span.style.color = color;
 span.appendChild(document
 .createTextNode(part.value));
 display.appendChild(span);
});
</script>

Open the above .html file in a browser and you should see

[image: Node Example]

Full online demo [http://kpdecker.github.com/jsdiff]

License

Software License Agreement (BSD License)

Copyright (c) 2009-2011, Kevin Decker kpdecker@gmail.com

All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

		Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

		Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

		Neither the name of Kevin Decker nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

[image: Bitdeli Badge] [https://bitdeli.com/free]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/debug/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [http://travis-ci.org/mochajs/mocha]

[image: Mocha test framework] [http://mochajs.org]

Mocha is a simple, flexible, fun JavaScript test framework for node.js and the browser. For more information view the documentation [http://mochajs.org].

Contributors

 project : mocha
 repo age : 2 years, 11 months
 active : 433 days
 commits : 1424
 files : 143
 authors :
 588 TJ Holowaychuk 41.3%
 389 Tj Holowaychuk 27.3%
 98 Travis Jeffery 6.9%
 31 Guillermo Rauch 2.2%
 13 Attila Domokos 0.9%
 10 John Firebaugh 0.7%
 8 Jo Liss 0.6%
 7 Joshua Appelman 0.5%
 7 Nathan Rajlich 0.5%
 6 Brendan Nee 0.4%
 6 James Carr 0.4%
 6 Mike Pennisi 0.4%
 5 Raynos 0.4%
 5 Aaron Heckmann 0.4%
 5 Ryunosuke SATO 0.4%
 4 Forbes Lindesay 0.3%
 4 Domenic Denicola 0.3%
 4 Xavier Antoviaque 0.3%
 4 hokaccha 0.3%
 4 Jonathan Ong 0.3%
 4 Joshua Krall 0.3%
 3 Ben Lindsey 0.2%
 3 Benjie Gillam 0.2%
 3 Fredrik Enestad 0.2%
 3 Sindre Sorhus 0.2%
 3 Cory Thomas 0.2%
 3 Mathieu Desvé 0.2%
 3 Tyson Tate 0.2%
 3 Valentin Agachi 0.2%
 3 Wil Moore III 0.2%
 3 Jesse Dailey 0.2%
 3 Merrick Christensen 0.2%
 3 eiji.ienaga 0.2%
 3 fool2fish 0.2%
 3 Nathan Bowser 0.2%
 3 Paul Miller 0.2%
 2 FARKAS Máté 0.1%
 2 Shawn Krisman 0.1%
 2 Jacob Wejendorp 0.1%
 2 Jonas Westerlund 0.1%
 2 Paul Armstrong 0.1%
 2 Konstantin Käfer 0.1%
 2 Michael Riley 0.1%
 2 Michael Schoonmaker 0.1%
 2 Andreas Lind Petersen 0.1%
 2 domenic 0.1%
 2 Quang Van 0.1%
 2 fcrisci 0.1%
 2 Nathan Alderson 0.1%
 2 travis jeffery 0.1%
 2 Juzer Ali 0.1%
 2 Pete Hawkins 0.1%
 2 Justin DuJardin 0.1%
 2 David Henderson 0.1%
 2 jsdevel 0.1%
 2 Timo Tijhof 0.1%
 2 Brian Beck 0.1%
 2 Simon Gaeremynck 0.1%
 2 Ian Storm Taylor 0.1%
 2 Arian Stolwijk 0.1%
 2 Alexander Early 0.1%
 2 Ben Bradley 0.1%
 2 Glen Mailer 0.1%
 1 Maciej Małecki 0.1%
 1 Mal Graty 0.1%
 1 Marc Kuo 0.1%
 1 Matija Marohnić 0.1%
 1 Matt Robenolt 0.1%
 1 Matt Smith 0.1%
 1 Matthew Shanley 0.1%
 1 Mattias Tidlund 0.1%
 1 Michael Jackson 0.1%
 1 Nathan Black 0.1%
 1 Nick Fitzgerald 0.1%
 1 Noshir Patel 0.1%
 1 Panu Horsmalahti 0.1%
 1 Phil Sung 0.1%
 1 R56 0.1%
 1 Refael Ackermann 0.1%
 1 Richard Dingwall 0.1%
 1 Romain Prieto 0.1%
 1 Roman Neuhauser 0.1%
 1 Roman Shtylman 0.1%
 1 Russ Bradberry 0.1%
 1 Russell Munson 0.1%
 1 Rustem Mustafin 0.1%
 1 Salehen Shovon Rahman 0.1%
 1 Sasha Koss 0.1%
 1 Seiya Konno 0.1%
 1 Shaine Hatch 0.1%
 1 Simon Goumaz 0.1%
 1 Standa Opichal 0.1%
 1 Stephen Mathieson 0.1%
 1 Steve Mason 0.1%
 1 Tapiwa Kelvin 0.1%
 1 Teddy Zeenny 0.1%
 1 Tim Ehat 0.1%
 1 Vadim Nikitin 0.1%
 1 Victor Costan 0.1%
 1 Will Langstroth 0.1%
 1 Yanis Wang 0.1%
 1 Yuest Wang 0.1%
 1 Zsolt Takács 0.1%
 1 abrkn 0.1%
 1 airportyh 0.1%
 1 badunk 0.1%
 1 claudyus 0.1%
 1 fengmk2 0.1%
 1 gaye 0.1%
 1 grasGendarme 0.1%
 1 lakmeer 0.1%
 1 lodr 0.1%
 1 qiuzuhui 0.1%
 1 sebv 0.1%
 1 tgautier@yahoo.com 0.1%
 1 traleig1 0.1%
 1 vlad 0.1%
 1 yuitest 0.1%
 1 Adam Crabtree 0.1%
 1 Andreas Brekken 0.1%
 1 Andrew Nesbitt 0.1%
 1 Andrey Popp 0.1%
 1 Arnaud Brousseau 0.1%
 1 Atsuya Takagi 0.1%
 1 Austin Birch 0.1%
 1 Ben Noordhuis 0.1%
 1 Bjørge Næss 0.1%
 1 Brian Lalor 0.1%
 1 Brian M. Carlson 0.1%
 1 Brian Moore 0.1%
 1 Bryan Donovan 0.1%
 1 Casey Foster 0.1%
 1 ChrisWren 0.1%
 1 Christopher Hiller 0.1%
 1 Corey Butler 0.1%
 1 Daniel Stockman 0.1%
 1 Dave McKenna 0.1%
 1 Denis Bardadym 0.1%
 1 Devin Weaver 0.1%
 1 Di Wu 0.1%
 1 Dmitry Shirokov 0.1%
 1 Fedor Indutny 0.1%
 1 Florian Margaine 0.1%
 1 Frederico Silva 0.1%
 1 Fredrik Lindin 0.1%
 1 Gareth Aye 0.1%
 1 Gareth Murphy 0.1%
 1 Gavin Mogan 0.1%
 1 Giovanni Bassi 0.1%
 1 Glen Huang 0.1%
 1 Greg Perkins 0.1%
 1 Harish 0.1%
 1 Harry Brundage 0.1%
 1 Herman Junge 0.1%
 1 Ian Young 0.1%
 1 Ivan 0.1%
 1 JP Bochi 0.1%
 1 Jaakko Salonen 0.1%
 1 Jakub Nešetřil 0.1%
 1 James Bowes 0.1%
 1 James Lal 0.1%
 1 Jan Kopriva 0.1%
 1 Jason Barry 0.1%
 1 Javier Aranda 0.1%
 1 Jean Ponchon 0.1%
 1 Jeff Kunkle 0.1%
 1 Jeremy Martin 0.1%
 1 Jimmy Cuadra 0.1%
 1 John Doty 0.1%
 1 Jonathan Creamer 0.1%
 1 Jonathan Park 0.1%
 1 Jussi Virtanen 0.1%
 1 Katie Gengler 0.1%
 1 Kazuhito Hokamura 0.1%
 1 Kirill Korolyov 0.1%
 1 Koen Punt 0.1%
 1 Laszlo Bacsi 0.1%
 1 Liam Newman 0.1%
 1 Linus Unnebäck 0.1%
 1 László Bácsi 0.1%

Links

		Google Group [http://groups.google.com/group/mochajs]

		Wiki [https://github.com/mochajs/mocha/wiki]

		Mocha Extensions and reporters [https://github.com/mochajs/mocha/wiki]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-favicon/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.6 / 2014-10-16

		deps: etag@~1.5.0

2.1.5 / 2014-09-24

		deps: etag@~1.4.0

2.1.4 / 2014-09-15

		Fix content headers being sent in 304 response

		deps: etag@~1.3.1
		Improve ETag generation speed

2.1.3 / 2014-09-07

		deps: fresh@0.2.4

2.1.2 / 2014-09-05

		deps: etag@~1.3.0
		Improve ETag generation speed

2.1.1 / 2014-08-25

		Fix ms to be listed as a dependency

2.1.0 / 2014-08-24

		Accept string for maxAge (converted by ms)

		Use etag to generate ETag header

2.0.1 / 2014-06-05

		Reduce byte size of ETag header

2.0.0 / 2014-05-02

		path argument is required; there is no default icon.

		Accept Buffer of icon as first argument.

		Non-GET and HEAD requests are denied.

		Send valid max-age value

		Support conditional requests

		Support max-age=0

		Support OPTIONS method

		Throw if path argument is directory.

1.0.2 / 2014-03-16

		Fixed content of default icon.

1.0.1 / 2014-03-11

		Fixed path to default icon.

1.0.0 / 2014-02-15

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/jade/node_modules/commander/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Commander.js

The complete solution for node.js [http://nodejs.org] command-line interfaces, inspired by Ruby’s commander [https://github.com/visionmedia/commander].

[image: Build Status] [http://travis-ci.org/visionmedia/commander.js]

Installation

$ npm install commander

Option parsing

Options with commander are defined with the .option() method, also serving as documentation for the options. The example below parses args and options from process.argv, leaving remaining args as the program.args array which were not consumed by options.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
 .version('0.0.1')
 .option('-p, --peppers', 'Add peppers')
 .option('-P, --pineapple', 'Add pineapple')
 .option('-b, --bbq', 'Add bbq sauce')
 .option('-c, --cheese [type]', 'Add the specified type of cheese [marble]', 'marble')
 .parse(process.argv);

console.log('you ordered a pizza with:');
if (program.peppers) console.log(' - peppers');
if (program.pineapple) console.log(' - pineappe');
if (program.bbq) console.log(' - bbq');
console.log(' - %s cheese', program.cheese);

Short flags may be passed as a single arg, for example -abc is equivalent to -a -b -c. Multi-word options such as “–template-engine” are camel-cased, becoming program.templateEngine etc.

Automated –help

The help information is auto-generated based on the information commander already knows about your program, so the following --help info is for free:

 $./examples/pizza --help

 Usage: pizza [options]

 Options:

 -V, --version output the version number
 -p, --peppers Add peppers
 -P, --pineapple Add pineappe
 -b, --bbq Add bbq sauce
 -c, --cheese <type> Add the specified type of cheese [marble]
 -h, --help output usage information

Coercion

function range(val) {
 return val.split('..').map(Number);
}

function list(val) {
 return val.split(',');
}

program
 .version('0.0.1')
 .usage('[options] <file ...>')
 .option('-i, --integer <n>', 'An integer argument', parseInt)
 .option('-f, --float <n>', 'A float argument', parseFloat)
 .option('-r, --range <a>..', 'A range', range)
 .option('-l, --list <items>', 'A list', list)
 .option('-o, --optional [value]', 'An optional value')
 .parse(process.argv);

console.log(' int: %j', program.integer);
console.log(' float: %j', program.float);
console.log(' optional: %j', program.optional);
program.range = program.range || [];
console.log(' range: %j..%j', program.range[0], program.range[1]);
console.log(' list: %j', program.list);
console.log(' args: %j', program.args);

Custom help

You can display arbitrary -h, --help information
by listening for “–help”. Commander will automatically
exit once you are done so that the remainder of your program
does not execute causing undesired behaviours, for example
in the following executable “stuff” will not output when
--help is used.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('../');

function list(val) {
 return val.split(',').map(Number);
}

program
 .version('0.0.1')
 .option('-f, --foo', 'enable some foo')
 .option('-b, --bar', 'enable some bar')
 .option('-B, --baz', 'enable some baz');

// must be before .parse() since
// node's emit() is immediate

program.on('--help', function(){
 console.log(' Examples:');
 console.log('');
 console.log(' $ custom-help --help');
 console.log(' $ custom-help -h');
 console.log('');
});

program.parse(process.argv);

console.log('stuff');

yielding the following help output:

Usage: custom-help [options]

Options:

 -h, --help output usage information
 -V, --version output the version number
 -f, --foo enable some foo
 -b, --bar enable some bar
 -B, --baz enable some baz

Examples:

 $ custom-help --help
 $ custom-help -h

.prompt(msg, fn)

Single-line prompt:

program.prompt('name: ', function(name){
 console.log('hi %s', name);
});

Multi-line prompt:

program.prompt('description:', function(name){
 console.log('hi %s', name);
});

Coercion:

program.prompt('Age: ', Number, function(age){
 console.log('age: %j', age);
});

program.prompt('Birthdate: ', Date, function(date){
 console.log('date: %s', date);
});

.password(msg[, mask], fn)

Prompt for password without echoing:

program.password('Password: ', function(pass){
 console.log('got "%s"', pass);
 process.stdin.destroy();
});

Prompt for password with mask char “*”:

program.password('Password: ', '*', function(pass){
 console.log('got "%s"', pass);
 process.stdin.destroy();
});

.confirm(msg, fn)

Confirm with the given msg:

program.confirm('continue? ', function(ok){
 console.log(' got %j', ok);
});

.choose(list, fn)

Let the user choose from a list:

var list = ['tobi', 'loki', 'jane', 'manny', 'luna'];

console.log('Choose the coolest pet:');
program.choose(list, function(i){
 console.log('you chose %d "%s"', i, list[i]);
});

Links

		API documentation [http://visionmedia.github.com/commander.js/]

		ascii tables [https://github.com/LearnBoost/cli-table]

		progress bars [https://github.com/visionmedia/node-progress]

		more progress bars [https://github.com/substack/node-multimeter]

		examples [https://github.com/visionmedia/commander.js/tree/master/examples]

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/on-headers/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-08-10

		Honor res.statusCode change in listener

		Move to jshttp orgainzation

		Prevent arguments-related de-opt

0.0.0 / 2014-05-13

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/jade/jade.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Jade

The jade template engine for node.js

Synopsis

jade [-h|--help] [-v|--version] [-o|--obj STR]
 [-O|--out DIR] [-p|--path PATH] [-P|--pretty]
 [-c|--client] [-D|--no-debug]

Examples

translate jade the templates dir

$ jade templates

create {foo,bar}.html

$ jade {foo,bar}.jade

jade over stdio

$ jade < my.jade > my.html

jade over s

$ echo "h1 Jade!" | jade

foo, bar dirs rendering to /tmp

$ jade foo bar --out /tmp

compile client-side templates without debugging
instrumentation, making the output javascript
very light-weight. This requires runtime.js
in your projects.

 $ jade --client --no-debug < my.jade

Tags

Tags are simply nested via whitespace, closing
tags defined for you. These indents are called “blocks”.

ul
 li
 a Foo
 li
 a Bar

You may have several tags in one “block”:

ul
 li
 a Foo
 a Bar
 a Baz

Self-closing Tags

Some tags are flagged as self-closing by default, such
as meta, link, and so on. To explicitly self-close
a tag simply append the / character:

 foo/
 foo(bar='baz')/

Would yield:

 <foo/>
 <foo bar="baz"/>

Attributes

Tag attributes look similar to HTML, however
the values are regular JavaScript, here are
some examples:

a(href='google.com') Google
a(class='button', href='google.com') Google

As mentioned the attribute values are just JavaScript,
this means ternary operations and other JavaScript expressions
work just fine:

body(class=user.authenticated ? 'authenticated' : 'anonymous')
a(href=user.website || 'http://google.com')

Multiple lines work too:

input(type='checkbox',
 name='agreement',
 checked)

Multiple lines without the comma work fine:

input(type='checkbox'
 name='agreement'
 checked)

Funky whitespace? fine:

input(
 type='checkbox'
 name='agreement'
 checked)

Boolean attributes

Boolean attributes are mirrored by Jade, and accept
bools, aka true or false. When no value is specified
true is assumed. For example:

input(type="checkbox", checked)
// => "<input type="checkbox" checked="checked" />"

For example if the checkbox was for an agreement, perhaps user.agreed
was true the following would also output ‘checked=”checked”’:

 input(type="checkbox", checked=user.agreed)

Class attributes

The class attribute accepts an array of classes,
this can be handy when generated from a javascript
function etc:

classes = ['foo', 'bar', 'baz']
a(class=classes)
// => ""

Class literal

Classes may be defined using a ”.CLASSNAME” syntax:

 .button
 // => "<div class="button"></div>"

Or chained:

 .large.button
 // => "<div class="large button"></div>"

The previous defaulted to divs, however you
may also specify the tag type:

 h1.title My Title
 // => "<h1 class="title">My Title</h1>"

Id literal

Much like the class literal there’s an id literal:

#user-1
// => "<div id="user-1"></div>"

Again we may specify the tag as well:

ul#menu
 li: a(href='/home') Home
 li: a(href='/store') Store
 li: a(href='/contact') Contact

Finally all of these may be used in any combination,
the following are all valid tags:

a.button#contact(style: 'color: red') Contact
a.button(style: 'color: red')#contact Contact
a(style: 'color: red').button#contact Contact

Block expansion

Jade supports the concept of “block expansion”, in which
using a trailing ”:” after a tag will inject a block:

ul
 li: a Foo
 li: a Bar
 li: a Baz

Text

Arbitrary text may follow tags:

 p Welcome to my site

yields:

 <p>Welcome to my site</p>

Pipe text

Another form of text is “pipe” text. Pipes act
as the text margin for large bodies of text.

p
 | This is a large
 | body of text for
 | this tag.
 |
 | Nothing too
 | exciting.

yields:

<p>This is a large
body of text for
this tag.

Nothing too
exciting.
</p>

Using pipes we can also specify regular Jade tags
within the text:

p
 | Click to visit
 a(href='http://google.com') Google
 | if you want.

Text only tags

As an alternative to pipe text you may add
a trailing ”.” to indicate that the block
contains nothing but plain-text, no tags:

p.
 This is a large
 body of text for
 this tag.

 Nothing too
 exciting.

Some tags are text-only by default, for example
script, textarea, and style tags do not
contain nested HTML so Jade implies the trailing ”.”:

script
 if (foo) {
 bar();
 }

style
 body {
 padding: 50px;
 font: 14px Helvetica;
 }

Template script tags

Sometimes it’s useful to define HTML in script
tags using Jade, typically for client-side templates.

To do this simply give the script tag an arbitrary
type attribute such as text/x-template:

script(type='text/template')
 h1 Look!
 p Jade still works in here!

Interpolation

Both plain-text and piped-text support interpolation,
which comes in two forms, escapes and non-escaped. The
following will output the user.name in the paragraph
but HTML within it will be escaped to prevent XSS attacks:

p Welcome #{user.name}

The following syntax is identical however it will not escape
HTML, and should only be used with strings that you trust:

p Welcome !{user.name}

Inline HTML

Sometimes constructing small inline snippets of HTML
in Jade can be annoying, luckily we can add plain
HTML as well:

p Welcome #{user.name}

Code

To buffer output with Jade simply use = at the beginning
of a line or after a tag. This method escapes any HTML
present in the string.

p= user.description

To buffer output unescaped use the != variant, but again
be careful of XSS.

p!= user.description

The final way to mess with JavaScript code in Jade is the unbuffered
-, which can be used for conditionals, defining variables etc:

- var user = { description: 'foo bar baz' }
#user
 - if (user.description) {
 h2 Description
 p.description= user.description
 - }

When compiled blocks are wrapped in anonymous functions, so the
following is also valid, without braces:

 - var user = { description: 'foo bar baz' }
 #user
 - if (user.description)
 h2 Description
 p.description= user.description

If you really want you could even use .forEach() and others:

- users.forEach(function(user){
 .user
 h2= user.name
 p User #{user.name} is #{user.age} years old
- })

Taking this further Jade provides some syntax for conditionals,
iteration, switch statements etc. Let’s look at those next!

Assignment

Jade’s first-class assignment is simple, simply use the =
operator and Jade will var it for you. The following are equivalent:

- var user = { name: 'tobi' }
user = { name: 'tobi' }

Conditionals

Jade’s first-class conditional syntax allows for optional
parenthesis, and you may now omit the leading - otherwise
it’s identical, still just regular javascript:

user = { description: 'foo bar baz' }
#user
 if user.description
 h2 Description
 p.description= user.description

Jade provides the negated version, unless as well, the following
are equivalent:

- if (!(user.isAnonymous))
 p You're logged in as #{user.name}

unless user.isAnonymous
 p You're logged in as #{user.name}

Iteration

JavaScript’s for loops don’t look very declarative, so Jade
also provides its own for loop construct, aliased as each:

for user in users
 .user
 h2= user.name
 p user #{user.name} is #{user.age} year old

As mentioned each is identical:

 each user in users
 .user
 h2= user.name

If necessary the index is available as well:

 for user, i in users
 .user(class='user-#{i}')
 h2= user.name

Remember, it’s just JavaScript:

 ul#letters
 for letter in ['a', 'b', 'c']
 li= letter

Mixins

Mixins provide a way to define jade “functions” which “mix in”
their contents when called. This is useful for abstracting
out large fragments of Jade.

The simplest possible mixin which accepts no arguments might
look like this:

 mixin hello
 p Hello

You use a mixin by placing + before the name:

 +hello

For something a little more dynamic, mixins can take
arguments, the mixin itself is converted to a javascript
function internally:

 mixin hello(user)
 p Hello #{user}

 +hello('Tobi')

Yields:

 <p>Hello Tobi</p>

Mixins may optionally take blocks, when a block is passed
its contents becomes the implicit block argument. For
example here is a mixin passed a block, and also invoked
without passing a block:

 mixin article(title)
 .article
 .article-wrapper
 h1= title
 if block
 block
 else
 p No content provided

 +article('Hello world')

 +article('Hello world')
 p This is my
 p Amazing article

yields:

 <div class="article">
 <div class="article-wrapper">
 <h1>Hello world</h1>
 <p>No content provided</p>
 </div>
 </div>

 <div class="article">
 <div class="article-wrapper">
 <h1>Hello world</h1>
 <p>This is my</p>
 <p>Amazing article</p>
 </div>
 </div>

Mixins can even take attributes, just like a tag. When
attributes are passed they become the implicit attributes
argument. Individual attributes can be accessed just like
normal object properties:

 mixin centered
 .centered(class=attributes.class)
 block

 +centered.bold Hello world

 +centered.red
 p This is my
 p Amazing article

yields:

 <div class="centered bold">Hello world</div>
 <div class="centered red">
 <p>This is my</p>
 <p>Amazing article</p>
 </div>

If you use attributes directly, all passed attributes
get used:

 mixin link
 a.menu(attributes)
 block

 +link.highlight(href='#top') Top
 +link#sec1.plain(href='#section1') Section 1
 +link#sec2.plain(href='#section2') Section 2

yields:

 Top
 Section 1
 Section 2

If you pass arguments, they must directly follow the mixin:

 mixin list(arr)
 if block
 .title
 block
 ul(attributes)
 each item in arr
 li= item

 +list(['foo', 'bar', 'baz'])(id='myList', class='bold')

yields:

 <ul id="myList" class="bold">
 foo
 bar
 baz

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-favicon/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/debug/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

debug

tiny node.js debugging utility modelled after node core’s debugging technique.

Installation

$ npm install debug

Usage

With debug you simply invoke the exported function to generate your debug function, passing it a name which will determine if a noop function is returned, or a decorated console.error, so all of the console format string goodies you’re used to work fine. A unique color is selected per-function for visibility.

Example app.js:

var debug = require('debug')('http')
 , http = require('http')
 , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
 debug(req.method + ' ' + req.url);
 res.end('hello\n');
}).listen(3000, function(){
 debug('listening');
});

// fake worker of some kind

require('./worker');

Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
 debug('doing some work');
}, 1000);

The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: debug http and worker]

[image: debug worker]

Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image:]

When stdout is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:

[image:]

Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use ”:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.

Wildcards

The * character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect.compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character. For example, DEBUG=*,-connect:* would include all debuggers except those starting with “connect:”.

Browser support

Debug works in the browser as well, currently persisted by localStorage. For example if you have worker:a and worker:b as shown below, and wish to debug both type debug.enable('worker:*') in the console and refresh the page, this will remain until you disable with debug.disable().

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
 a('doing some work');
}, 1000);

setInterval(function(){
 b('doing some work');
}, 1200);

Web Inspector Colors

Colors are also enabled on “Web Inspectors” that understand the %c formatting
option. These are WebKit web inspectors, Firefox (since version
31 [https://hacks.mozilla.org/2014/05/editable-box-model-multiple-selection-sublime-text-keys-much-more-firefox-developer-tools-episode-31/])
and the Firebug plugin for Firefox (any version).

Colored output looks something like:

[image:]

stderr vs stdout

You can set an alternative logging method per-namespace by overriding the log method on a per-namespace or globally:

Example stderr.js:

var debug = require('../');
var log = debug('app:log');

// by default console.log is used
log('goes to stdout!');

var error = debug('app:error');
// set this namespace to log via console.error
error.log = console.error.bind(console); // don't forget to bind to console!
error('goes to stderr');
log('still goes to stdout!');

// set all output to go via console.warn
// overrides all per-namespace log settings
debug.log = console.warn.bind(console);
log('now goes to stderr via console.warn');
error('still goes to stderr, but via console.warn now');

Authors

		TJ Holowaychuk

		Nathan Rajlich

License

(The MIT License)

Copyright (c) 2014 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-favicon/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

serve-favicon

![NPM Version][npm-image] [https://npmjs.org/package/serve-favicon]
![NPM Downloads][downloads-image] [https://npmjs.org/package/serve-favicon]
![Build Status][travis-image] [https://travis-ci.org/expressjs/serve-favicon]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/serve-favicon?branch=master]
![Gittip][gittip-image] [https://www.gittip.com/dougwilson/]

Node.js middleware for serving a favicon.

Install

npm install serve-favicon

API

favicon(path, options)

Create new middleware to serve a favicon from the given path to a favicon file.
path may also be a Buffer of the icon to serve.

Options

Serve favicon accepts these properties in the options object.

maxAge

The cache-control max-age directive in ms, defaulting to 1 day. This can
also be a string accepted by the ms [https://www.npmjs.org/package/ms#readme]
module.

Examples

Typically this middleware will come very early in your stack (maybe even first)
to avoid processing any other middleware if we already know the request is for
/favicon.ico.

express

var express = require('express');
var favicon = require('serve-favicon');

var app = express();
app.use(favicon(__dirname + '/public/favicon.ico'));

// Add your routes here, etc.

app.listen(3000);

connect

var connect = require('connect');
var favicon = require('serve-favicon');

var app = connect();
app.use(favicon(__dirname + '/public/favicon.ico'));

// Add your middleware here, etc.

app.listen(3000);

vanilla http server

This middleware can be used anywhere, even outside express/connect. It takes
req, res, and callback.

var http = require('http');
var favicon = require('serve-favicon');
var finalhandler = require('finalhandler');

var _favicon = favicon(__dirname + '/public/favicon.ico');

var server = http.createServer(function onRequest(req, res) {
 var done = finalhandler(req, res);

 _favicon(req, res, function onNext(err) {
 if (err) return done(err);

 // continue to process the request here, etc.

 res.statusCode = 404;
 res.end('oops');
 });
});

server.listen(3000);

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/jade/node_modules/commander/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.6.1 / 2012-06-01

		Added: append (yes or no) on confirmation

		Added: allow node.js v0.7.x

0.6.0 / 2012-04-10

		Added .prompt(obj, callback) support. Closes #49

		Added default support to .choose(). Closes #41

		Fixed the choice example

0.5.1 / 2011-12-20

		Fixed password() for recent nodes. Closes #36

0.5.0 / 2011-12-04

		Added sub-command option support [itay]

0.4.3 / 2011-12-04

		Fixed custom help ordering. Closes #32

0.4.2 / 2011-11-24

		Added travis support

		Fixed: line-buffered input automatically trimmed. Closes #31

0.4.1 / 2011-11-18

		Removed listening for “close” on –help

0.4.0 / 2011-11-15

		Added support for --. Closes #24

0.3.3 / 2011-11-14

		Fixed: wait for close event when writing help info [Jerry Hamlet]

0.3.2 / 2011-11-01

		Fixed long flag definitions with values [felixge]

0.3.1 / 2011-10-31

		Changed --version short flag to -V from -v

		Changed .version() so it’s configurable [felixge]

0.3.0 / 2011-10-31

		Added support for long flags only. Closes #18

0.2.1 / 2011-10-24

		“node”: “>= 0.4.x < 0.7.0”. Closes #20

0.2.0 / 2011-09-26

		Allow for defaults that are not just boolean. Default peassignment only occurs for –no-*, optional, and required arguments. [Jim Isaacs]

0.1.0 / 2011-08-24

		Added support for custom --help output

0.0.5 / 2011-08-18

		Changed: when the user enters nothing prompt for password again

		Fixed issue with passwords beginning with numbers [NuckChorris]

0.0.4 / 2011-08-15

		Fixed Commander#args

0.0.3 / 2011-08-15

		Added default option value support

0.0.2 / 2011-08-15

		Added mask support to Command#password(str[, mask], fn)

		Added Command#password(str, fn)

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/node_modules/accepts/node_modules/mime-types/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/node_modules/accepts/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

![NPM Version][npm-image] [https://npmjs.org/package/mime-types]
![NPM Downloads][downloads-image] [https://npmjs.org/package/mime-types]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-types]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/mime-types]

The ultimate javascript content-type utility.

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false,
so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus via mime-db [https://github.com/jshttp/mime-db]

		No .define() functionality

Otherwise, the API is compatible.

Install

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://github.com/jshttp/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions...] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/utils-merge/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

utils-merge

Merges the properties from a source object into a destination object.

Install

$ npm install utils-merge

Usage

var a = { foo: 'bar' }
 , b = { bar: 'baz' };

merge(a, b);
// => { foo: 'bar', bar: 'baz' }

Tests

$ npm install
$ npm test

[image: Build Status] [http://travis-ci.org/jaredhanson/utils-merge]

Credits

		Jared Hanson [http://github.com/jaredhanson]

License

The MIT License [http://opensource.org/licenses/MIT]

Copyright (c) 2013 Jared Hanson <http://jaredhanson.net/>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/node_modules/escape-html/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

escape-html

Escape HTML entities

Example

var escape = require('escape-html');
escape(str);

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/type-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

type-is

![NPM Version][npm-image] [https://npmjs.org/package/type-is]
![NPM Downloads][downloads-image] [https://npmjs.org/package/type-is]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/type-is]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/type-is?branch=master]

Infer the content-type of a request.

Install

$ npm install type-is

API

var http = require('http')
var is = require('type-is')

http.createServer(function (req, res) {
 var istext = is(req, ['text/*'])
 res.end('you ' + (istext ? 'sent' : 'did not send') + ' me text')
})

type = is(request, types)

request is the node HTTP request. types is an array of types.

// req.headers.content-type = 'application/json'

is(req, ['json']) // 'json'
is(req, ['html', 'json']) // 'json'
is(req, ['application/*']) // 'application/json'
is(req, ['application/json']) // 'application/json'

is(req, ['html']) // false

Each type can be:

		An extension name such as json. This name will be returned if matched.

		A mime type such as application/json.

		A mime type with a wildcard such as */json or application/*. The full mime type will be returned if matched

		A suffix such as +json. This can be combined with a wildcard such as */vnd+json or application/*+json. The full mime type will be returned if matched.

false will be returned if no type matches.

Examples

Example body parser

var is = require('type-is');

function bodyParser(req, res, next) {
 if (!is.hasBody(req)) {
 return next()
 }

 switch (is(req, ['urlencoded', 'json', 'multipart'])) {
 case 'urlencoded':
 // parse urlencoded body
 throw new Error('implement urlencoded body parsing')
 break
 case 'json':
 // parse json body
 throw new Error('implement json body parsing')
 break
 case 'multipart':
 // parse multipart body
 throw new Error('implement multipart body parsing')
 break
 default:
 // 415 error code
 res.statusCode = 415
 res.end()
 return
 }
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/http-errors/node_modules/statuses/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Statuses

![NPM Version][npm-image] [https://npmjs.org/package/statuses]
![NPM Downloads][downloads-image] [https://npmjs.org/package/statuses]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/statuses]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/statuses?branch=master]

HTTP status utility for node.

API

var status = require('statuses');

var code = status(Integer || String)

If Integer or String is a valid HTTP code or status message, then the appropriate code will be returned. Otherwise, an error will be thrown.

status(403) // => 403
status('403') // => 403
status('forbidden') // => 403
status('Forbidden') // => 403
status(306) // throws, as it's not supported by node.js

status.codes

Returns an array of all the status codes as Integers.

var msg = status[code]

Map of code to status message. undefined for invalid codes.

status[404] // => 'Not Found'

var code = status[msg]

Map of status message to code. msg can either be title-cased or lower-cased. undefined for invalid status messages.

status['not found'] // => 404
status['Not Found'] // => 404

status.redirect[code]

Returns true if a status code is a valid redirect status.

status.redirect[200] // => undefined
status.redirect[301] // => true

status.empty[code]

Returns true if a status code expects an empty body.

status.empty[200] // => undefined
status.empty[204] // => true
status.empty[304] // => true

status.retry[code]

Returns true if you should retry the rest.

status.retry[501] // => undefined
status.retry[503] // => true

statuses/codes.json

var codes = require('statuses/codes.json');

This is a JSON file of the status codes
taken from require('http').STATUS_CODES.
This is saved so that codes are consistent even in older node.js versions.
For example, 308 will be added in v0.12.

Adding Status Codes

The status codes are primarily sourced from http://www.iana.org/assignments/http-status-codes/http-status-codes-1.csv.
Additionally, custom codes are added from http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.
These are added manually in the lib/*.json files.
If you would like to add a status code, add it to the appropriate JSON file.

To rebuild codes.json, run the following:

update src/iana.json
npm run update
build codes.json
npm run build

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/type-is/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

![NPM Version][npm-image] [https://npmjs.org/package/mime-types]
![NPM Downloads][downloads-image] [https://npmjs.org/package/mime-types]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-types]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/mime-types]

The ultimate javascript content-type utility.

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false,
so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus via mime-db [https://github.com/jshttp/mime-db]

		No .define() functionality

Otherwise, the API is compatible.

Install

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://github.com/jshttp/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions...] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/type-is/node_modules/mime-types/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.3 / 2014-11-09

		deps: mime-db@~1.2.0
		Add new mime types

2.0.2 / 2014-09-28

		deps: mime-db@~1.1.0
		Add new mime types

		Add additional compressible

		Update charsets

2.0.1 / 2014-09-07

		Support Node.js 0.6

2.0.0 / 2014-09-02

		Use mime-db

		Remove .define()

1.0.2 / 2014-08-04

		Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

		Add text/jsx type

1.0.0 / 2014-05-12

		Return false for unknown types

		Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

errorhandler

![NPM Version][npm-image] [https://npmjs.org/package/errorhandler]
![NPM Downloads][downloads-image] [https://npmjs.org/package/errorhandler]
![Build Status][travis-image] [https://travis-ci.org/expressjs/errorhandler]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/errorhandler?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Development-only error handler middleware

Install

$ npm install errorhandler

API

var errorhandler = require('errorhandler')

errorhandler()

Create new middleware to handle errors and respond with content negotiation.
This middleware is only intended to be used in a development environment, as
the full error stack traces will be sent back to the client when an error
occurs.

Example

var connect = require('connect')
var errorhandler = require('errorhandler')

var app = connect()

if (process.env.NODE_ENV === 'development') {
 // only use in development
 app.use(errorhandler())
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/methods/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Methods

HTTP verbs that node core’s parser supports.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.2.2 / 2014-10-15

		deps: accepts@~1.1.2
		Fix error when media type has invalid parameter

		deps: negotiator@0.4.9

1.2.1 / 2014-10-12

		deps: accepts@~1.1.1
		deps: mime-types@~2.0.2

		deps: negotiator@0.4.8

1.2.0 / 2014-09-02

		Display error using util.inspect if no other representation

		deps: accepts@~1.1.0

1.1.1 / 2014-06-20

		deps: accepts@~1.0.4
		use mime-types

1.1.0 / 2014-06-16

		Display error on console formatted like throw

		Escape HTML with escape-html module

		Escape HTML in stack trace

		Escape HTML in title

		Fix up edge cases with error sent in response

		Set X-Content-Type-Options: nosniff header

		Use accepts for negotiation

1.0.2 / 2014-06-05

		Pass on errors from reading error files

1.0.1 / 2014-04-29

		Clean up error CSS

		Do not respond after headers sent

1.0.0 / 2014-03-03

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/type-is/node_modules/mime-types/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/node_modules/accepts/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

accepts

![NPM Version][npm-image] [https://npmjs.org/package/accepts]
![NPM Downloads][downloads-image] [https://npmjs.org/package/accepts]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/accepts]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/accepts]

Higher level content negotation based on negotiator [https://github.com/federomero/negotiator]. Extracted from koa [https://github.com/koajs/koa] for general use.

In addition to negotatior, it allows:

		Allows types as an array or arguments list, ie (['text/html', 'application/json']) as well as ('text/html', 'application/json').

		Allows type shorthands such as json.

		Returns false when no types match

		Treats non-existent headers as *

API

var accept = new Accepts(req)

var accepts = require('accepts')

http.createServer(function (req, res) {
 var accept = accepts(req)
})

accept[property]()

Returns all the explicitly accepted content property as an array in descending priority.

		accept.types()

		accept.encodings()

		accept.charsets()

		accept.languages()

They are also aliased in singular form such as accept.type(). accept.languages() is also aliased as accept.langs(), etc.

Note: you should almost never do this in a real app as it defeats the purpose of content negotiation.

Example:

// in Google Chrome
var encodings = accept.encodings() // -> ['sdch', 'gzip', 'deflate']

Since you probably don’t support sdch, you should just supply the encodings you support:

var encoding = accept.encodings('gzip', 'deflate') // -> 'gzip', probably

accept[property](values, ...)

You can either have values be an array or have an argument list of values.

If the client does not accept any values, false will be returned.
If the client accepts any values, the preferred value will be return.

For accept.types(), shorthand mime types are allowed.

Example:

// req.headers.accept = 'application/json'

accept.types('json') // -> 'json'
accept.types('html', 'json') // -> 'json'
accept.types('html') // -> false

// req.headers.accept = ''
// which is equivalent to `*`

accept.types() // -> [], no explicit types
accept.types('text/html', 'text/json') // -> 'text/html', since it was first

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/cookie-signature/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie-signature

Sign and unsign cookies.

Example

var cookie = require('cookie-signature');

var val = cookie.sign('hello', 'tobiiscool');
val.should.equal('hello.DGDUkGlIkCzPz+C0B064FNgHdEjox7ch8tOBGslZ5QI');

var val = cookie.sign('hello', 'tobiiscool');
cookie.unsign(val, 'tobiiscool').should.equal('hello');
cookie.unsign(val, 'luna').should.be.false;

License

(The MIT License)

Copyright (c) 2012 LearnBoost

<

tj@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/node_modules/accepts/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.1.3 / 2014-11-09

		deps: mime-types@~2.0.3
		deps: mime-db@~1.2.0

1.1.2 / 2014-10-14

		deps: negotiator@0.4.9
		Fix error when media type has invalid parameter

1.1.1 / 2014-09-28

		deps: mime-types@~2.0.2
		deps: mime-db@~1.1.0

		deps: negotiator@0.4.8
		Fix all negotiations to be case-insensitive

		Stable sort preferences of same quality according to client order

1.1.0 / 2014-09-02

		update mime-types

1.0.7 / 2014-07-04

		Fix wrong type returned from type when match after unknown extension

1.0.6 / 2014-06-24

		deps: negotiator@0.4.7

1.0.5 / 2014-06-20

		fix crash when unknown extension given

1.0.4 / 2014-06-19

		use mime-types

1.0.3 / 2014-06-11

		deps: negotiator@0.4.6
		Order by specificity when quality is the same

1.0.2 / 2014-05-29

		Fix interpretation when header not in request

		deps: pin negotiator@0.4.5

1.0.1 / 2014-01-18

		Identity encoding isn’t always acceptable

		deps: negotiator@~0.4.0

1.0.0 / 2013-12-27

		Genesis

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/methods/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.1.0 / 2014-07-05

		add CONNECT

1.0.1 / 2014-06-02

		fix index.js to work with harmony transform

1.0.0 / 2014-05-08

		add PURGE. Closes #9

0.1.0 / 2013-10-28

		add http.METHODS support

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/node_modules/accepts/node_modules/mime-types/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.3 / 2014-11-09

		deps: mime-db@~1.2.0
		Add new mime types

2.0.2 / 2014-09-28

		deps: mime-db@~1.1.0
		Add new mime types

		Add additional compressible

		Update charsets

2.0.1 / 2014-09-07

		Support Node.js 0.6

2.0.0 / 2014-09-02

		Use mime-db

		Remove .define()

1.0.2 / 2014-08-04

		Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

		Add text/jsx type

1.0.0 / 2014-05-12

		Return false for unknown types

		Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/escape-html/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

escape-html

Escape HTML entities

Example

var escape = require('escape-html');
escape(str);

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/errorhandler/node_modules/accepts/node_modules/negotiator/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

negotiator

![NPM Version][npm-image] [https://npmjs.org/package/negotiator]
![NPM Downloads][downloads-image] [https://npmjs.org/package/negotiator]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/negotiator]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/negotiator?branch=master]

An HTTP content negotiator for Node.js

Installation

$ npm install negotiator

API

var Negotiator = require('negotiator')

Accept Negotiation

availableMediaTypes = ['text/html', 'text/plain', 'application/json']

// The negotiator constructor receives a request object
negotiator = new Negotiator(request)

// Let's say Accept header is 'text/html, application/*;q=0.2, image/jpeg;q=0.8'

negotiator.mediaTypes()
// -> ['text/html', 'image/jpeg', 'application/*']

negotiator.mediaTypes(availableMediaTypes)
// -> ['text/html', 'application/json']

negotiator.mediaType(availableMediaTypes)
// -> 'text/html'

You can check a working example at examples/accept.js.

Methods

mediaTypes(availableMediaTypes):

Returns an array of preferred media types ordered by priority from a list of available media types.

mediaType(availableMediaType):

Returns the top preferred media type from a list of available media types.

Accept-Language Negotiation

negotiator = new Negotiator(request)

availableLanguages = 'en', 'es', 'fr'

// Let's say Accept-Language header is 'en;q=0.8, es, pt'

negotiator.languages()
// -> ['es', 'pt', 'en']

negotiator.languages(availableLanguages)
// -> ['es', 'en']

language = negotiator.language(availableLanguages)
// -> 'es'

You can check a working example at examples/language.js.

Methods

languages(availableLanguages):

Returns an array of preferred languages ordered by priority from a list of available languages.

language(availableLanguages):

Returns the top preferred language from a list of available languages.

Accept-Charset Negotiation

availableCharsets = ['utf-8', 'iso-8859-1', 'iso-8859-5']

negotiator = new Negotiator(request)

// Let's say Accept-Charset header is 'utf-8, iso-8859-1;q=0.8, utf-7;q=0.2'

negotiator.charsets()
// -> ['utf-8', 'iso-8859-1', 'utf-7']

negotiator.charsets(availableCharsets)
// -> ['utf-8', 'iso-8859-1']

negotiator.charset(availableCharsets)
// -> 'utf-8'

You can check a working example at examples/charset.js.

Methods

charsets(availableCharsets):

Returns an array of preferred charsets ordered by priority from a list of available charsets.

charset(availableCharsets):

Returns the top preferred charset from a list of available charsets.

Accept-Encoding Negotiation

availableEncodings = ['identity', 'gzip']

negotiator = new Negotiator(request)

// Let's say Accept-Encoding header is 'gzip, compress;q=0.2, identity;q=0.5'

negotiator.encodings()
// -> ['gzip', 'identity', 'compress']

negotiator.encodings(availableEncodings)
// -> ['gzip', 'identity']

negotiator.encoding(availableEncodings)
// -> 'gzip'

You can check a working example at examples/encoding.js.

Methods

encodings(availableEncodings):

Returns an array of preferred encodings ordered by priority from a list of available encodings.

encoding(availableEncodings):

Returns the top preferred encoding from a list of available encodings.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/cookie-signature/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.4 / 2014-06-25

		corrected avoidance of timing attacks (thanks @tenbits!)

1.0.3 / 2014-01-28

		[incorrect] fix for timing attacks

1.0.2 / 2014-01-28

		fix missing repository warning

		fix typo in test

1.0.1 / 2013-04-15

		Revert “Changed underlying HMAC algo. to sha512.”

		Revert “Fix for timing attacks on MAC verification.”

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/node_modules/base64-url/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

base64-url

Base64 encode, decode, escape and unescape for URL applications.

[image:]

[image: Build Status] [https://travis-ci.org/joaquimserafim/base64-url]

V1

####API

> base64url.encode('Node.js is awesome.');
Tm9kZS5qcyBpcyBhd2Vzb21lLg

> base64url.decode('Tm9kZS5qcyBpcyBhd2Vzb21lLg');
Node.js is awesome.

> base64url.escape(This+is/goingto+escape==);
This-is_goingto-escape

> base64url.unescape('This-is_goingto-escape');
This+is/goingto+escape==

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/type-is/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.5.3 / 2014-11-09

		deps: mime-types@~2.0.3
		Add new mime types

		deps: mime-db@~1.2.0

1.5.2 / 2014-09-28

		deps: mime-types@~2.0.2
		Add new mime types

		deps: mime-db@~1.1.0

1.5.1 / 2014-09-07

		Support Node.js 0.6

		deps: media-typer@0.3.0

		deps: mime-types@~2.0.1
		Support Node.js 0.6

1.5.0 / 2014-09-05

		fix hasbody to be true for content-length: 0

1.4.0 / 2014-09-02

		update mime-types

1.3.2 / 2014-06-24

		use ~ range on mime-types

1.3.1 / 2014-06-19

		fix global variable leak

1.3.0 / 2014-06-19

		improve type parsing
		invalid media type never matches

		media type not case-sensitive

		extra LWS does not affect results

1.2.2 / 2014-06-19

		fix behavior on unknown type argument

1.2.1 / 2014-06-03

		switch dependency from mime to mime-types@1.0.0

1.2.0 / 2014-05-11

		support suffix matching:
		+json matches application/vnd+json

		*/vnd+json matches application/vnd+json

		application/*+json matches application/vnd+json

1.1.0 / 2014-04-12

		add non-array values support

		expose internal utilities:
		.is()

		.hasBody()

		.normalize()

		.match()

1.0.1 / 2014-03-30

		add multipart as a shorthand

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/csrf/node_modules/rndm/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

RNDM

Random string generator.
Basically Math.random().toString(36).slice(2),
but with both upper and lower case letters and arbitrary lengths.
Useful for creating fast, not cryptographically secure salts.

API

import rndm from 'rndm@1'

var salt = rndm(16)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/content-disposition/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

content-disposition

![NPM Version][npm-image] [https://npmjs.org/package/content-disposition]
![NPM Downloads][downloads-image] [https://npmjs.org/package/content-disposition]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/content-disposition]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/content-disposition?branch=master]

Create and parse HTTP Content-Disposition header

Installation

$ npm install content-disposition

API

var contentDisposition = require('content-disposition')

contentDisposition(filename, options)

Create an attachment Content-Disposition header value using the given file name,
if supplied. The filename is optional and if no file name is desired, but you
want to specify options, set filename to undefined.

res.setHeader('Content-Disposition', contentDisposition('∫ maths.pdf'))

note HTTP headers are of the ISO-8859-1 character set. If you are writing this
header through a means different from setHeader in Node.js, you’ll want to specify
the 'binary' encoding in Node.js.

Options

contentDisposition accepts these properties in the options object.

fallback

If the filename option is outside ISO-8859-1, then the file name is actually
stored in a supplemental field for clients that support Unicode file names and
a ISO-8859-1 version of the file name is automatically generated.

This specifies the ISO-8859-1 file name to override the automatic generation or
disables the generation all together, defaults to true.

		A string will specify the ISO-8859-1 file name to use in place of automatic
generation.

		false will disable including a ISO-8859-1 file name and only include the
Unicode version (unless the file name is already ISO-8859-1).

		true will enable automatic generation if the file name is outside ISO-8859-1.

If the filename option is ISO-8859-1 and this option is specified and has a
different value, then the filename option is encoded in the extended field
and this set as the fallback field, even though they are both ISO-8859-1.

type

Specifies the disposition type, defaults to "attachment". This can also be
"inline", or any other value (all values except inline are treated like
attachment, but can convey additional information if both parties agree to
it). The type is normalized to lower-case.

contentDisposition.parse(string)

var disposition = contentDisposition.parse('attachment; filename="EURO rates.txt"; filename*=UTF-8\'\'%e2%82%ac%20rates.txt"');

Parse a Content-Disposition header string. This automatically handles extended
(“Unicode”) parameters by decoding them and providing them under the standard
parameter name. This will return an object with the following properties (examples
are shown for the string 'attachment; filename="EURO rates.txt"; filename*=UTF-8\'\'%e2%82%ac%20rates.txt'):

		type: The disposition type (always lower case). Example: 'attachment'

		parameters: An object of the parameters in the disposition (name of parameter
always lower case and extended versions replace non-extended versions). Example:
{filename: "€ rates.txt"}

Examples

Send a file for download

var contentDisposition = require('content-disposition')
var destroy = require('destroy')
var http = require('http')
var onFinished = require('on-finished')

var filePath = '/path/to/public/plans.pdf'

http.createServer(function onRequest(req, res) {
 // set headers
 res.setHeader('Content-Type', 'application/pdf')
 res.setHeader('Content-Disposition', contentDisposition(filePath))

 // send file
 var stream = fs.createReadStream(filePath)
 stream.pipe(res)
 onFinished(res, function (err) {
 destroy(stream)
 })
})

Testing

$ npm test

References

		RFC 2616: Hypertext Transfer Protocol – HTTP/1.1 [https://tools.ietf.org/html/rfc2616]

		RFC 5987: Character Set and Language Encoding for Hypertext Transfer Protocol (HTTP) Header Field Parameters [https://tools.ietf.org/html/rfc5987]

		RFC 6266: Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP) [https://tools.ietf.org/html/rfc6266]

		Test Cases for HTTP Content-Disposition header field (RFC 6266) and the Encodings defined in RFCs 2047, 2231 and 5987 [http://greenbytes.de/tech/tc2231/]

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/http-errors/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/csurf/node_modules/http-errors/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

http-errors

![NPM Version][npm-image] [https://npmjs.org/package/http-errors]
![NPM Downloads][downloads-image] [https://npmjs.org/package/http-errors]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/http-errors]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/http-errors]

Create HTTP errors for Express, Koa, Connect, etc. with ease.

Example

var createError = require('http-errors');

app.use(function (req, res, next) {
 if (!req.user) return next(createError(401, 'Please login to view this page.'));
 next();
})

API

This is the current API, currently extracted from Koa and subject to change.

Error Properties

		message

		status and statusCode - the status code of the error, defaulting to 500

createError([status], [message], [properties])

var err = createError(404, 'This video does not exist!');

		status: 500 - the status code as a number

		message - the message of the error, defaulting to node’s text for that status code.

		properties - custom properties to attach to the object

new createError[code || name]([msg]))

var err = new createError.NotFound();

		code - the status code as a number

		name - the name of the error as a “bumpy case”, i.e. NotFound or InternalServerError.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/ng-form-group/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ngFormGroup

ngFormGroup applies Bootstrap validation classes [http://getbootstrap.com/css/#forms-control-validation] based on ngModel‘s validity.

Installation

In your Angular project, run bower install --save ng-form-group to save the
module. Then, in your HTML, add:

<script src="/path/to/bower_components/ng-form-group/index.min.js"></script>

And lastly, in your Angular module, include ng-form-group as a dependency:

angular.module('my-app', ['ng-form-group')

Usage

Just mark up your form as recommended by Bootstrap [http://getbootstrap.com/css/#forms-example]
and any fields with the class form-group will be automatically validated!

<form role="form">
 <div class="form-group">
 <label for="myEmail">Email address</label>
 <input type="email" ng-model="myEmailModel" class="form-control" id="myEmail">
 </div>
</form>

Now, when your model is invalided, by someone entering an invalid email
address, the has-error class will be added to your form-group.

[image: Validation in action]

If you want to disable feedback for a specific form, add the form-group-without-feedback
class to the form-group:

<form role="form">
 <div class="form-group form-group-without-feedback">
 <label for="search">Search for things:</label>
 <input type="search" ng-model="searchQuery" class="form-control" id="search">
 </div>
</form>

Bonus round: Feedback icons!

Just add the .has-feedback [http://getbootstrap.com/css/#forms-control-validation]
class to your form group, and we’ll automatically add bootstrap style Feedback
icons to your form fields.

[image: Validation in action]

Contributing

To get your dev environment up and running, run npm install and bower install
to get the components we need.

Tests are run with npm run test and you can build the minified source with
npm run build.

Releases are built using npm run release:[type]. So, to generate a new patch
release, run npm run release:patch. This script will:

		Generate minified, concatenated JS files,

		Increment the version in package.json and bower.json

		Tag a new release

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/ng-csv/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ngCsv - Export to CSV using AngularJS

An AngularJS simple directive that turns arrays and objects into downloadable CSV files,

[image: Build Status] [https://travis-ci.org/asafdav/ng-csv]

Dependencies

		angular.js (of course!), any version starting with 1

		angular-sanitize.js, any version starting with 1

How to get it ?

Manual Download

Download the from here [https://github.com/asafdav/ng-csv/releases]

Bower

bower install ng-csv

Npm

npm install ng-csv

CDN

ng-csv is available at cdnjs [http://www.cdnjs.com/libraries/ng-csv]

Usage

		Add ng-csv.min.js to your main file (index.html).
please also make sure you’re adding angular-sanitize.min.js.

		Set ngCsv as a dependency in your module

var myapp = angular.module('myapp', ['ngSanitize', 'ngCsv'])

		Add ng-csv directive to the wanted element, example:

<button type="button" ng-csv="getArray()" filename="test.csv">Export</button>

ngCsv attributes

		ng-csv: The data array - Could be an expression, a value or a promise.

		filename: The filename that will be stored on the user’s computer

		csv-header: If provided, would use this attribute to create a header row

<button type="button" ng-csv="getArray()" csv-header="['Field A', 'Field B', 'Field C']" filename="test.csv">Export</button>

		field-separator: Defines the field separator character (default is ,)

		text-delimiter: If provided, will use this characters to “escape” fields, otherwise will use double quotes as deafult

		quote-strings: If provided, will force escaping of every string field.

		lazy-load: If defined and set to true, ngCsv will generate the data string only on demand. See the lazy_load example for more details.

		add-bom: Add the Byte Order Mark, use this option if you are getting an unexpected char when opening the file on any windows App.

Examples

You can check out this live example here: https://asafdav.github.io/ng-csv/example/

For lazy load example using promises see this example: https://asafdav.github.io/ng-csv/example/lazy_load.html

Supported Browsers

Browser	Filenames
—————	————-
Firefox 20+	Yes
Chrome 14+	Yes
Safari	No
IE 10+	Yes

[image: Bitdeli Badge] [https://bitdeli.com/free]

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/ngDialog/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.3.7

		[x] support for UMD pattern [https://github.com/umdjs/umd]

		[x] get rid of module variable in source code

		[x] get rid of window dependency in flavor of $window

0.3.6

		[x] finally (after many requests) $scope.ngDialogData holds reference to the objects passed instead of copying them.

0.3.5

		[x] fix for HammerJS 1.1 breaking dialog

0.3.4

		[x] add support for overlay option (https://github.com/likeastore/ngDialog/issues/117)

0.3.3

		[x] successful tests and support for Angular.js 1.3.x

0.3.2

		[x] fixed an issue with Hammer.js manager

0.3.1

		[x] ngDialog.closing event

		[x] closeByNavigation option

		[x] templateUrl option

0.3.0

		[x] .openConfirm() method

		[x] .setForceBodyReload() method

		[x] add support for .setDefaults() method

		[x] fix scroll jump bug

		[x] fix event broadcasting to occur at the times they should

		[x] fix for ngDialogData being passed after controller instantiation

		[x] allow objects for ngDialogData

		[x] cache option

		[x] preCloseCallback option

		[x] appendTo option

		[x] name option

		[x] minor code fixes and optimizations, examples improvements

0.2.2

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/ngDialog/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ngDialog

Modal dialogs and popups provider for Angular.js [http://angularjs.org/] applications.

ngDialog is small (~2Kb), has minimalistic API, highly customizable through themes and has only Angular.js as dependency.

Demo [http://likeastore.github.io/ngDialog]

Install

You can download all necessary ngDialog files manually or install it with bower:

bower install ngDialog

Usage

You need only to include ngDialog.js and ngDialog.css (as minimal setup) to your project and then you can start using ngDialog provider in your directives, controllers and services. For example in controllers:

var app = angular.module('exampleApp', ['ngDialog']);

app.controller('MainCtrl', function ($scope, ngDialog) {
 $scope.clickToOpen = function () {
 ngDialog.open({ template: 'popupTmpl.html' });
 };
});

API

ngDialog service provides easy to use and minimalistic API, but in the same time it’s powerful enough. Here is the list of accessible methods that you can use:

===

.open(options)

Method allows to open dialog window, creates new dialog instance on each call. It accepts options object as the only argument.

Options:

template {String}

Dialog template can be loaded through path to external html template or <script> tag with text/ng-template:

<script type="text/ng-template" id="templateId">
 <h1>Template heading</h1>
 <p>Content goes here</p>
</script>

ngDialog.open({ template: 'templateId' });

Also it is possible to use simple string as template together with plain option.

plain {Boolean}

If true allows to use plain string as template, default false:

ngDialog.open({
 template: '<p>my template</p>',
 plain: true
});

controller {String} | {Array} | {Object}

Controller that will be used for dialog window if necessary. The controller can be specified either by referring it by name or directly inline.

ngDialog.open({
 template: 'externalTemplate.html',
 controller: 'SomeController'
});

or

ngDialog.open({
 template: 'externalTemplate.html',
 controller: ['$scope', 'otherService', function($scope, otherService) {
 // controller logic
 }]
});

scope {Object}

Scope object that will be passed to dialog. If you use controller with separate $scope service this object will be passed to $scope.$parent param:

$scope.value = true;

ngDialog.open({
 template: 'externalTemplate.html',
 className: 'ngdialog-theme-plain',
 scope: $scope
});

<script type="text/ng-template" id="externalTemplate.html">
<p>External scope: <code>{{value}}</code></p>
</script>

scope.closeThisDialog(value)

In addition .closeThisDialog(value) method gets injected to passed $scope. This allows you to close dialog straight from handler in a popup element, for example:

<div class="dialog-contents">
 <input type="text"/>
 <input type="button" value="OK" ng-click="checkInput() && closeThisDialog('Some value')"/>
</div>

Any value passed to this function will be attached to the object which resolves on the close promise for this dialog. For dialogs opened with the openConfirm() method the value is used as the reject reason.

data {String | Object | Array}

Any serializable data that you want to be stored in controller’s dialog scope. ($scope.ngDialogData). From version 0.3.6 $scope.ngDialogData keeps references to the objects instead of copying them.

className {String}

This option allows you to control the dialog’s look, you can use built-in themes [https://github.com/likeastore/ngDialog#themes] or create your own styled modals.

This example enables one of the built-in ngDialog themes - ngdialog-theme-default (do not forget to include necessary css files):

ngDialog.open({
 template: 'templateId',
 className: 'ngdialog-theme-default'
});

Check themes [https://github.com/likeastore/ngDialog#themes] block to learn more.

overlay {Boolean}

If false it allows to hide overlay div behind the modals, default true.

showClose {Boolean}

If false it allows to hide close button on modals, default true.

closeByEscape {Boolean}

It allows to close modals by clicking Esc button, default true.

This will close all open modals if there several of them open at the same time.

closeByDocument {Boolean}

It allows to close modals by clicking on overlay background, default true. If Hammer.js [https://github.com/EightMedia/hammer.js] is loaded, it will listen for tap instead of click.

appendTo {String}

Specify your element where to append dialog instance, accepts selector string (e.g. #yourId, .yourClass). If not specified appends dialog to body as default behavior.

cache {Boolean}

Pass false to disable template caching. Useful for developing purposes, default is true.

name {String} | {Number}

Give a name for a dialog instance. It is useful for identifying specific dialog if there are multiple dialog boxes opened.

preCloseCallback {String} | {Function}

Provide either the name of a function or a function to be called before the dialog is closed. If the callback function specified in the option returns false then the dialog will not be closed. Alternatively, if the callback function returns a promise that gets resolved the dialog will be closed.

The preCloseCallback function receives as a parameter (value) which is the same value sent to .close(id, value).

The primary use case for this feature is a dialog which contains user actions (e.g. editing data) for which you want the ability to confirm whether to discard unsaved changes upon exiting the dialog (e.g. via the escape button).

This example uses an inline function with a window.confirm call in the preCloseCallback function:

ngDialog.open({
 preCloseCallback: function(value) {
 if(confirm('Are you sure you want to close without saving your changes?')) {
 return true;
 }
 return false;
 }
});

In another example, a callback function with a nested confirm ngDialog is used:

ngDialog.open({
 preCloseCallback: function(value) {
 var nestedConfirmDialog = ngDialog.openConfirm({
 template:'\
 <p>Are you sure you want to close the parent dialog?</p>\
 <div class="ngdialog-buttons">\
 <button type="button" class="ngdialog-button ngdialog-button-secondary" ng-click="closeThisDialog(0)">No</button>\
 <button type="button" class="ngdialog-button ngdialog-button-primary" ng-click="confirm(1)">Yes</button>\
 </div>',
 plain: true
 });

 // NOTE: return the promise from openConfirm
 return nestedConfirmDialog;
 }
});

===

.setDefaults(options)

You’re able to set default settings through ngDialogProvider:

var app = angular.module('myApp', ['ngDialog']);
app.config(['ngDialogProvider', function (ngDialogProvider) {
 ngDialogProvider.setDefaults({
 className: 'ngdialog-theme-default',
 plain: true,
 showClose: true,
 closeByDocument: true,
 closeByEscape: true
 });
}]);

Returns:

The open() method returns an object with some useful properties.

id {String}

This is the ID of the dialog which was just created. It is the ID on the dialog’s DOM element.

close(value) {Function}

This is a function which will close the dialog which was opened by the current call to open(). It takes an optional value to pass to the close promise.

closePromise {Promise}

A promise which will resolve when the dialog is closed. It is resolved with an object containing: id - the ID of the closed dialog, value - the value the dialog was closed with, $dialog - the dialog element which at this point has been removed from the DOM and remainingDialogs - the number of dialogs still open.

The value property will be a special string if the dialog is dismissed by one of the built in mechanisms: '$escape', '$closeButton' or '$document'.

This allows you do to something like this:

var dialog = ngDialog.open({
 template: 'templateId'
});

dialog.closePromise.then(function (data) {
 console.log(data.id + ' has been dismissed.');
});

===

.openConfirm(options)

Opens a dialog that by default does not close when hitting escape or clicking outside the dialog window. The function returns a promise that is either resolved or rejected depending on the way the dialog was closed.

Options:

The options are the same as the regular .open() [https://github.com/likeastore/ngDialog#options] method with an extra function added to the scope:

scope.confirm()

In addition to the .closeThisDialog() method. The method .confirm() is also injected to passed $scope. Use this method to close the dialog and resolve the promise that was returned when opening the modal.

The function accepts a single optional parameter which is used as the value of the resolved promise.

<div class="dialog-contents">
 Some message
 <button ng-click="closeThisDialog()">Cancel</button>
 <button ng-click="confirm()">Confirm</button>
</div>

Returns:

An Angular promise object that is resolved if the .confirm() function is used to close the dialog, otherwise the promise is rejected. The resolve value and the reject reason is defined by the value passed to the confirm() or closeThisDialog() call respectively.

===

.close(id, value)

Method accepts dialog’s id as string argument to close specific dialog window, if id is not specified it will close all currently active modals (same behavior as .closeAll()). Takes an optional value to resolve the dialog promise with (or all dialog promises).

===

.closeAll(value)

Method manages closing all active modals on the page. Takes an optional value to resolve all of the dialog promises with.

===

.setForceBodyReload({Boolean})

Adds additional listener on every $locationChangeSuccess event and gets update version of body into dialog. Maybe useful in some rare cases when you’re dependant on DOM changes, defaults to false. Use it in module’s config as provider instance:

var app = angular.module('exampleApp', ['ngDialog']);

app.config(function (ngDialogProvider) {
 ngDialogProvider.setForceBodyReload(true);
});

Directive

By default ngDialog module is served with ngDialog directive which can be used as attribute for buttons, links, etc. Almost all .open() options are available through tag attributes as well, the only difference is that ng-template id or path of template file is required.

Some imaginary button, for example, will look like:

<button type="button"
 ng-dialog="templateId.html"
 ng-dialog-class="ngdialog-theme-flat"
 ng-dialog-controller="ModalCtrl"
 ng-dialog-close-previous>
 Open modal text
</button>

Directive contains one more additional but very useful option, it’s an attribute named ng-dialog-close-previous. It allows you to close previously opened dialogs automaticly.

Events

Everytime when ngDialog is opened or closed we’re broadcasting three events (dispatching events downwards to all child scopes):

		ngDialog.opened

		ngDialog.closing

		ngDialog.closed

This allows you to register your own listeners, example:

$rootScope.$on('ngDialog.opened', function (e, $dialog) {
 console.log('ngDialog opened: ' + $dialog.attr('id'));
});

ngDialog.closing is different than ngDialog.closed in that it is fired immediately when the dialog begins closing, whereas ngDialog.closed is fired after all animations are complete. Both will be fired even when animation end support is not detected.

Themes

Currently ngDialog contains two default themes that show how easily you can create your own. Check example folder for demonstration purposes.

CDN

ngDialog is available for public on cdnjs [http://cdnjs.com/libraries/ng-dialog]. For example, please use following urls for version 0.3.0.

//cdnjs.cloudflare.com/ajax/libs/ng-dialog/0.3.0/ng-dialog.min.css
//cdnjs.cloudflare.com/ajax/libs/ng-dialog/0.3.0/ng-dialog-theme-plain.min.css
//cdnjs.cloudflare.com/ajax/libs/ng-dialog/0.3.0/ng-dialog.min.js

References

ngDialog default styles are heavily inspired by awesome Hubspot/Vex [https://github.com/HubSpot/vex] jQuery modals.

License

MIT Licensed

Copyright (c) 2013-2014, Likeastore.com info@likeastore.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

[image: Bitdeli Badge] [https://bitdeli.com/free]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/basic-auth/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

basic-auth

Generic basic auth Authorization header field parser for whatever.

Installation

$ npm install basic-auth

Example

Pass a node request or koa Context object to the module exported. If
parsing fails undefined is returned, otherwise an object with
.name and .pass.

var auth = require('basic-auth');
var user = auth(req);
// => { name: 'something', pass: 'whatever' }

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/depd/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

depd

![NPM Version][npm-version-image] [https://npmjs.org/package/depd]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/depd]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/dougwilson/nodejs-depd]
![Coverage Status][coveralls-image] [https://coveralls.io/r/dougwilson/nodejs-depd?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Deprecate all the things

With great modules comes great responsibility; mark things deprecated!

Install

$ npm install depd

API

var deprecate = require('depd')('my-module')

This library allows you to display deprecation messages to your users.
This library goes above and beyond with deprecation warnings by
introspection of the call stack (but only the bits that it is interested
in).

Instead of just warning on the first invocation of a deprecated
function and never again, this module will warn on the first invocation
of a deprecated function per unique call site, making it ideal to alert
users of all deprecated uses across the code base, rather than just
whatever happens to execute first.

The deprecation warnings from this module also include the file and line
information for the call into the module that the deprecated function was
in.

NOTE this library has a similar interface to the debug module, and
this module uses the calling file to get the boundary for the call stacks,
so you should always create a new deprecate object in each file and not
within some central file.

depd(namespace)

Create a new deprecate function that uses the given namespace name in the
messages and will display the call site prior to the stack entering the
file this function was called from. It is highly suggested you use the
name of your module as the namespace.

deprecate(message)

Call this function from deprecated code to display a deprecation message.
This message will appear once per unique caller site. Caller site is the
first call site in the stack in a different file from the caller of this
function.

If the message is omitted, a message is generated for you based on the site
of the deprecate() call and will display the name of the function called,
similar to the name displayed in a stack trace.

deprecate.function(fn, message)

Call this function to wrap a given function in a deprecation message on any
call to the function. An optional message can be supplied to provide a custom
message.

deprecate.property(obj, prop, message)

Call this function to wrap a given property on object in a deprecation message
on any accessing or setting of the property. An optional message can be supplied
to provide a custom message.

The method must be called on the object where the property belongs (not
inherited from the prototype).

If the property is a data descriptor, it will be converted to an accessor
descriptor in order to display the deprecation message.

process.on(‘deprecation’, fn)

This module will allow easy capturing of deprecation errors by emitting the
errors as the type “deprecation” on the global process. If there are no
listeners for this type, the errors are written to STDERR as normal, but if
there are any listeners, nothing will be written to STDERR and instead only
emitted. From there, you can write the errors in a different format or to a
logging source.

The error represents the deprecation and is emitted only once with the same
rules as writing to STDERR. The error has the following properties:

		message - This is the message given by the library

		name - This is always 'DeprecationError'

		namespace - This is the namespace the deprecation came from

		stack - This is the stack of the call to the deprecated thing

Example error.stack output:

DeprecationError: my-cool-module deprecated oldfunction
 at Object.<anonymous> ([eval]-wrapper:6:22)
 at Module._compile (module.js:456:26)
 at evalScript (node.js:532:25)
 at startup (node.js:80:7)
 at node.js:902:3

process.env.NO_DEPRECATION

As a user of modules that are deprecated, the environment variable NO_DEPRECATION
is provided as a quick solution to silencing deprecation warnings from being
output. The format of this is similar to that of DEBUG:

$ NO_DEPRECATION=my-module,othermod node app.js

This will suppress deprecations from being output for “my-module” and “othermod”.
The value is a list of comma-separated namespaces. To suppress every warning
across all namespaces, use the value * for a namespace.

Providing the argument --no-deprecation to the node executable will suppress
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not suppress the deperecations given to any “deprecation”
event listeners, just the output to STDERR.

process.env.TRACE_DEPRECATION

As a user of modules that are deprecated, the environment variable TRACE_DEPRECATION
is provided as a solution to getting more detailed location information in deprecation
warnings by including the entire stack trace. The format of this is the same as
NO_DEPRECATION:

$ TRACE_DEPRECATION=my-module,othermod node app.js

This will include stack traces for deprecations being output for “my-module” and
“othermod”. The value is a list of comma-separated namespaces. To trace every
warning across all namespaces, use the value * for a namespace.

Providing the argument --trace-deprecation to the node executable will trace
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not trace the deperecations silenced by NO_DEPRECATION.

Display

[image: message]

When a user calls a function in your library that you mark deprecated, they
will see the following written to STDERR (in the given colors, similar colors
and layout to the debug module):

bright cyan bright yellow
| | reset cyan
| | | |
▼ ▼ ▼ ▼
my-cool-module deprecated oldfunction [eval]-wrapper:6:22
▲ ▲ ▲ ▲
| | | |
namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

If the user redirects their STDERR to a file or somewhere that does not support
colors, they see (similar layout to the debug module):

Sun, 15 Jun 2014 05:21:37 GMT my-cool-module deprecated oldfunction at [eval]-wrapper:6:22
▲ ▲ ▲ ▲ ▲
| | | | |
timestamp of message namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

Examples

Deprecating all calls to a function

This will display a deprecated message about “oldfunction” being deprecated
from “my-module” on STDERR.

var deprecate = require('depd')('my-cool-module')

// message automatically derived from function name
// Object.oldfunction
exports.oldfunction = deprecate.function(function oldfunction() {
 // all calls to function are deprecated
})

// specific message
exports.oldfunction = deprecate.function(function () {
 // all calls to function are deprecated
}, 'oldfunction')

Conditionally deprecating a function call

This will display a deprecated message about “weirdfunction” being deprecated
from “my-module” on STDERR when called with less than 2 arguments.

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 }
}

When calling deprecate as a function, the warning is counted per call site
within your own module, so you can display different deprecations depending
on different situations and the users will still get all the warnings:

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 } else if (typeof arguments[0] !== 'string') {
 // calls with non-string first argument are deprecated
 deprecate('weirdfunction non-string first arg')
 }
}

Deprecating property access

This will display a deprecated message about “oldprop” being deprecated
from “my-module” on STDERR when accessed. A deprecation will be displayed
when setting the value and when getting the value.

var deprecate = require('depd')('my-cool-module')

exports.oldprop = 'something'

// message automatically derives from property name
deprecate.property(exports, 'oldprop')

// explicit message
deprecate.property(exports, 'oldprop', 'oldprop >= 0.10')

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.5.0 / 2014-11-06

		Add multiple date formats
		clf for the common log format

		iso for the common ISO 8601 date time format

		web for the common RFC 1123 date time format

		Deprecate buffer option

		Fix date format in common and combined formats

		Fix token arguments to accept values with "

1.4.1 / 2014-10-22

		deps: on-finished@~2.1.1
		Fix handling of pipelined requests

1.4.0 / 2014-10-16

		Add debug messages

		deps: depd@~1.0.0

1.3.2 / 2014-09-27

		Fix req.ip integration when immediate: false

1.3.1 / 2014-09-14

		Remove un-used bytes dependency

		deps: depd@0.4.5

1.3.0 / 2014-09-01

		Assert if format is not a function or string

1.2.3 / 2014-08-16

		deps: on-finished@2.1.0

1.2.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

1.2.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

1.2.0 / 2014-07-19

		Add :remote-user token

		Add combined log format

		Add common log format

		Add morgan(format, options) function signature

		Deprecate default format – use combined format instead

		Deprecate not providing a format

		Remove non-standard grey color from dev format

1.1.1 / 2014-05-20

		simplify method to get remote address

1.1.0 / 2014-05-18

		“dev” format will use same tokens as other formats

		:response-time token is now empty when immediate used

		:response-time token is now monotonic

		:response-time token has precision to 1 μs

		fix :status + immediate output in node.js 0.8

		improve buffer option to prevent indefinite event loop holding

		deps: bytes@1.0.0
		add negative support

1.0.1 / 2014-05-04

		Make buffer unique per morgan instance

		deps: bytes@0.3.0
		added terabyte support

1.0.0 / 2014-02-08

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-sessions/node_modules/express/node_modules/qs/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.4.2 / 2012-02-08

		Fixed: ensure objects are created when appropriate not arrays [aheckmann]

0.4.1 / 2012-01-26

		Fixed stringify()ing numbers. Closes #23

0.4.0 / 2011-11-21

		Allow parsing of an existing object (for bodyParser()) [jackyz]

		Replaced expresso with mocha

0.3.2 / 2011-11-08

		Fixed global variable leak

0.3.1 / 2011-08-17

		Added try/catch around malformed uri components

		Add test coverage for Array native method bleed-though

0.3.0 / 2011-07-19

		Allow array[index] and object[property] syntaxes [Aria Stewart]

0.2.0 / 2011-06-29

		Added qs.stringify() [Cory Forsyth]

0.1.0 / 2011-04-13

		Added jQuery-ish array support

0.0.7 / 2011-03-13

		Fixed; handle empty string and == null in qs.parse() [dmit]
allows for convenient qs.parse(url.parse(str).query)

0.0.6 / 2011-02-14

		Fixed; support for implicit arrays

0.0.4 / 2011-02-09

		Fixed + as a space

0.0.3 / 2011-02-08

		Fixed case when right-hand value contains “]“

0.0.2 / 2011-02-07

		Fixed “=” presence in key

0.0.1 / 2011-02-07

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

morgan

![NPM Version][npm-image] [https://npmjs.org/package/morgan]
![NPM Downloads][downloads-image] [https://npmjs.org/package/morgan]
![Build Status][travis-image] [https://travis-ci.org/expressjs/morgan]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/morgan?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

HTTP request logger middleware for node.js

Named after Dexter [http://en.wikipedia.org/wiki/Dexter_Morgan], a show you should not watch until completion.

API

var morgan = require('morgan')

morgan(format, options)

Create a new morgan logger middleware function using the given format and options.
The format argument may be a string of a predefined name (see below for the names),
a string of a format string, or a function that will produce a log entry.

Options

Morgan accepts these properties in the options object.

immediate

Write log line on request instead of response. This means that a requests will
be logged even if the server crashes, but data from the response (like the
response code, content length, etc.) cannot be logged.

skip

Function to determine if logging is skipped, defaults to false. This function
will be called as skip(req, res).

// EXAMPLE: only log error responses
morgan('combined', {
 skip: function (req, res) { return res.statusCode < 400 }
})

stream

Output stream for writing log lines, defaults to process.stdout.

Predefined Formats

There are various pre-defined formats provided:

combined

Standard Apache combined log output.

:remote-addr - :remote-user [:date[clf]] ":method :url HTTP/:http-version" :status :res[content-length] ":referrer" ":user-agent"

common

Standard Apache common log output.

:remote-addr - :remote-user [:date[clf]] ":method :url HTTP/:http-version" :status :res[content-length]

dev

Concise output colored by response status for development use. The :status
token will be colored red for server error codes, yellow for client error
codes, cyan for redirection codes, and uncolored for all other codes.

:method :url :status :response-time ms - :res[content-length]

short

Shorter than default, also including response time.

:remote-addr :remote-user :method :url HTTP/:http-version :status :res[content-length] - :response-time ms

tiny

The minimal output.

:method :url :status :res[content-length] - :response-time ms

Tokens

Creating new tokens

To define a token, simply invoke morgan.token() with the name and a callback function. This callback function is expected to return a string value. The value returned is then available as ”:type” in this case:

morgan.token('type', function(req, res){ return req.headers['content-type']; })

Calling morgan.token() using the same name as an existing token will overwrite that token definition.

:date[format]

The current date and time in UTC. The available formats are:

		clf for the common log format ("10/Oct/2000:13:55:36 +0000")

		iso for the common ISO 8601 date time format (2000-10-10T13:55:36.000Z)

		web for the common RFC 1123 date time format (Tue, 10 Oct 2000 13:55:36 GMT)

If no format is given, then the default is web.

:http-version

The HTTP version of the request.

:method

The HTTP version of the request.

:referrer

The Referrer header of the request. This will use the standard mis-spelled Referer header if exists, otherwise Referrer.

:remote-addr

The remote address of the request. This will use req.ip, otherwise the standard req.connection.remoteAddress value (socket address).

:remote-user

The user authenticated as part of Basic auth for the request.

:req[header]

The given header of the request.

:res[header]

The given header of the response.

:response-time

The time between the request coming into morgan and when the response headers are written, in milliseconds.

:status

The status code of the response.

:url

The URL of the request. This will use req.originalUrl if exists, otherwise req.url.

:user-agent

The contents of the User-Agent header of the request.

Examples

express/connect

Simple app that will log all request in the Apache combined format to STDOUT

var express = require('express')
var morgan = require('morgan')

var app = express()

app.use(morgan('combined'))

app.get('/', function (req, res) {
 res.send('hello, world!')
})

vanilla http server

Simple app that will log all request in the Apache combined format to STDOUT

var finalhandler = require('finalhandler')
var http = require('http')
var morgan = require('morgan')

// create "middleware"
var logger = morgan('combined')

http.createServer(function (req, res) {
 var done = finalhandler(req, res)
 logger(req, res, function (err) {
 if (err) return done(err)

 // respond to request
 res.setHeader('content-type', 'text/plain')
 res.end('hello, world!')
 })
})

write logs to a file

Simple app that will log all request in the Apache combined format to the file “access.log”

var express = require('express')
var fs = require('fs')
var morgan = require('morgan')

var app = express()

// create a write stream (in append mode)
var accessLogStream = fs.createWriteStream(__dirname + '/access.log', {flags: 'a'})

// setup the logger
app.use(morgan('combined', {stream: accessLogStream}))

app.get('/', function (req, res) {
 res.send('hello, world!')
})

use custom token formats

Sample app that will use custom token formats. This adds an ID to all requests and displays it using the :id token.

var express = require('express')
var morgan = require('morgan')
var uuid = require('node-uuid')

morgan.token('id', function () {
 return req.id
})

var app = express()

app.use(assignId)
app.use(morgan(':id :method :url :response-time'))

app.get('/', function (req, res) {
 res.send('hello, world!')
})

function assignId(req, res, next) {
 req.id = uuid.v4()
 next()
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-sessions/node_modules/express/node_modules/qs/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-querystring

query string parser for node supporting nesting, as it was removed from 0.3.x, so this library provides the previous and commonly desired behaviour (and twice as fast). Used by express [http://expressjs.com], connect [http://senchalabs.github.com/connect] and others.

Installation

$ npm install qs

Examples

var qs = require('qs');

qs.parse('user[name][first]=Tobi&user[email]=tobi@learnboost.com');
// => { user: { name: { first: 'Tobi' }, email: 'tobi@learnboost.com' } }

qs.stringify({ user: { name: 'Tobi', email: 'tobi@learnboost.com' }})
// => user[name]=Tobi&user[email]=tobi%40learnboost.com

Testing

Install dev dependencies:

$ npm install -d

and execute:

$ make test

License

(The MIT License)

Copyright (c) 2010 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Express Logo] [http://expressjs.com/]

Fast, unopinionated, minimalist web framework for node [http://nodejs.org].

![NPM Version][npm-image] [https://npmjs.org/package/express]
![NPM Downloads][downloads-image] [https://npmjs.org/package/express]
![Build Status][travis-image] [https://travis-ci.org/strongloop/express]
![Test Coverage][coveralls-image] [https://coveralls.io/r/strongloop/express?branch=master]

var express = require('express')
var app = express()

app.get('/', function (req, res) {
 res.send('Hello World')
})

app.listen(3000)

Installation

$ npm install express

Features

		Robust routing

		Focus on high performance

		Super-high test coverage

		HTTP helpers (redirection, caching, etc)

		View system supporting 14+ template engines

		Content negotiation

		Executable for generating applications quickly

Docs & Community

		Website and Documentation [http://expressjs.com/] - [website repo [https://github.com/strongloop/expressjs.com]]

		#express [https://webchat.freenode.net/?channels=express] on freenode IRC

		Github Organization [https://github.com/expressjs] for Official Middleware & Modules

		Visit the Wiki [https://github.com/strongloop/express/wiki]

		Google Group [https://groups.google.com/group/express-js] for discussion

		Русскоязычная документация [http://jsman.ru/express/]

		한국어 문서 [http://expressjs.kr] - [website repo [https://github.com/Hanul/expressjs.kr]]

PROTIP Be sure to read Migrating from 3.x to 4.x [https://github.com/strongloop/express/wiki/Migrating-from-3.x-to-4.x] as well as New features in 4.x [https://github.com/strongloop/express/wiki/New-features-in-4.x].

Quick Start

The quickest way to get started with express is to utilize the executable express(1) [https://github.com/expressjs/generator] to generate an application as shown below:

Install the executable. The executable’s major version will match Express’s:

$ npm install -g express-generator@4

Create the app:

$ express /tmp/foo && cd /tmp/foo

Install dependencies:

$ npm install

Start the server:

$ npm start

Philosophy

The Express philosophy is to provide small, robust tooling for HTTP servers, making
it a great solution for single page applications, web sites, hybrids, or public
HTTP APIs.

Express does not force you to use any specific ORM or template engine. With support for over
14 template engines via Consolidate.js [https://github.com/tj/consolidate.js],
you can quickly craft your perfect framework.

Examples

To view the examples, clone the Express repo & install the dependancies:

$ git clone git://github.com/strongloop/express.git --depth 1
$ cd express
$ npm install

Then run whichever example you want:

$ node examples/content-negotiation

Tests

To run the test suite, first install the dependancies, then run npm test:

$ npm install
$ npm test

People

The original author of Express is TJ Holowaychuk [https://github.com/tj] ![TJ’s Gratipay][gratipay-image-visionmedia] [https://gratipay.com/visionmedia/]

The current lead maintainer is Douglas Christopher Wilson [https://github.com/dougwilson] ![Doug’s Gratipay][gratipay-image-dougwilson] [https://gratipay.com/dougwilson/]

List of all contributors [https://github.com/strongloop/express/graphs/contributors]

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-sessions/node_modules/redis/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

redis - a node.js redis client

This is a complete Redis client for node.js. It supports all Redis commands, including many recently added commands like EVAL from
experimental Redis server branches.

Install with:

npm install redis

Pieter Noordhuis has provided a binding to the official hiredis C library, which is non-blocking and fast. To use hiredis, do:

npm install hiredis redis

If hiredis is installed, node_redis will use it by default. Otherwise, a pure JavaScript parser will be used.

If you use hiredis, be sure to rebuild it whenever you upgrade your version of node. There are mysterious failures that can
happen between node and native code modules after a node upgrade.

Usage

Simple example, included as examples/simple.js:

 var redis = require("redis"),
 client = redis.createClient();

 // if you'd like to select database 3, instead of 0 (default), call
 // client.select(3, function() { /* ... */ });

 client.on("error", function (err) {
 console.log("Error " + err);
 });

 client.set("string key", "string val", redis.print);
 client.hset("hash key", "hashtest 1", "some value", redis.print);
 client.hset(["hash key", "hashtest 2", "some other value"], redis.print);
 client.hkeys("hash key", function (err, replies) {
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 client.quit();
 });

This will display:

mjr:~/work/node_redis (master)$ node example.js
Reply: OK
Reply: 0
Reply: 0
2 replies:
 0: hashtest 1
 1: hashtest 2
mjr:~/work/node_redis (master)$

Performance

Here are typical results of multi_bench.js which is similar to redis-benchmark from the Redis distribution.
It uses 50 concurrent connections with no pipelining.

JavaScript parser:

PING: 20000 ops 42283.30 ops/sec 0/5/1.182
SET: 20000 ops 32948.93 ops/sec 1/7/1.515
GET: 20000 ops 28694.40 ops/sec 0/9/1.740
INCR: 20000 ops 39370.08 ops/sec 0/8/1.269
LPUSH: 20000 ops 36429.87 ops/sec 0/8/1.370
LRANGE (10 elements): 20000 ops 9891.20 ops/sec 1/9/5.048
LRANGE (100 elements): 20000 ops 1384.56 ops/sec 10/91/36.072

hiredis parser:

PING: 20000 ops 46189.38 ops/sec 1/4/1.082
SET: 20000 ops 41237.11 ops/sec 0/6/1.210
GET: 20000 ops 39682.54 ops/sec 1/7/1.257
INCR: 20000 ops 40080.16 ops/sec 0/8/1.242
LPUSH: 20000 ops 41152.26 ops/sec 0/3/1.212
LRANGE (10 elements): 20000 ops 36563.07 ops/sec 1/8/1.363
LRANGE (100 elements): 20000 ops 21834.06 ops/sec 0/9/2.287

The performance of node_redis improves dramatically with pipelining, which happens automatically in most normal programs.

Sending Commands

Each Redis command is exposed as a function on the client object.
All functions take either an args Array plus optional callback Function or
a variable number of individual arguments followed by an optional callback.
Here is an example of passing an array of arguments and a callback:

client.mset(["test keys 1", "test val 1", "test keys 2", "test val 2"], function (err, res) {});

Here is that same call in the second style:

client.mset("test keys 1", "test val 1", "test keys 2", "test val 2", function (err, res) {});

Note that in either form the callback is optional:

client.set("some key", "some val");
client.set(["some other key", "some val"]);

If the key is missing, reply will be null (probably):

client.get("missingkey", function(err, reply) {
 // reply is null when the key is missing
 console.log(reply);
});

For a list of Redis commands, see Redis Command Reference [http://redis.io/commands]

The commands can be specified in uppercase or lowercase for convenience. client.get() is the same as client.GET().

Minimal parsing is done on the replies. Commands that return a single line reply return JavaScript Strings,
integer replies return JavaScript Numbers, “bulk” replies return node Buffers, and “multi bulk” replies return a
JavaScript Array of node Buffers. HGETALL returns an Object with Buffers keyed by the hash keys.

API

Connection Events

client will emit some events about the state of the connection to the Redis server.

“ready”

client will emit ready a connection is established to the Redis server and the server reports
that it is ready to receive commands. Commands issued before the ready event are queued,
then replayed just before this event is emitted.

“connect”

client will emit connect at the same time as it emits ready unless client.options.no_ready_check
is set. If this options is set, connect will be emitted when the stream is connected, and then
you are free to try to send commands.

“error”

client will emit error when encountering an error connecting to the Redis server.

Note that “error” is a special event type in node. If there are no listeners for an
“error” event, node will exit. This is usually what you want, but it can lead to some
cryptic error messages like this:

mjr:~/work/node_redis (master)$ node example.js

node.js:50
 throw e;
 ^
Error: ECONNREFUSED, Connection refused
 at IOWatcher.callback (net:870:22)
 at node.js:607:9

Not very useful in diagnosing the problem, but if your program isn’t ready to handle this,
it is probably the right thing to just exit.

client will also emit error if an exception is thrown inside of node_redis for whatever reason.
It would be nice to distinguish these two cases.

“end”

client will emit end when an established Redis server connection has closed.

“drain”

client will emit drain when the TCP connection to the Redis server has been buffering, but is now
writable. This event can be used to stream commands in to Redis and adapt to backpressure. Right now,
you need to check client.command_queue.length to decide when to reduce your send rate. Then you can
resume sending when you get drain.

“idle”

client will emit idle when there are no outstanding commands that are awaiting a response.

redis.createClient()

overloading

		redis.createClient() = redis.createClient(6379, ‘127.0.0.1’, {})

		redis.createClient(options) = redis.createClient(6379, ‘127.0.0.1’, options)

		redis.createClient(unix_socket, options)

		redis.createClient(port, host, options)

If you have redis-server running on the same computer as node, then the defaults for
port and host are probably fine. options in an object with the following possible properties:

		parser: which Redis protocol reply parser to use. Defaults to hiredis if that module is installed.
This may also be set to javascript.

		return_buffers: defaults to false. If set to true, then all replies will be sent to callbacks as node Buffer
objects instead of JavaScript Strings.

		detect_buffers: default to false. If set to true, then replies will be sent to callbacks as node Buffer objects
if any of the input arguments to the original command were Buffer objects.
This option lets you switch between Buffers and Strings on a per-command basis, whereas return_buffers applies to
every command on a client.

		socket_nodelay: defaults to true. Whether to call setNoDelay() on the TCP stream, which disables the
Nagle algorithm on the underlying socket. Setting this option to false can result in additional throughput at the
cost of more latency. Most applications will want this set to true.

		socket_keepalive defaults to true. Whether the keep-alive functionality is enabled on the underlying socket.

		no_ready_check: defaults to false. When a connection is established to the Redis server, the server might still
be loading the database from disk. While loading, the server not respond to any commands. To work around this,
node_redis has a “ready check” which sends the INFO command to the server. The response from the INFO command
indicates whether the server is ready for more commands. When ready, node_redis emits a ready event.
Setting no_ready_check to true will inhibit this check.

		enable_offline_queue: defaults to true. By default, if there is no active
connection to the redis server, commands are added to a queue and are executed
once the connection has been established. Setting enable_offline_queue to
false will disable this feature and the callback will be execute immediately
with an error, or an error will be thrown if no callback is specified.

		retry_max_delay: defaults to null. By default every time the client tries to connect and fails time before
reconnection (delay) almost doubles. This delay normally grows infinitely, but setting retry_max_delay limits delay
to maximum value, provided in milliseconds.

		connect_timeout defaults to false. By default client will try reconnecting until connected. Setting connect_timeout
limits total time for client to reconnect. Value is provided in milliseconds and is counted once the disconnect occured.

		max_attempts defaults to null. By default client will try reconnecting until connected. Setting max_attempts
limits total amount of reconnects.

		auth_pass defaults to null. By default client will try connecting without auth. If set, client will run redis auth command on connect.

		family defaults to IPv4. The client connects in IPv4 if not specified or if the DNS resolution returns an IPv4 address.
You can force an IPv6 if you set the family to ‘IPv6’. See nodejs net or dns modules how to use the family type.

 var redis = require("redis"),
 client = redis.createClient({detect_buffers: true});

 client.set("foo_rand000000000000", "OK");

 // This will return a JavaScript String
 client.get("foo_rand000000000000", function (err, reply) {
 console.log(reply.toString()); // Will print `OK`
 });

 // This will return a Buffer since original key is specified as a Buffer
 client.get(new Buffer("foo_rand000000000000"), function (err, reply) {
 console.log(reply.toString()); // Will print `<Buffer 4f 4b>`
 });
 client.end();

createClient() returns a RedisClient object that is named client in all of the examples here.

client.auth(password, callback)

When connecting to Redis servers that require authentication, the AUTH command must be sent as the
first command after connecting. This can be tricky to coordinate with reconnections, the ready check,
etc. To make this easier, client.auth() stashes password and will send it after each connection,
including reconnections. callback is invoked only once, after the response to the very first
AUTH command sent.
NOTE: Your call to client.auth() should not be inside the ready handler. If
you are doing this wrong, client will emit an error that looks
something like this Error: Ready check failed: ERR operation not permitted.

client.end()

Forcibly close the connection to the Redis server. Note that this does not wait until all replies have been parsed.
If you want to exit cleanly, call client.quit() to send the QUIT command after you have handled all replies.

This example closes the connection to the Redis server before the replies have been read. You probably don’t
want to do this:

 var redis = require("redis"),
 client = redis.createClient();

 client.set("foo_rand000000000000", "some fantastic value");
 client.get("foo_rand000000000000", function (err, reply) {
 console.log(reply.toString());
 });
 client.end();

client.end() is useful for timeout cases where something is stuck or taking too long and you want
to start over.

client.unref()

Call unref() on the underlying socket connection to the Redis server, allowing the program to exit once no more commands are pending.

This is an experimental feature, and only supports a subset of the Redis protocol. Any commands where client state is saved on the Redis server, e.g. *SUBSCRIBE or the blocking BL* commands will NOT work with .unref().

var redis = require("redis")
var client = redis.createClient()

/*
 Calling unref() will allow this program to exit immediately after the get command finishes. Otherwise the client would hang as long as the client-server connection is alive.
*/
client.unref()
client.get("foo", function (err, value){
 if (err) throw(err)
 console.log(value)
})

Friendlier hash commands

Most Redis commands take a single String or an Array of Strings as arguments, and replies are sent back as a single String or an Array of Strings.
When dealing with hash values, there are a couple of useful exceptions to this.

client.hgetall(hash)

The reply from an HGETALL command will be converted into a JavaScript Object by node_redis. That way you can interact
with the responses using JavaScript syntax.

Example:

client.hmset("hosts", "mjr", "1", "another", "23", "home", "1234");
client.hgetall("hosts", function (err, obj) {
 console.dir(obj);
});

Output:

{ mjr: '1', another: '23', home: '1234' }

client.hmset(hash, obj, [callback])

Multiple values in a hash can be set by supplying an object:

client.HMSET(key2, {
 "0123456789": "abcdefghij", // NOTE: key and value will be coerced to strings
 "some manner of key": "a type of value"
});

The properties and values of this Object will be set as keys and values in the Redis hash.

client.hmset(hash, key1, val1, ... keyn, valn, [callback])

Multiple values may also be set by supplying a list:

client.HMSET(key1, "0123456789", "abcdefghij", "some manner of key", "a type of value");

Publish / Subscribe

Here is a simple example of the API for publish / subscribe. This program opens two
client connections, subscribes to a channel on one of them, and publishes to that
channel on the other:

 var redis = require("redis"),
 client1 = redis.createClient(), client2 = redis.createClient(),
 msg_count = 0;

 client1.on("subscribe", function (channel, count) {
 client2.publish("a nice channel", "I am sending a message.");
 client2.publish("a nice channel", "I am sending a second message.");
 client2.publish("a nice channel", "I am sending my last message.");
 });

 client1.on("message", function (channel, message) {
 console.log("client1 channel " + channel + ": " + message);
 msg_count += 1;
 if (msg_count === 3) {
 client1.unsubscribe();
 client1.end();
 client2.end();
 }
 });

 client1.incr("did a thing");
 client1.subscribe("a nice channel");

When a client issues a SUBSCRIBE or PSUBSCRIBE, that connection is put into a “subscriber” mode.
At that point, only commands that modify the subscription set are valid. When the subscription
set is empty, the connection is put back into regular mode.

If you need to send regular commands to Redis while in subscriber mode, just open another connection.

Subscriber Events

If a client has subscriptions active, it may emit these events:

“message” (channel, message)

Client will emit message for every message received that matches an active subscription.
Listeners are passed the channel name as channel and the message Buffer as message.

“pmessage” (pattern, channel, message)

Client will emit pmessage for every message received that matches an active subscription pattern.
Listeners are passed the original pattern used with PSUBSCRIBE as pattern, the sending channel
name as channel, and the message Buffer as message.

“subscribe” (channel, count)

Client will emit subscribe in response to a SUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count.

“psubscribe” (pattern, count)

Client will emit psubscribe in response to a PSUBSCRIBE command. Listeners are passed the
original pattern as pattern, and the new count of subscriptions for this client as count.

“unsubscribe” (channel, count)

Client will emit unsubscribe in response to a UNSUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count. When
count is 0, this client has left subscriber mode and no more subscriber events will be emitted.

“punsubscribe” (pattern, count)

Client will emit punsubscribe in response to a PUNSUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count. When
count is 0, this client has left subscriber mode and no more subscriber events will be emitted.

client.multi([commands])

MULTI commands are queued up until an EXEC is issued, and then all commands are run atomically by
Redis. The interface in node_redis is to return an individual Multi object by calling client.multi().

 var redis = require("./index"),
 client = redis.createClient(), set_size = 20;

 client.sadd("bigset", "a member");
 client.sadd("bigset", "another member");

 while (set_size > 0) {
 client.sadd("bigset", "member " + set_size);
 set_size -= 1;
 }

 // multi chain with an individual callback
 client.multi()
 .scard("bigset")
 .smembers("bigset")
 .keys("*", function (err, replies) {
 // NOTE: code in this callback is NOT atomic
 // this only happens after the the .exec call finishes.
 client.mget(replies, redis.print);
 })
 .dbsize()
 .exec(function (err, replies) {
 console.log("MULTI got " + replies.length + " replies");
 replies.forEach(function (reply, index) {
 console.log("Reply " + index + ": " + reply.toString());
 });
 });

Multi.exec(callback)

client.multi() is a constructor that returns a Multi object. Multi objects share all of the
same command methods as client objects do. Commands are queued up inside the Multi object
until Multi.exec() is invoked.

The callback of .exec() will get invoked with two arguments:

		err type: null | Array err is either null or an array of Error Objects corresponding the the sequence the commands where chained. The last item of the array will always be an EXECABORT type of error originating from the .exec() itself.

		results type: null | Array results is an array of responses corresponding the the sequence the commands where chained.

You can either chain together MULTI commands as in the above example, or you can queue individual
commands while still sending regular client command as in this example:

 var redis = require("redis"),
 client = redis.createClient(), multi;

 // start a separate multi command queue
 multi = client.multi();
 multi.incr("incr thing", redis.print);
 multi.incr("incr other thing", redis.print);

 // runs immediately
 client.mset("incr thing", 100, "incr other thing", 1, redis.print);

 // drains multi queue and runs atomically
 multi.exec(function (err, replies) {
 console.log(replies); // 101, 2
 });

 // you can re-run the same transaction if you like
 multi.exec(function (err, replies) {
 console.log(replies); // 102, 3
 client.quit();
 });

In addition to adding commands to the MULTI queue individually, you can also pass an array
of commands and arguments to the constructor:

 var redis = require("redis"),
 client = redis.createClient(), multi;

 client.multi([
 ["mget", "multifoo", "multibar", redis.print],
 ["incr", "multifoo"],
 ["incr", "multibar"]
]).exec(function (err, replies) {
 console.log(replies);
 });

Monitor mode

Redis supports the MONITOR command, which lets you see all commands received by the Redis server
across all client connections, including from other client libraries and other computers.

After you send the MONITOR command, no other commands are valid on that connection. node_redis
will emit a monitor event for every new monitor message that comes across. The callback for the
monitor event takes a timestamp from the Redis server and an array of command arguments.

Here is a simple example:

 var client = require("redis").createClient(),
 util = require("util");

 client.monitor(function (err, res) {
 console.log("Entering monitoring mode.");
 });

 client.on("monitor", function (time, args) {
 console.log(time + ": " + util.inspect(args));
 });

Extras

Some other things you might like to know about.

client.server_info

After the ready probe completes, the results from the INFO command are saved in the client.server_info
object.

The versions key contains an array of the elements of the version string for easy comparison.

> client.server_info.redis_version
'2.3.0'
> client.server_info.versions
[2, 3, 0]

redis.print()

A handy callback function for displaying return values when testing. Example:

 var redis = require("redis"),
 client = redis.createClient();

 client.on("connect", function () {
 client.set("foo_rand000000000000", "some fantastic value", redis.print);
 client.get("foo_rand000000000000", redis.print);
 });

This will print:

Reply: OK
Reply: some fantastic value

Note that this program will not exit cleanly because the client is still connected.

redis.debug_mode

Boolean to enable debug mode and protocol tracing.

 var redis = require("redis"),
 client = redis.createClient();

 redis.debug_mode = true;

 client.on("connect", function () {
 client.set("foo_rand000000000000", "some fantastic value");
 });

This will display:

mjr:~/work/node_redis (master)$ node ~/example.js
send command: *3
$3
SET
$20
foo_rand000000000000
$20
some fantastic value

on_data: +OK

send command is data sent into Redis and on_data is data received from Redis.

Multi-word commands

To execute redis multi-word commands like SCRIPT LOAD or CLIENT LIST pass
the second word as first parameter:

client.script('load', 'return 1');
client.multi().script('load', 'return 1').exec(...);
client.multi([['script', 'load', 'return 1']]).exec(...);

client.send_command(command_name, args, callback)

Used internally to send commands to Redis. For convenience, nearly all commands that are published on the Redis
Wiki have been added to the client object. However, if I missed any, or if new commands are introduced before
this library is updated, you can use send_command() to send arbitrary commands to Redis.

All commands are sent as multi-bulk commands. args can either be an Array of arguments, or omitted.

client.connected

Boolean tracking the state of the connection to the Redis server.

client.command_queue.length

The number of commands that have been sent to the Redis server but not yet replied to. You can use this to
enforce some kind of maximum queue depth for commands while connected.

Don’t mess with client.command_queue though unless you really know what you are doing.

client.offline_queue.length

The number of commands that have been queued up for a future connection. You can use this to enforce
some kind of maximum queue depth for pre-connection commands.

client.retry_delay

Current delay in milliseconds before a connection retry will be attempted. This starts at 250.

client.retry_backoff

Multiplier for future retry timeouts. This should be larger than 1 to add more time between retries.
Defaults to 1.7. The default initial connection retry is 250, so the second retry will be 425, followed by 723.5, etc.

Commands with Optional and Keyword arguments

This applies to anything that uses an optional [WITHSCORES] or [LIMIT offset count] in the redis.io/commands [http://redis.io/commands] documentation.

Example:

var args = ['myzset', 1, 'one', 2, 'two', 3, 'three', 99, 'ninety-nine'];
client.zadd(args, function (err, response) {
 if (err) throw err;
 console.log('added '+response+' items.');

 // -Infinity and +Infinity also work
 var args1 = ['myzset', '+inf', '-inf'];
 client.zrevrangebyscore(args1, function (err, response) {
 if (err) throw err;
 console.log('example1', response);
 // write your code here
 });

 var max = 3, min = 1, offset = 1, count = 2;
 var args2 = ['myzset', max, min, 'WITHSCORES', 'LIMIT', offset, count];
 client.zrevrangebyscore(args2, function (err, response) {
 if (err) throw err;
 console.log('example2', response);
 // write your code here
 });
});

TODO

Better tests for auth, disconnect/reconnect, and all combinations thereof.

Stream large set/get values into and out of Redis. Otherwise the entire value must be in node’s memory.

Performance can be better for very large values.

I think there are more performance improvements left in there for smaller values, especially for large lists of small values.

How to Contribute

		open a pull request and then wait for feedback (if
DTrejo [http://github.com/dtrejo] does not get back to you within 2 days,
comment again with indignation!)

Contributors

Some people have have added features and fixed bugs in node_redis other than me.

Ordered by date of first contribution.
Auto-generated [http://github.com/dtrejo/node-authors] on Wed Jul 25 2012 19:14:59 GMT-0700 (PDT).

		Matt Ranney aka mranney [https://github.com/mranney]

		Tim-Smart aka tim-smart [https://github.com/tim-smart]

		Tj Holowaychuk aka visionmedia [https://github.com/visionmedia]

		rick aka technoweenie [https://github.com/technoweenie]

		Orion Henry aka orionz [https://github.com/orionz]

		Aivo Paas aka aivopaas [https://github.com/aivopaas]

		Hank Sims aka hanksims [https://github.com/hanksims]

		Paul Carey aka paulcarey [https://github.com/paulcarey]

		Pieter Noordhuis aka pietern [https://github.com/pietern]

		nithesh aka nithesh [https://github.com/nithesh]

		Andy Ray aka andy2ray [https://github.com/andy2ray]

		unknown aka unknowdna [https://github.com/unknowdna]

		Dave Hoover aka redsquirrel [https://github.com/redsquirrel]

		Vladimir Dronnikov aka dvv [https://github.com/dvv]

		Umair Siddique aka umairsiddique [https://github.com/umairsiddique]

		Louis-Philippe Perron aka lp [https://github.com/lp]

		Mark Dawson aka markdaws [https://github.com/markdaws]

		Ian Babrou aka bobrik [https://github.com/bobrik]

		Felix Geisendörfer aka felixge [https://github.com/felixge]

		Jean-Hugues Pinson aka undefined [https://github.com/undefined]

		Maksim Lin aka maks [https://github.com/maks]

		Owen Smith aka orls [https://github.com/orls]

		Zachary Scott aka zzak [https://github.com/zzak]

		TEHEK Firefox aka TEHEK [https://github.com/TEHEK]

		Isaac Z. Schlueter aka isaacs [https://github.com/isaacs]

		David Trejo aka DTrejo [https://github.com/DTrejo]

		Brian Noguchi aka bnoguchi [https://github.com/bnoguchi]

		Philip Tellis aka bluesmoon [https://github.com/bluesmoon]

		Marcus Westin aka marcuswestin2 [https://github.com/marcuswestin2]

		Jed Schmidt aka jed [https://github.com/jed]

		Dave Peticolas aka jdavisp3 [https://github.com/jdavisp3]

		Trae Robrock aka trobrock [https://github.com/trobrock]

		Shankar Karuppiah aka shankar0306 [https://github.com/shankar0306]

		Ignacio Burgueño aka ignacio [https://github.com/ignacio]

Thanks.

LICENSE - “MIT License”

Copyright (c) 2010 Matthew Ranney, http://ranney.com/

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

[image: spacer]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/rimraf/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 rm -rf for node.

Install with npm install rimraf, or just drop rimraf.js somewhere.

API

rimraf(f, callback)

The callback will be called with an error if there is one. Certain
errors are handled for you:

		Windows: EBUSY and ENOTEMPTY - rimraf will back off a maximum of
opts.maxBusyTries times before giving up.

		ENOENT - If the file doesn’t exist, rimraf will return
successfully, since your desired outcome is already the case.

rimraf.sync

It can remove stuff synchronously, too. But that’s not so good. Use
the async API. It’s better.

CLI

If installed with npm install rimraf -g it can be used as a global
command rimraf <path> which is useful for cross platform support.

mkdirp

If you need to create a directory recursively, check out
mkdirp [https://github.com/substack/node-mkdirp].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-sessions/node_modules/express/node_modules/connect/node_modules/formidable/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Formidable

[image: Build Status] [http://travis-ci.org/felixge/node-formidable]

Purpose

A node.js module for parsing form data, especially file uploads.

Current status

This module was developed for Transloadit [http://transloadit.com/], a service focused on uploading
and encoding images and videos. It has been battle-tested against hundreds of GB of file uploads from
a large variety of clients and is considered production-ready.

Features

		Fast (~500mb/sec), non-buffering multipart parser

		Automatically writing file uploads to disk

		Low memory footprint

		Graceful error handling

		Very high test coverage

Installation

This is a low level package, and if you’re using a high level framework such as Express, chances are it’s already included in it. You can read this discussion [http://stackoverflow.com/questions/11295554/how-to-disable-express-bodyparser-for-file-uploads-node-js] about how Formidable is integrated with Express.

Via npm [http://github.com/isaacs/npm]:

npm install formidable@latest

Manually:

git clone git://github.com/felixge/node-formidable.git formidable
vim my.js
var formidable = require('./formidable');

Note: Formidable requires gently [http://github.com/felixge/node-gently] to run the unit tests, but you won’t need it for just using the library.

Example

Parse an incoming file upload.

var formidable = require('formidable'),
 http = require('http'),
 util = require('util');

http.createServer(function(req, res) {
 if (req.url == '/upload' && req.method.toLowerCase() == 'post') {
 // parse a file upload
 var form = new formidable.IncomingForm();

 form.parse(req, function(err, fields, files) {
 res.writeHead(200, {'content-type': 'text/plain'});
 res.write('received upload:\n\n');
 res.end(util.inspect({fields: fields, files: files}));
 });

 return;
 }

 // show a file upload form
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(
 '<form action="/upload" enctype="multipart/form-data" method="post">'+
 '<input type="text" name="title">
'+
 '<input type="file" name="upload" multiple="multiple">
'+
 '<input type="submit" value="Upload">'+
 '</form>'
);
}).listen(8080);

API

Formidable.IncomingForm

var form = new formidable.IncomingForm()

Creates a new incoming form.

form.encoding = 'utf-8';

Sets encoding for incoming form fields.

form.uploadDir = "/my/dir";

Sets the directory for placing file uploads in. You can move them later on using
fs.rename(). The default is os.tmpDir().

form.keepExtensions = false;

If you want the files written to form.uploadDir to include the extensions of the original files, set this property to true.

form.type

Either ‘multipart’ or ‘urlencoded’ depending on the incoming request.

form.maxFieldsSize = 2 * 1024 * 1024;

Limits the amount of memory a field (not file) can allocate in bytes.
If this value is exceeded, an 'error' event is emitted. The default
size is 2MB.

form.maxFields = 1000;

Limits the number of fields that the querystring parser will decode. Defaults
to 1000 (0 for unlimited).

form.hash = false;

If you want checksums calculated for incoming files, set this to either 'sha1' or 'md5'.

form.multiples = false;

If this option is enabled, when you call form.parse, the files argument will contain arrays of files for inputs which submit multiple files using the HTML5 multiple attribute.

form.bytesReceived

The amount of bytes received for this form so far.

form.bytesExpected

The expected number of bytes in this form.

form.parse(request, [cb]);

Parses an incoming node.js request containing form data. If cb is provided, all fields and files are collected and passed to the callback:

form.parse(req, function(err, fields, files) {
 // ...
});

form.onPart(part);

You may overwrite this method if you are interested in directly accessing the multipart stream. Doing so will disable any 'field' / 'file' events processing which would occur otherwise, making you fully responsible for handling the processing.

form.onPart = function(part) {
 part.addListener('data', function() {
 // ...
 });
}

If you want to use formidable to only handle certain parts for you, you can do so:

form.onPart = function(part) {
 if (!part.filename) {
 // let formidable handle all non-file parts
 form.handlePart(part);
 }
}

Check the code in this method for further inspiration.

Formidable.File

file.size = 0

The size of the uploaded file in bytes. If the file is still being uploaded (see 'fileBegin' event), this property says how many bytes of the file have been written to disk yet.

file.path = null

The path this file is being written to. You can modify this in the 'fileBegin' event in
case you are unhappy with the way formidable generates a temporary path for your files.

file.name = null

The name this file had according to the uploading client.

file.type = null

The mime type of this file, according to the uploading client.

file.lastModifiedDate = null

A date object (or null) containing the time this file was last written to. Mostly
here for compatibility with the W3C File API Draft [http://dev.w3.org/2006/webapi/FileAPI/].

file.hash = null

If hash calculation was set, you can read the hex digest out of this var.

Formidable.File#toJSON()

This method returns a JSON-representation of the file, allowing you to
JSON.stringify() the file which is useful for logging and responding
to requests.

Events

‘progress’

form.on('progress', function(bytesReceived, bytesExpected) {
});

Emitted after each incoming chunk of data that has been parsed. Can be used to roll your own progress bar.

‘field’

form.on('field', function(name, value) {
});

‘fileBegin’

Emitted whenever a field / value pair has been received.

form.on('fileBegin', function(name, file) {
});

‘file’

Emitted whenever a new file is detected in the upload stream. Use this even if
you want to stream the file to somewhere else while buffering the upload on
the file system.

Emitted whenever a field / file pair has been received. file is an instance of File.

form.on('file', function(name, file) {
});

‘error’

Emitted when there is an error processing the incoming form. A request that experiences an error is automatically paused, you will have to manually call request.resume() if you want the request to continue firing 'data' events.

form.on('error', function(err) {
});

‘aborted’

Emitted when the request was aborted by the user. Right now this can be due to a ‘timeout’ or ‘close’ event on the socket. In the future there will be a separate ‘timeout’ event (needs a change in the node core).

form.on('aborted', function() {
});

‘end’

form.on('end', function() {
});

Emitted when the entire request has been received, and all contained files have finished flushing to disk. This is a great place for you to send your response.

Changelog

v1.0.14

		Add failing hash tests. (Ben Trask)

		Enable hash calculation again (Eugene Girshov)

		Test for immediate data events (Tim Smart)

		Re-arrange IncomingForm#parse (Tim Smart)

v1.0.13

		Only update hash if update method exists (Sven Lito)

		According to travis v0.10 needs to go quoted (Sven Lito)

		Bumping build node versions (Sven Lito)

		Additional fix for empty requests (Eugene Girshov)

		Change the default to 1000, to match the new Node behaviour. (OrangeDog)

		Add ability to control maxKeys in the querystring parser. (OrangeDog)

		Adjust test case to work with node 0.9.x (Eugene Girshov)

		Update package.json (Sven Lito)

		Path adjustment according to eb4468b (Markus Ast)

v1.0.12

		Emit error on aborted connections (Eugene Girshov)

		Add support for empty requests (Eugene Girshov)

		Fix name/filename handling in Content-Disposition (jesperp)

		Tolerate malformed closing boundary in multipart (Eugene Girshov)

		Ignore preamble in multipart messages (Eugene Girshov)

		Add support for application/json (Mike Frey, Carlos Rodriguez)

		Add support for Base64 encoding (Elmer Bulthuis)

		Add File#toJSON (TJ Holowaychuk)

		Remove support for Node.js 0.4 & 0.6 (Andrew Kelley)

		Documentation improvements (Sven Lito, Andre Azevedo)

		Add support for application/octet-stream (Ion Lupascu, Chris Scribner)

		Use os.tmpDir() to get tmp directory (Andrew Kelley)

		Improve package.json (Andrew Kelley, Sven Lito)

		Fix benchmark script (Andrew Kelley)

		Fix scope issue in incoming_forms (Sven Lito)

		Fix file handle leak on error (OrangeDog)

v1.0.11

		Calculate checksums for incoming files (sreuter)

		Add definition parameters to “IncomingForm” as an argument (Math-)

v1.0.10

		Make parts to be proper Streams (Matt Robenolt)

v1.0.9

		Emit progress when content length header parsed (Tim Koschützki)

		Fix Readme syntax due to GitHub changes (goob)

		Replace references to old ‘sys’ module in Readme with ‘util’ (Peter Sugihara)

v1.0.8

		Strip potentially unsafe characters when using keepExtensions: true.

		Switch to utest / urun for testing

		Add travis build

v1.0.7

		Remove file from package that was causing problems when installing on windows. (#102)

		Fix typos in Readme (Jason Davies).

v1.0.6

		Do not default to the default to the field name for file uploads where
filename=””.

v1.0.5

		Support filename=”” in multipart parts

		Explain unexpected end() errors in parser better

Note: Starting with this version, formidable emits ‘file’ events for empty
file input fields. Previously those were incorrectly emitted as regular file
input fields with value = “”.

v1.0.4

		Detect a good default tmp directory regardless of platform. (#88)

v1.0.3

		Fix problems with utf8 characters (#84) / semicolons in filenames (#58)

		Small performance improvements

		New test suite and fixture system

v1.0.2

		Exclude node_modules folder from git

		Implement new 'aborted' event

		Fix files in example folder to work with recent node versions

		Make gently a devDependency

See Commits [https://github.com/felixge/node-formidable/compare/v1.0.1...v1.0.2]

v1.0.1

		Fix package.json to refer to proper main directory. (#68, Dean Landolt)

See Commits [https://github.com/felixge/node-formidable/compare/v1.0.0...v1.0.1]

v1.0.0

		Add support for multipart boundaries that are quoted strings. (Jeff Craig)

This marks the beginning of development on version 2.0 which will include
several architectural improvements.

See Commits [https://github.com/felixge/node-formidable/compare/v0.9.11...v1.0.0]

v0.9.11

		Emit 'progress' event when receiving data, regardless of parsing it. (Tim Koschützki)

		Use W3C FileAPI Draft [http://dev.w3.org/2006/webapi/FileAPI/] properties for File class

Important: The old property names of the File class will be removed in a
future release.

See Commits [https://github.com/felixge/node-formidable/compare/v0.9.10...v0.9.11]

Older releases

These releases were done before starting to maintain the above Changelog:

		v0.9.10 [https://github.com/felixge/node-formidable/compare/v0.9.9...v0.9.10]

		v0.9.9 [https://github.com/felixge/node-formidable/compare/v0.9.8...v0.9.9]

		v0.9.8 [https://github.com/felixge/node-formidable/compare/v0.9.7...v0.9.8]

		v0.9.7 [https://github.com/felixge/node-formidable/compare/v0.9.6...v0.9.7]

		v0.9.6 [https://github.com/felixge/node-formidable/compare/v0.9.5...v0.9.6]

		v0.9.5 [https://github.com/felixge/node-formidable/compare/v0.9.4...v0.9.5]

		v0.9.4 [https://github.com/felixge/node-formidable/compare/v0.9.3...v0.9.4]

		v0.9.3 [https://github.com/felixge/node-formidable/compare/v0.9.2...v0.9.3]

		v0.9.2 [https://github.com/felixge/node-formidable/compare/v0.9.1...v0.9.2]

		v0.9.1 [https://github.com/felixge/node-formidable/compare/v0.9.0...v0.9.1]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.1.0 [https://github.com/felixge/node-formidable/commits/v0.1.0]

License

Formidable is licensed under the MIT license.

Ports

		multipart-parser [http://github.com/FooBarWidget/multipart-parser]: a C++ parser based on formidable

Credits

		Ryan Dahl [http://twitter.com/ryah] for his work on http-parser [http://github.com/ry/http-parser] which heavily inspired multipart_parser.js

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/depd/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-09-17

		No changes

0.4.5 / 2014-09-09

		Improve call speed to functions using the function wrapper

		Support Node.js 0.6

0.4.4 / 2014-07-27

		Work-around v8 generating empty stack traces

0.4.3 / 2014-07-26

		Fix exception when global Error.stackTraceLimit is too low

0.4.2 / 2014-07-19

		Correct call site for wrapped functions and properties

0.4.1 / 2014-07-19

		Improve automatic message generation for function properties

0.4.0 / 2014-07-19

		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		Support deprecate.property(fn, prop, message)

0.3.0 / 2014-06-16

		Add NO_DEPRECATION environment variable

0.2.0 / 2014-06-15

		Add deprecate.property(obj, prop, message)

		Remove supports-color dependency for node.js 0.8

0.1.0 / 2014-06-15

		Add deprecate.function(fn, message)

		Add process.on('deprecation', fn) emitter

		Automatically generate message when omitted from deprecate()

0.0.1 / 2014-06-15

		Fix warning for dynamic calls at singe call site

0.0.0 / 2014-06-15

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/merge-descriptors/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Merge Descriptors [image: Build Status] [https://travis-ci.org/component/merge-descriptors]

Merge objects using descriptors.

var thing = {
 get name() {
 return 'jon'
 }
}

var animal = {

}

merge(animal, thing)

animal.name === 'jon'

API

merge(destination, source)

Overwrites destination‘s descriptors with source‘s.

License

The MIT License (MIT)

Copyright (c) 2013 Jonathan Ong me@jongleberry.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai-jquery/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

chai-jquery

chai-jquery is an extension to the chai [http://chaijs.com/] assertion library that
provides a set of jQuery-specific assertions.

Usage

Include chai-jquery.js in your test file, after chai.js (version 1.0.0-rc1 or later):

<script src="chai-jquery.js"></script>

Use the assertions with chai’s expect or should assertions.

Assertions

attr(name[, value])

Assert that the first element of the selection has the given attribute, using .attr() [http://api.jquery.com/attr/].
Optionally, assert a particular value as well. The return value is available for chaining.

$('#header').should.have.attr('foo');
expect($('body')).to.have.attr('foo', 'bar');
expect($('body')).to.have.attr('foo').match(/bar/);

prop(name[, value])

Assert that the first element of the selection has the given property, using .prop() [http://api.jquery.com/prop/].
Optionally, assert a particular value as well. The return value is available for chaining.

$('#header').should.have.prop('disabled');
expect($('body')).to.have.prop('disabled', false);
expect($('body')).to.have.prop('value').match(/bar/);

css(name[, value])

Assert that the first element of the selection has the given CSS property, using .css() [http://api.jquery.com/css/].
Optionally, assert a particular value as well. The return value is available for chaining.

$('#header').should.have.css('background');
expect($('body')).to.have.css('background-color', '#ffffff');
expect($('body')).to.have.css('font-family').match(/sans-serif/);

data(name[, value])

Assert that the first element of the selection has the given data value, using .data() [http://api.jquery.com/data/].
Optionally, assert a particular value as well. The return value is available for chaining.

$('#header').should.have.data('foo');
expect($('body')).to.have.data('foo', 'bar');
expect($('body')).to.have.data('foo').match(/bar/);

class(className)

Assert that the first element of the selection has the given class, using .hasClass() [http://api.jquery.com/hasClass/].

$('#header').should.have.class('foo');
expect($('body')).to.have.class('foo');

id(id)

Assert that the first element of the selection has the given id, using .attr('id').

$('.header').should.have.id('#main');
expect($('body')).to.have.id('foo');

html(html)

Assert that the html of the first element of the selection is equal to the given html, using .html() [http://api.jquery.com/html/].

$('.name').should.have.html('John Doe');
expect($('#title')).to.have.html('Chai Tea');

text(text)

Assert that the text of the first element of the selection is equal to the given text, using .text() [http://api.jquery.com/text/].

$('.name').should.have.text('John Doe');
expect($('#title')).to.have.text('Chai Tea');

value(value)

Assert that the first element of the selection has the given value, using .val() [http://api.jquery.com/val/].

$('.name').should.have.value('John Doe');
expect($('.year')).to.have.value('2012');

visible

Assert that at least one element of the selection is visible, using .is(':visible') [http://api.jquery.com/:visible/].

$('.name').should.be.visible;
expect($('.year')).to.be.visible;

hidden

Assert that at least one element of the selection is hidden, using .is(':hidden') [http://api.jquery.com/:hidden/].

$('.name').should.be.hidden;
expect($('.year')).to.be.hidden;

selected

Assert that at least one element of the selection is selected, using .is(':selected') [http://api.jquery.com/:selected/].

$('option').should.be.selected;
expect($('option')).not.to.be.selected;

checked

Assert that at least one element of the selection is checked, using .is(':checked') [http://api.jquery.com/:checked/].

$('.checked').should.be.checked;
expect($('input')).not.to.be.checked;

enabled

Assert that at least one element of the selection is enabled, using .is(':enabled') [http://api.jquery.com/:enabled/].

$('.enabled').should.be.enabled;
expect($('enabled')).to.be.enabled;

disabled

Assert that at least one element of the selection is disabled, using .is(':disabled') [http://api.jquery.com/:disabled/].

$('.disabled').should.be.disabled;
expect($('input')).not.to.be.disabled;

empty

Assert that at least one element of the selection is empty, using .is(':empty') [http://api.jquery.com/empty-selector/].
If the object asserted against is not a jQuery object, the original implementation will be called.

$('.empty').should.be.empty;
expect($('body')).not.to.be.empty;

exist

Assert that the selection is not empty. Note that this overrides the built-in chai assertion. If the object asserted
against is not a jQuery object, the original implementation will be called.

$('#exists').should.exist;
expect($('#nonexistent')).not.to.exist;

match(selector) / be(selector)

Assert that the selection matches a given selector, using .is() [http://api.jquery.com/is/]. Note that the
built-in behavior of the match function and be property is preserved – if the object asserted against is
not a jQuery object, or if be is not called as a function, the original implementation will be called. Otherwise,
match and be are synonyms – use whichever one reads better.

$('input').should.match('#foo');
expect($('#empty')).to.be(':empty');

contain(text)

Assert that the selection contains the given text, using :contains() [http://api.jquery.com/contains-selector/].
If the object asserted against is not a jQuery object, or if contain is not called as a function, the original
implementation will be called.

$('body').should.contain('text');
expect($('#content')).to.contain('text');

have(selector)

Assert that the selection contains at least one element which has a descendant matching the given selector,
using .has() [http://api.jquery.com/has/]. If the object asserted against is not a jQuery object, or if have
is not called as a function, the original implementation will be called.

$('body').should.have('h1');
expect($('#content')).to.have('div');

Note that this assertion has the unfortunate side effect of causing assertions such as
expect(selection).to.have.length(2) to fail. The technical cause is that the have property must be a function,
and functions have a built-in length property that cannot be modified. As as workaround, write the assertion
as expect(selection).to.be.of.length(2) instead.

Contributing

To run the test suite, run npm install (requires
Node.js [http://nodejs.org/] to be installed on your system), and open
test/index.html in your web browser.

License

Copyright (c) 2012 John Firebaugh

MIT License (see the LICENSE file)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/debug/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

debug

tiny node.js debugging utility modelled after node core’s debugging technique.

Installation

$ npm install debug

Usage

With debug you simply invoke the exported function to generate your debug function, passing it a name which will determine if a noop function is returned, or a decorated console.error, so all of the console format string goodies you’re used to work fine. A unique color is selected per-function for visibility.

Example app.js:

var debug = require('debug')('http')
 , http = require('http')
 , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
 debug(req.method + ' ' + req.url);
 res.end('hello\n');
}).listen(3000, function(){
 debug('listening');
});

// fake worker of some kind

require('./worker');

Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
 debug('doing some work');
}, 1000);

The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: debug http and worker]

[image: debug worker]

Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image:]

When stdout is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:

[image:]

Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use ”:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.

Wildcards

The * character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect.compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character. For example, DEBUG=*,-connect:* would include all debuggers except those starting with “connect:”.

Browser support

Debug works in the browser as well, currently persisted by localStorage. For example if you have worker:a and worker:b as shown below, and wish to debug both type debug.enable('worker:*') in the console and refresh the page, this will remain until you disable with debug.disable().

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
 a('doing some work');
}, 1000);

setInterval(function(){
 b('doing some work');
}, 1200);

Web Inspector Colors

Colors are also enabled on “Web Inspectors” that understand the %c formatting
option. These are WebKit web inspectors, Firefox (since version
31 [https://hacks.mozilla.org/2014/05/editable-box-model-multiple-selection-sublime-text-keys-much-more-firefox-developer-tools-episode-31/])
and the Firebug plugin for Firefox (any version).

Colored output looks something like:

[image:]

stderr vs stdout

You can set an alternative logging method per-namespace by overriding the log method on a per-namespace or globally:

Example stderr.js:

var debug = require('../');
var log = debug('app:log');

// by default console.log is used
log('goes to stdout!');

var error = debug('app:error');
// set this namespace to log via console.error
error.log = console.error.bind(console); // don't forget to bind to console!
error('goes to stderr');
log('still goes to stdout!');

// set all output to go via console.warn
// overrides all per-namespace log settings
debug.log = console.warn.bind(console);
log('now goes to stderr via console.warn');
error('still goes to stderr, but via console.warn now');

Authors

		TJ Holowaychuk

		Nathan Rajlich

License

(The MIT License)

Copyright (c) 2014 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

4.10.2 / 2014-11-09

		Correctly invoke async router callback asynchronously

		deps: accepts@~1.1.3
		deps: mime-types@~2.0.3

		deps: type-is@~1.5.3
		deps: mime-types@~2.0.3

4.10.1 / 2014-10-28

		Fix handling of URLs containing :// in the path

		deps: qs@2.3.2
		Fix parsing of mixed objects and values

4.10.0 / 2014-10-23

		Add support for app.set('views', array)
		Views are looked up in sequence in array of directories

		Fix res.send(status) to mention res.sendStatus(status)

		Fix handling of invalid empty URLs

		Use content-disposition module for res.attachment/res.download
		Sends standards-compliant Content-Disposition header

		Full Unicode support

		Use path.resolve in view lookup

		deps: debug@~2.1.0
		Implement DEBUG_FD env variable support

		deps: depd@~1.0.0

		deps: etag@~1.5.0
		Improve string performance

		Slightly improve speed for weak ETags over 1KB

		deps: finalhandler@0.3.2
		Terminate in progress response only on error

		Use on-finished to determine request status

		deps: debug@~2.1.0

		deps: on-finished@~2.1.1

		deps: on-finished@~2.1.1
		Fix handling of pipelined requests

		deps: qs@2.3.0
		Fix parsing of mixed implicit and explicit arrays

		deps: send@0.10.1
		deps: debug@~2.1.0

		deps: depd@~1.0.0

		deps: etag@~1.5.0

		deps: on-finished@~2.1.1

		deps: serve-static@~1.7.1
		deps: send@0.10.1

4.9.8 / 2014-10-17

		Fix res.redirect body when redirect status specified

		deps: accepts@~1.1.2
		Fix error when media type has invalid parameter

		deps: negotiator@0.4.9

4.9.7 / 2014-10-10

		Fix using same param name in array of paths

4.9.6 / 2014-10-08

		deps: accepts@~1.1.1
		deps: mime-types@~2.0.2

		deps: negotiator@0.4.8

		deps: serve-static@~1.6.4
		Fix redirect loop when index file serving disabled

		deps: type-is@~1.5.2
		deps: mime-types@~2.0.2

4.9.5 / 2014-09-24

		deps: etag@~1.4.0

		deps: proxy-addr@~1.0.3
		Use forwarded npm module

		deps: send@0.9.3
		deps: etag@~1.4.0

		deps: serve-static@~1.6.3
		deps: send@0.9.3

4.9.4 / 2014-09-19

		deps: qs@2.2.4
		Fix issue with object keys starting with numbers truncated

4.9.3 / 2014-09-18

		deps: proxy-addr@~1.0.2
		Fix a global leak when multiple subnets are trusted

		deps: ipaddr.js@0.1.3

4.9.2 / 2014-09-17

		Fix regression for empty string path in app.use

		Fix router.use to accept array of middleware without path

		Improve error message for bad app.use arguments

4.9.1 / 2014-09-16

		Fix app.use to accept array of middleware without path

		deps: depd@0.4.5

		deps: etag@~1.3.1

		deps: send@0.9.2
		deps: depd@0.4.5

		deps: etag@~1.3.1

		deps: range-parser@~1.0.2

		deps: serve-static@~1.6.2
		deps: send@0.9.2

4.9.0 / 2014-09-08

		Add res.sendStatus

		Invoke callback for sendfile when client aborts
		Applies to res.sendFile, res.sendfile, and res.download

		err will be populated with request aborted error

		Support IP address host in req.subdomains

		Use etag to generate ETag headers

		deps: accepts@~1.1.0
		update mime-types

		deps: cookie-signature@1.0.5

		deps: debug@~2.0.0

		deps: finalhandler@0.2.0
		Set X-Content-Type-Options: nosniff header

		deps: debug@~2.0.0

		deps: fresh@0.2.4

		deps: media-typer@0.3.0
		Throw error when parameter format invalid on parse

		deps: qs@2.2.3
		Fix issue where first empty value in array is discarded

		deps: range-parser@~1.0.2

		deps: send@0.9.1
		Add lastModified option

		Use etag to generate ETag header

		deps: debug@~2.0.0

		deps: fresh@0.2.4

		deps: serve-static@~1.6.1
		Add lastModified option

		deps: send@0.9.1

		deps: type-is@~1.5.1
		fix hasbody to be true for content-length: 0

		deps: media-typer@0.3.0

		deps: mime-types@~2.0.1

		deps: vary@~1.0.0
		Accept valid Vary header string as field

4.8.8 / 2014-09-04

		deps: send@0.8.5
		Fix a path traversal issue when using root

		Fix malicious path detection for empty string path

		deps: serve-static@~1.5.4
		deps: send@0.8.5

4.8.7 / 2014-08-29

		deps: qs@2.2.2
		Remove unnecessary cloning

4.8.6 / 2014-08-27

		deps: qs@2.2.0
		Array parsing fix

		Performance improvements

4.8.5 / 2014-08-18

		deps: send@0.8.3
		deps: destroy@1.0.3

		deps: on-finished@2.1.0

		deps: serve-static@~1.5.3
		deps: send@0.8.3

4.8.4 / 2014-08-14

		deps: qs@1.2.2

		deps: send@0.8.2
		Work around fd leak in Node.js 0.10 for fs.ReadStream

		deps: serve-static@~1.5.2
		deps: send@0.8.2

4.8.3 / 2014-08-10

		deps: parseurl@~1.3.0

		deps: qs@1.2.1

		deps: serve-static@~1.5.1
		Fix parsing of weird req.originalUrl values

		deps: parseurl@~1.3.0

		deps: utils-merge@1.0.0

4.8.2 / 2014-08-07

		deps: qs@1.2.0
		Fix parsing array of objects

4.8.1 / 2014-08-06

		fix incorrect deprecation warnings on res.download

		deps: qs@1.1.0
		Accept urlencoded square brackets

		Accept empty values in implicit array notation

4.8.0 / 2014-08-05

		add res.sendFile
		accepts a file system path instead of a URL

		requires an absolute path or root option specified

		deprecate res.sendfile – use res.sendFile instead

		support mounted app as any argument to app.use()

		deps: qs@1.0.2
		Complete rewrite

		Limits array length to 20

		Limits object depth to 5

		Limits parameters to 1,000

		deps: send@0.8.1
		Add extensions option

		deps: serve-static@~1.5.0
		Add extensions option

		deps: send@0.8.1

4.7.4 / 2014-08-04

		fix res.sendfile regression for serving directory index files

		deps: send@0.7.4
		Fix incorrect 403 on Windows and Node.js 0.11

		Fix serving index files without root dir

		deps: serve-static@~1.4.4
		deps: send@0.7.4

4.7.3 / 2014-08-04

		deps: send@0.7.3
		Fix incorrect 403 on Windows and Node.js 0.11

		deps: serve-static@~1.4.3
		Fix incorrect 403 on Windows and Node.js 0.11

		deps: send@0.7.3

4.7.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

		deps: send@0.7.2
		deps: depd@0.4.4

		deps: serve-static@~1.4.2

4.7.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

		deps: send@0.7.1
		deps: depd@0.4.3

		deps: serve-static@~1.4.1

4.7.0 / 2014-07-25

		fix req.protocol for proxy-direct connections

		configurable query parser with app.set('query parser', parser)
		app.set('query parser', 'extended') parse with “qs” module

		app.set('query parser', 'simple') parse with “querystring” core module

		app.set('query parser', false) disable query string parsing

		app.set('query parser', true) enable simple parsing

		deprecate res.json(status, obj) – use res.status(status).json(obj) instead

		deprecate res.jsonp(status, obj) – use res.status(status).jsonp(obj) instead

		deprecate res.send(status, body) – use res.status(status).send(body) instead

		deps: debug@1.0.4

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		deps: finalhandler@0.1.0
		Respond after request fully read

		deps: debug@1.0.4

		deps: parseurl@~1.2.0
		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

		deps: send@0.7.0
		Add dotfiles option

		Cap maxAge value to 1 year

		deps: debug@1.0.4

		deps: depd@0.4.2

		deps: serve-static@~1.4.0
		deps: parseurl@~1.2.0

		deps: send@0.7.0

		perf: prevent multiple Buffer creation in res.send

4.6.1 / 2014-07-12

		fix subapp.mountpath regression for app.use(subapp)

4.6.0 / 2014-07-11

		accept multiple callbacks to app.use()

		add explicit “Rosetta Flash JSONP abuse” protection
		previous versions are not vulnerable; this is just explicit protection

		catch errors in multiple req.param(name, fn) handlers

		deprecate res.redirect(url, status) – use res.redirect(status, url) instead

		fix res.send(status, num) to send num as json (not error)

		remove unnecessary escaping when res.jsonp returns JSON response

		support non-string path in app.use(path, fn)
		supports array of paths

		supports RegExp

		router: fix optimization on router exit

		router: refactor location of try blocks

		router: speed up standard app.use(fn)

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

		deps: finalhandler@0.0.3
		deps: debug@1.0.3

		deps: methods@1.1.0
		add CONNECT

		deps: parseurl@~1.1.3
		faster parsing of href-only URLs

		deps: path-to-regexp@0.1.3

		deps: send@0.6.0
		deps: debug@1.0.3

		deps: serve-static@~1.3.2
		deps: parseurl@~1.1.3

		deps: send@0.6.0

		perf: fix arguments reassign deopt in some res methods

4.5.1 / 2014-07-06

		fix routing regression when altering req.method

4.5.0 / 2014-07-04

		add deprecation message to non-plural req.accepts*

		add deprecation message to res.send(body, status)

		add deprecation message to res.vary()

		add headers option to res.sendfile
		use to set headers on successful file transfer

		add mergeParams option to Router
		merges req.params from parent routes

		add req.hostname – correct name for what req.host returns

		deprecate things with depd module

		deprecate req.host – use req.hostname instead

		fix behavior when handling request without routes

		fix handling when route.all is only route

		invoke router.param() only when route matches

		restore req.params after invoking router

		use finalhandler for final response handling

		use media-typer to alter content-type charset

		deps: accepts@~1.0.7

		deps: send@0.5.0
		Accept string for maxage (converted by ms)

		Include link in default redirect response

		deps: serve-static@~1.3.0
		Accept string for maxAge (converted by ms)

		Add setHeaders option

		Include HTML link in redirect response

		deps: send@0.5.0

		deps: type-is@~1.3.2

4.4.5 / 2014-06-26

		deps: cookie-signature@1.0.4
		fix for timing attacks

4.4.4 / 2014-06-20

		fix res.attachment Unicode filenames in Safari

		fix “trim prefix” debug message in express:router

		deps: accepts@~1.0.5

		deps: buffer-crc32@0.2.3

4.4.3 / 2014-06-11

		fix persistence of modified req.params[name] from app.param()

		deps: accepts@1.0.3
		deps: negotiator@0.4.6

		deps: debug@1.0.2

		deps: send@0.4.3
		Do not throw un-catchable error on file open race condition

		Use escape-html for HTML escaping

		deps: debug@1.0.2

		deps: finished@1.2.2

		deps: fresh@0.2.2

		deps: serve-static@1.2.3
		Do not throw un-catchable error on file open race condition

		deps: send@0.4.3

4.4.2 / 2014-06-09

		fix catching errors from top-level handlers

		use vary module for res.vary

		deps: debug@1.0.1

		deps: proxy-addr@1.0.1

		deps: send@0.4.2
		fix “event emitter leak” warnings

		deps: debug@1.0.1

		deps: finished@1.2.1

		deps: serve-static@1.2.2
		fix “event emitter leak” warnings

		deps: send@0.4.2

		deps: type-is@1.2.1

4.4.1 / 2014-06-02

		deps: methods@1.0.1

		deps: send@0.4.1
		Send max-age in Cache-Control in correct format

		deps: serve-static@1.2.1
		use escape-html for escaping

		deps: send@0.4.1

4.4.0 / 2014-05-30

		custom etag control with app.set('etag', val)
		app.set('etag', function(body, encoding){ return '"etag"' }) custom etag generation

		app.set('etag', 'weak') weak tag

		app.set('etag', 'strong') strong etag

		app.set('etag', false) turn off

		app.set('etag', true) standard etag

		mark res.send ETag as weak and reduce collisions

		update accepts to 1.0.2
		Fix interpretation when header not in request

		update send to 0.4.0
		Calculate ETag with md5 for reduced collisions

		Ignore stream errors after request ends

		deps: debug@0.8.1

		update serve-static to 1.2.0
		Calculate ETag with md5 for reduced collisions

		Ignore stream errors after request ends

		deps: send@0.4.0

4.3.2 / 2014-05-28

		fix handling of errors from router.param() callbacks

4.3.1 / 2014-05-23

		revert “fix behavior of multiple app.VERB for the same path”
		this caused a regression in the order of route execution

4.3.0 / 2014-05-21

		add req.baseUrl to access the path stripped from req.url in routes

		fix behavior of multiple app.VERB for the same path

		fix issue routing requests among sub routers

		invoke router.param() only when necessary instead of every match

		proper proxy trust with app.set('trust proxy', trust)
		app.set('trust proxy', 1) trust first hop

		app.set('trust proxy', 'loopback') trust loopback addresses

		app.set('trust proxy', '10.0.0.1') trust single IP

		app.set('trust proxy', '10.0.0.1/16') trust subnet

		app.set('trust proxy', '10.0.0.1, 10.0.0.2') trust list

		app.set('trust proxy', false) turn off

		app.set('trust proxy', true) trust everything

		set proper charset in Content-Type for res.send

		update type-is to 1.2.0
		support suffix matching

4.2.0 / 2014-05-11

		deprecate app.del() – use app.delete() instead

		deprecate res.json(obj, status) – use res.json(status, obj) instead
		the edge-case res.json(status, num) requires res.status(status).json(num)

		deprecate res.jsonp(obj, status) – use res.jsonp(status, obj) instead
		the edge-case res.jsonp(status, num) requires res.status(status).jsonp(num)

		fix req.next when inside router instance

		include ETag header in HEAD requests

		keep previous Content-Type for res.jsonp

		support PURGE method
		add app.purge

		add router.purge

		include PURGE in app.all

		update debug to 0.8.0
		add enable() method

		change from stderr to stdout

		update methods to 1.0.0
		add PURGE

4.1.2 / 2014-05-08

		fix req.host for IPv6 literals

		fix res.jsonp error if callback param is object

4.1.1 / 2014-04-27

		fix package.json to reflect supported node version

4.1.0 / 2014-04-24

		pass options from res.sendfile to send

		preserve casing of headers in res.header and res.set

		support unicode file names in res.attachment and res.download

		update accepts to 1.0.1
		deps: negotiator@0.4.0

		update cookie to 0.1.2
		Fix for maxAge == 0

		made compat with expires field

		update send to 0.3.0
		Accept API options in options object

		Coerce option types

		Control whether to generate etags

		Default directory access to 403 when index disabled

		Fix sending files with dots without root set

		Include file path in etag

		Make “Can’t set headers after they are sent.” catchable

		Send full entity-body for multi range requests

		Set etags to “weak”

		Support “If-Range” header

		Support multiple index paths

		deps: mime@1.2.11

		update serve-static to 1.1.0
		Accept options directly to send module

		Resolve relative paths at middleware setup

		Use parseurl to parse the URL from request

		deps: send@0.3.0

		update type-is to 1.1.0
		add non-array values support

		add multipart as a shorthand

4.0.0 / 2014-04-09

		remove:
		node 0.8 support

		connect and connect’s patches except for charset handling

		express(1) - moved to express-generator [https://github.com/expressjs/generator]

		express.createServer() - it has been deprecated for a long time. Use express()

		app.configure - use logic in your own app code

		app.router - is removed

		req.auth - use basic-auth instead

		req.accepted* - use req.accepts*() instead

		res.location - relative URL resolution is removed

		res.charset - include the charset in the content type when using res.set()

		all bundled middleware except static

		change:
		app.route -> app.mountpath when mounting an express app in another express app

		json spaces no longer enabled by default in development

		req.accepts* -> req.accepts*s - i.e. req.acceptsEncoding -> req.acceptsEncodings

		req.params is now an object instead of an array

		res.locals is no longer a function. It is a plain js object. Treat it as such.

		res.headerSent -> res.headersSent to match node.js ServerResponse object

		refactor:
		req.accepts* with accepts [https://github.com/expressjs/accepts]

		req.is with type-is [https://github.com/expressjs/type-is]

		path-to-regexp [https://github.com/component/path-to-regexp]

		add:
		app.router() - returns the app Router instance

		app.route() - Proxy to the app’s Router#route() method to create a new route

		Router & Route - public API

3.18.3 / 2014-11-09

		deps: connect@2.27.3
		Correctly invoke async callback asynchronously

		deps: csurf@~1.6.3

3.18.2 / 2014-10-28

		deps: connect@2.27.2
		Fix handling of URLs containing :// in the path

		deps: body-parser@~1.9.2

		deps: qs@2.3.2

3.18.1 / 2014-10-22

		Fix internal utils.merge deprecation warnings

		deps: connect@2.27.1
		deps: body-parser@~1.9.1

		deps: express-session@~1.9.1

		deps: finalhandler@0.3.2

		deps: morgan@~1.4.1

		deps: qs@2.3.0

		deps: serve-static@~1.7.1

		deps: send@0.10.1
		deps: on-finished@~2.1.1

3.18.0 / 2014-10-17

		Use content-disposition module for res.attachment/res.download
		Sends standards-compliant Content-Disposition header

		Full Unicode support

		Use etag module to generate ETag headers

		deps: connect@2.27.0
		Use http-errors module for creating errors

		Use utils-merge module for merging objects

		deps: body-parser@~1.9.0

		deps: compression@~1.2.0

		deps: connect-timeout@~1.4.0

		deps: debug@~2.1.0

		deps: depd@~1.0.0

		deps: express-session@~1.9.0

		deps: finalhandler@0.3.1

		deps: method-override@~2.3.0

		deps: morgan@~1.4.0

		deps: response-time@~2.2.0

		deps: serve-favicon@~2.1.6

		deps: serve-index@~1.5.0

		deps: serve-static@~1.7.0

		deps: debug@~2.1.0
		Implement DEBUG_FD env variable support

		deps: depd@~1.0.0

		deps: send@0.10.0
		deps: debug@~2.1.0

		deps: depd@~1.0.0

		deps: etag@~1.5.0

3.17.8 / 2014-10-15

		deps: connect@2.26.6
		deps: compression@~1.1.2

		deps: csurf@~1.6.2

		deps: errorhandler@~1.2.2

3.17.7 / 2014-10-08

		deps: connect@2.26.5
		Fix accepting non-object arguments to logger

		deps: serve-static@~1.6.4

3.17.6 / 2014-10-02

		deps: connect@2.26.4
		deps: morgan@~1.3.2

		deps: type-is@~1.5.2

3.17.5 / 2014-09-24

		deps: connect@2.26.3
		deps: body-parser@~1.8.4

		deps: serve-favicon@~2.1.5

		deps: serve-static@~1.6.3

		deps: proxy-addr@~1.0.3
		Use forwarded npm module

		deps: send@0.9.3
		deps: etag@~1.4.0

3.17.4 / 2014-09-19

		deps: connect@2.26.2
		deps: body-parser@~1.8.3

		deps: qs@2.2.4

3.17.3 / 2014-09-18

		deps: proxy-addr@~1.0.2
		Fix a global leak when multiple subnets are trusted

		deps: ipaddr.js@0.1.3

3.17.2 / 2014-09-15

		Use crc instead of buffer-crc32 for speed

		deps: connect@2.26.1
		deps: body-parser@~1.8.2

		deps: depd@0.4.5

		deps: express-session@~1.8.2

		deps: morgan@~1.3.1

		deps: serve-favicon@~2.1.3

		deps: serve-static@~1.6.2

		deps: depd@0.4.5

		deps: send@0.9.2
		deps: depd@0.4.5

		deps: etag@~1.3.1

		deps: range-parser@~1.0.2

3.17.1 / 2014-09-08

		Fix error in req.subdomains on empty host

3.17.0 / 2014-09-08

		Support X-Forwarded-Host in req.subdomains

		Support IP address host in req.subdomains

		deps: connect@2.26.0
		deps: body-parser@~1.8.1

		deps: compression@~1.1.0

		deps: connect-timeout@~1.3.0

		deps: cookie-parser@~1.3.3

		deps: cookie-signature@1.0.5

		deps: csurf@~1.6.1

		deps: debug@~2.0.0

		deps: errorhandler@~1.2.0

		deps: express-session@~1.8.1

		deps: finalhandler@0.2.0

		deps: fresh@0.2.4

		deps: media-typer@0.3.0

		deps: method-override@~2.2.0

		deps: morgan@~1.3.0

		deps: qs@2.2.3

		deps: serve-favicon@~2.1.3

		deps: serve-index@~1.2.1

		deps: serve-static@~1.6.1

		deps: type-is@~1.5.1

		deps: vhost@~3.0.0

		deps: cookie-signature@1.0.5

		deps: debug@~2.0.0

		deps: fresh@0.2.4

		deps: media-typer@0.3.0
		Throw error when parameter format invalid on parse

		deps: range-parser@~1.0.2

		deps: send@0.9.1
		Add lastModified option

		Use etag to generate ETag header

		deps: debug@~2.0.0

		deps: fresh@0.2.4

		deps: vary@~1.0.0
		Accept valid Vary header string as field

3.16.10 / 2014-09-04

		deps: connect@2.25.10
		deps: serve-static@~1.5.4

		deps: send@0.8.5
		Fix a path traversal issue when using root

		Fix malicious path detection for empty string path

3.16.9 / 2014-08-29

		deps: connect@2.25.9
		deps: body-parser@~1.6.7

		deps: qs@2.2.2

3.16.8 / 2014-08-27

		deps: connect@2.25.8
		deps: body-parser@~1.6.6

		deps: csurf@~1.4.1

		deps: qs@2.2.0

3.16.7 / 2014-08-18

		deps: connect@2.25.7
		deps: body-parser@~1.6.5

		deps: express-session@~1.7.6

		deps: morgan@~1.2.3

		deps: serve-static@~1.5.3

		deps: send@0.8.3
		deps: destroy@1.0.3

		deps: on-finished@2.1.0

3.16.6 / 2014-08-14

		deps: connect@2.25.6
		deps: body-parser@~1.6.4

		deps: qs@1.2.2

		deps: serve-static@~1.5.2

		deps: send@0.8.2
		Work around fd leak in Node.js 0.10 for fs.ReadStream

3.16.5 / 2014-08-11

		deps: connect@2.25.5
		Fix backwards compatibility in logger

3.16.4 / 2014-08-10

		Fix original URL parsing in res.location

		deps: connect@2.25.4
		Fix query middleware breaking with argument

		deps: body-parser@~1.6.3

		deps: compression@~1.0.11

		deps: connect-timeout@~1.2.2

		deps: express-session@~1.7.5

		deps: method-override@~2.1.3

		deps: on-headers@~1.0.0

		deps: parseurl@~1.3.0

		deps: qs@1.2.1

		deps: response-time@~2.0.1

		deps: serve-index@~1.1.6

		deps: serve-static@~1.5.1

		deps: parseurl@~1.3.0

3.16.3 / 2014-08-07

		deps: connect@2.25.3
		deps: multiparty@3.3.2

3.16.2 / 2014-08-07

		deps: connect@2.25.2
		deps: body-parser@~1.6.2

		deps: qs@1.2.0

3.16.1 / 2014-08-06

		deps: connect@2.25.1
		deps: body-parser@~1.6.1

		deps: qs@1.1.0

3.16.0 / 2014-08-05

		deps: connect@2.25.0
		deps: body-parser@~1.6.0

		deps: compression@~1.0.10

		deps: csurf@~1.4.0

		deps: express-session@~1.7.4

		deps: qs@1.0.2

		deps: serve-static@~1.5.0

		deps: send@0.8.1
		Add extensions option

3.15.3 / 2014-08-04

		fix res.sendfile regression for serving directory index files

		deps: connect@2.24.3
		deps: serve-index@~1.1.5

		deps: serve-static@~1.4.4

		deps: send@0.7.4
		Fix incorrect 403 on Windows and Node.js 0.11

		Fix serving index files without root dir

3.15.2 / 2014-07-27

		deps: connect@2.24.2
		deps: body-parser@~1.5.2

		deps: depd@0.4.4

		deps: express-session@~1.7.2

		deps: morgan@~1.2.2

		deps: serve-static@~1.4.2

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

		deps: send@0.7.2
		deps: depd@0.4.4

3.15.1 / 2014-07-26

		deps: connect@2.24.1
		deps: body-parser@~1.5.1

		deps: depd@0.4.3

		deps: express-session@~1.7.1

		deps: morgan@~1.2.1

		deps: serve-index@~1.1.4

		deps: serve-static@~1.4.1

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

		deps: send@0.7.1
		deps: depd@0.4.3

3.15.0 / 2014-07-22

		Fix req.protocol for proxy-direct connections

		Pass options from res.sendfile to send

		deps: connect@2.24.0
		deps: body-parser@~1.5.0

		deps: compression@~1.0.9

		deps: connect-timeout@~1.2.1

		deps: debug@1.0.4

		deps: depd@0.4.2

		deps: express-session@~1.7.0

		deps: finalhandler@0.1.0

		deps: method-override@~2.1.2

		deps: morgan@~1.2.0

		deps: multiparty@3.3.1

		deps: parseurl@~1.2.0

		deps: serve-static@~1.4.0

		deps: debug@1.0.4

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		deps: parseurl@~1.2.0
		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

		deps: send@0.7.0
		Add dotfiles option

		Cap maxAge value to 1 year

		deps: debug@1.0.4

		deps: depd@0.4.2

3.14.0 / 2014-07-11

		add explicit “Rosetta Flash JSONP abuse” protection
		previous versions are not vulnerable; this is just explicit protection

		deprecate res.redirect(url, status) – use res.redirect(status, url) instead

		fix res.send(status, num) to send num as json (not error)

		remove unnecessary escaping when res.jsonp returns JSON response

		deps: basic-auth@1.0.0
		support empty password

		support empty username

		deps: connect@2.23.0
		deps: debug@1.0.3

		deps: express-session@~1.6.4

		deps: method-override@~2.1.0

		deps: parseurl@~1.1.3

		deps: serve-static@~1.3.1

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

		deps: methods@1.1.0
		add CONNECT

		deps: parseurl@~1.1.3
		faster parsing of href-only URLs

3.13.0 / 2014-07-03

		add deprecation message to app.configure

		add deprecation message to req.auth

		use basic-auth to parse Authorization header

		deps: connect@2.22.0
		deps: csurf@~1.3.0

		deps: express-session@~1.6.1

		deps: multiparty@3.3.0

		deps: serve-static@~1.3.0

		deps: send@0.5.0
		Accept string for maxage (converted by ms)

		Include link in default redirect response

3.12.1 / 2014-06-26

		deps: connect@2.21.1
		deps: cookie-parser@1.3.2

		deps: cookie-signature@1.0.4

		deps: express-session@~1.5.2

		deps: type-is@~1.3.2

		deps: cookie-signature@1.0.4
		fix for timing attacks

3.12.0 / 2014-06-21

		use media-typer to alter content-type charset

		deps: connect@2.21.0
		deprecate connect(middleware) – use app.use(middleware) instead

		deprecate connect.createServer() – use connect() instead

		fix res.setHeader() patch to work with with get -> append -> set pattern

		deps: compression@~1.0.8

		deps: errorhandler@~1.1.1

		deps: express-session@~1.5.0

		deps: serve-index@~1.1.3

3.11.0 / 2014-06-19

		deprecate things with depd module

		deps: buffer-crc32@0.2.3

		deps: connect@2.20.2
		deprecate verify option to json – use body-parser npm module instead

		deprecate verify option to urlencoded – use body-parser npm module instead

		deprecate things with depd module

		use finalhandler for final response handling

		use media-typer to parse content-type for charset

		deps: body-parser@1.4.3

		deps: connect-timeout@1.1.1

		deps: cookie-parser@1.3.1

		deps: csurf@1.2.2

		deps: errorhandler@1.1.0

		deps: express-session@1.4.0

		deps: multiparty@3.2.9

		deps: serve-index@1.1.2

		deps: type-is@1.3.1

		deps: vhost@2.0.0

3.10.5 / 2014-06-11

		deps: connect@2.19.6
		deps: body-parser@1.3.1

		deps: compression@1.0.7

		deps: debug@1.0.2

		deps: serve-index@1.1.1

		deps: serve-static@1.2.3

		deps: debug@1.0.2

		deps: send@0.4.3
		Do not throw un-catchable error on file open race condition

		Use escape-html for HTML escaping

		deps: debug@1.0.2

		deps: finished@1.2.2

		deps: fresh@0.2.2

3.10.4 / 2014-06-09

		deps: connect@2.19.5
		fix “event emitter leak” warnings

		deps: csurf@1.2.1

		deps: debug@1.0.1

		deps: serve-static@1.2.2

		deps: type-is@1.2.1

		deps: debug@1.0.1

		deps: send@0.4.2
		fix “event emitter leak” warnings

		deps: finished@1.2.1

		deps: debug@1.0.1

3.10.3 / 2014-06-05

		use vary module for res.vary

		deps: connect@2.19.4
		deps: errorhandler@1.0.2

		deps: method-override@2.0.2

		deps: serve-favicon@2.0.1

		deps: debug@1.0.0

3.10.2 / 2014-06-03

		deps: connect@2.19.3
		deps: compression@1.0.6

3.10.1 / 2014-06-03

		deps: connect@2.19.2
		deps: compression@1.0.4

		deps: proxy-addr@1.0.1

3.10.0 / 2014-06-02

		deps: connect@2.19.1
		deprecate methodOverride() – use method-override npm module instead

		deps: body-parser@1.3.0

		deps: method-override@2.0.1

		deps: multiparty@3.2.8

		deps: response-time@2.0.0

		deps: serve-static@1.2.1

		deps: methods@1.0.1

		deps: send@0.4.1
		Send max-age in Cache-Control in correct format

3.9.0 / 2014-05-30

		custom etag control with app.set('etag', val)
		app.set('etag', function(body, encoding){ return '"etag"' }) custom etag generation

		app.set('etag', 'weak') weak tag

		app.set('etag', 'strong') strong etag

		app.set('etag', false) turn off

		app.set('etag', true) standard etag

		Include ETag in HEAD requests

		mark res.send ETag as weak and reduce collisions

		update connect to 2.18.0
		deps: compression@1.0.3

		deps: serve-index@1.1.0

		deps: serve-static@1.2.0

		update send to 0.4.0
		Calculate ETag with md5 for reduced collisions

		Ignore stream errors after request ends

		deps: debug@0.8.1

3.8.1 / 2014-05-27

		update connect to 2.17.3
		deps: body-parser@1.2.2

		deps: express-session@1.2.1

		deps: method-override@1.0.2

3.8.0 / 2014-05-21

		keep previous Content-Type for res.jsonp

		set proper charset in Content-Type for res.send

		update connect to 2.17.1
		fix res.charset appending charset when content-type has one

		deps: express-session@1.2.0

		deps: morgan@1.1.1

		deps: serve-index@1.0.3

3.7.0 / 2014-05-18

		proper proxy trust with app.set('trust proxy', trust)
		app.set('trust proxy', 1) trust first hop

		app.set('trust proxy', 'loopback') trust loopback addresses

		app.set('trust proxy', '10.0.0.1') trust single IP

		app.set('trust proxy', '10.0.0.1/16') trust subnet

		app.set('trust proxy', '10.0.0.1, 10.0.0.2') trust list

		app.set('trust proxy', false) turn off

		app.set('trust proxy', true) trust everything

		update connect to 2.16.2
		deprecate res.headerSent – use res.headersSent

		deprecate res.on("header") – use on-headers module instead

		fix edge-case in res.appendHeader that would append in wrong order

		json: use body-parser

		urlencoded: use body-parser

		dep: bytes@1.0.0

		dep: cookie-parser@1.1.0

		dep: csurf@1.2.0

		dep: express-session@1.1.0

		dep: method-override@1.0.1

3.6.0 / 2014-05-09

		deprecate app.del() – use app.delete() instead

		deprecate res.json(obj, status) – use res.json(status, obj) instead
		the edge-case res.json(status, num) requires res.status(status).json(num)

		deprecate res.jsonp(obj, status) – use res.jsonp(status, obj) instead
		the edge-case res.jsonp(status, num) requires res.status(status).jsonp(num)

		support PURGE method
		add app.purge

		add router.purge

		include PURGE in app.all

		update connect to 2.15.0
		Add res.appendHeader

		Call error stack even when response has been sent

		Patch res.headerSent to return Boolean

		Patch res.headersSent for node.js 0.8

		Prevent default 404 handler after response sent

		dep: compression@1.0.2

		dep: connect-timeout@1.1.0

		dep: debug@^0.8.0

		dep: errorhandler@1.0.1

		dep: express-session@1.0.4

		dep: morgan@1.0.1

		dep: serve-favicon@2.0.0

		dep: serve-index@1.0.2

		update debug to 0.8.0
		add enable() method

		change from stderr to stdout

		update methods to 1.0.0
		add PURGE

		update mkdirp to 0.5.0

3.5.3 / 2014-05-08

		fix req.host for IPv6 literals

		fix res.jsonp error if callback param is object

3.5.2 / 2014-04-24

		update connect to 2.14.5

		update cookie to 0.1.2

		update mkdirp to 0.4.0

		update send to 0.3.0

3.5.1 / 2014-03-25

		pin less-middleware in generated app

3.5.0 / 2014-03-06

		bump deps

3.4.8 / 2014-01-13

		prevent incorrect automatic OPTIONS responses #1868 @dpatti

		update binary and examples for jade 1.0 #1876 @yossi, #1877 @reqshark, #1892 @matheusazzi

		throw 400 in case of malformed paths @rlidwka

3.4.7 / 2013-12-10

		update connect

3.4.6 / 2013-12-01

		update connect (raw-body)

3.4.5 / 2013-11-27

		update connect

		res.location: remove leading ./ #1802 @kapouer

		res.redirect: fix `res.redirect(‘toString’) #1829 @michaelficarra

		res.send: always send ETag when content-length > 0

		router: add Router.all() method

3.4.4 / 2013-10-29

		update connect

		update supertest

		update methods

		express(1): replace bodyParser() with urlencoded() and json() #1795 @chirag04

3.4.3 / 2013-10-23

		update connect

3.4.2 / 2013-10-18

		update connect

		downgrade commander

3.4.1 / 2013-10-15

		update connect

		update commander

		jsonp: check if callback is a function

		router: wrap encodeURIComponent in a try/catch #1735 (@lxe)

		res.format: now includes chraset @1747 (@sorribas)

		res.links: allow multiple calls @1746 (@sorribas)

3.4.0 / 2013-09-07

		add res.vary(). Closes #1682

		update connect

3.3.8 / 2013-09-02

		update connect

3.3.7 / 2013-08-28

		update connect

3.3.6 / 2013-08-27

		Revert “remove charset from json responses. Closes #1631” (causes issues in some clients)

		add: req.accepts take an argument list

3.3.4 / 2013-07-08

		update send and connect

3.3.3 / 2013-07-04

		update connect

3.3.2 / 2013-07-03

		update connect

		update send

		remove .version export

3.3.1 / 2013-06-27

		update connect

3.3.0 / 2013-06-26

		update connect

		add support for multiple X-Forwarded-Proto values. Closes #1646

		change: remove charset from json responses. Closes #1631

		change: return actual booleans from req.accept* functions

		fix jsonp callback array throw

3.2.6 / 2013-06-02

		update connect

3.2.5 / 2013-05-21

		update connect

		update node-cookie

		add: throw a meaningful error when there is no default engine

		change generation of ETags with res.send() to GET requests only. Closes #1619

3.2.4 / 2013-05-09

		fix req.subdomains when no Host is present

		fix req.host when no Host is present, return undefined

3.2.3 / 2013-05-07

		update connect / qs

3.2.2 / 2013-05-03

		update qs

3.2.1 / 2013-04-29

		add app.VERB() paths array deprecation warning

		update connect

		update qs and remove all ~ semver crap

		fix: accept number as value of Signed Cookie

3.2.0 / 2013-04-15

		add “view” constructor setting to override view behaviour

		add req.acceptsEncoding(name)

		add req.acceptedEncodings

		revert cookie signature change causing session race conditions

		fix sorting of Accept values of the same quality

3.1.2 / 2013-04-12

		add support for custom Accept parameters

		update cookie-signature

3.1.1 / 2013-04-01

		add X-Forwarded-Host support to req.host

		fix relative redirects

		update mkdirp

		update buffer-crc32

		remove legacy app.configure() method from app template.

3.1.0 / 2013-01-25

		add support for leading ”.” in “view engine” setting

		add array support to res.set()

		add node 0.8.x to travis.yml

		add “subdomain offset” setting for tweaking req.subdomains

		add res.location(url) implementing res.redirect()-like setting of Location

		use app.get() for x-powered-by setting for inheritance

		fix colons in passwords for req.auth

3.0.6 / 2013-01-04

		add http verb methods to Router

		update connect

		fix mangling of the res.cookie() options object

		fix jsonp whitespace escape. Closes #1132

3.0.5 / 2012-12-19

		add throwing when a non-function is passed to a route

		fix: explicitly remove Transfer-Encoding header from 204 and 304 responses

		revert “add ‘etag’ option”

3.0.4 / 2012-12-05

		add ‘etag’ option to disable res.send() Etags

		add escaping of urls in text/plain in res.redirect()
for old browsers interpreting as html

		change crc32 module for a more liberal license

		update connect

3.0.3 / 2012-11-13

		update connect

		update cookie module

		fix cookie max-age

3.0.2 / 2012-11-08

		add OPTIONS to cors example. Closes #1398

		fix route chaining regression. Closes #1397

3.0.1 / 2012-11-01

		update connect

3.0.0 / 2012-10-23

		add make clean

		add “Basic” check to req.auth

		add req.auth test coverage

		add cb && cb(payload) to res.jsonp(). Closes #1374

		add backwards compat for res.redirect() status. Closes #1336

		add support for res.json() to retain previously defined Content-Types. Closes #1349

		update connect

		change res.redirect() to utilize a pathname-relative Location again. Closes #1382

		remove non-primitive string support for res.send()

		fix view-locals example. Closes #1370

		fix route-separation example

3.0.0rc5 / 2012-09-18

		update connect

		add redis search example

		add static-files example

		add “x-powered-by” setting (app.disable('x-powered-by'))

		add “application/octet-stream” redirect Accept test case. Closes #1317

3.0.0rc4 / 2012-08-30

		add res.jsonp(). Closes #1307

		add “verbose errors” option to error-pages example

		add another route example to express(1) so people are not so confused

		add redis online user activity tracking example

		update connect dep

		fix etag quoting. Closes #1310

		fix error-pages 404 status

		fix jsonp callback char restrictions

		remove old OPTIONS default response

3.0.0rc3 / 2012-08-13

		update connect dep

		fix signed cookies to work with connect.cookieParser() (“s:” prefix was missing) [tnydwrds]

		fix res.render() clobbering of “locals”

3.0.0rc2 / 2012-08-03

		add CORS example

		update connect dep

		deprecate .createServer() & remove old stale examples

		fix: escape res.redirect() link

		fix vhost example

3.0.0rc1 / 2012-07-24

		add more examples to view-locals

		add scheme-relative redirects (res.redirect("//foo.com")) support

		update cookie dep

		update connect dep

		update send dep

		fix express(1) -h flag, use -H for hogan. Closes #1245

		fix res.sendfile() socket error handling regression

3.0.0beta7 / 2012-07-16

		update connect dep for send() root normalization regression

3.0.0beta6 / 2012-07-13

		add err.view property for view errors. Closes #1226

		add “jsonp callback name” setting

		add support for “/foo/:bar*” non-greedy matches

		change res.sendfile() to use send() module

		change res.send to use “response-send” module

		remove app.locals.use and res.locals.use, use regular middleware

3.0.0beta5 / 2012-07-03

		add “make check” support

		add route-map example

		add res.json(obj, status) support back for BC

		add “methods” dep, remove internal methods module

		update connect dep

		update auth example to utilize cores pbkdf2

		updated tests to use “supertest”

3.0.0beta4 / 2012-06-25

		Added req.auth

		Added req.range(size)

		Added res.links(obj)

		Added res.send(body, status) support back for backwards compat

		Added .default() support to res.format()

		Added 2xx / 304 check to req.fresh

		Revert “Added + support to the router”

		Fixed res.send() freshness check, respect res.statusCode

3.0.0beta3 / 2012-06-15

		Added hogan --hjs to express(1) [nullfirm]

		Added another example to content-negotiation

		Added fresh dep

		Changed: res.send() always checks freshness

		Fixed: expose connects mime module. Cloases #1165

3.0.0beta2 / 2012-06-06

		Added + support to the router

		Added req.host

		Changed req.param() to check route first

		Update connect dep

3.0.0beta1 / 2012-06-01

		Added res.format() callback to override default 406 behaviour

		Fixed res.redirect() 406. Closes #1154

3.0.0alpha5 / 2012-05-30

		Added req.ip

		Added { signed: true } option to res.cookie()

		Removed res.signedCookie()

		Changed: dont reverse req.ips

		Fixed “trust proxy” setting check for req.ips

3.0.0alpha4 / 2012-05-09

		Added: allow [] in jsonp callback. Closes #1128

		Added PORT env var support in generated template. Closes #1118 [benatkin]

		Updated: connect 2.2.2

3.0.0alpha3 / 2012-05-04

		Added public app.routes. Closes #887

		Added view-locals example

		Added mvc example

		Added res.locals.use(). Closes #1120

		Added conditional-GET support to res.send()

		Added: coerce res.set() values to strings

		Changed: moved static() in generated apps below router

		Changed: res.send() only set ETag when not previously set

		Changed connect 2.2.1 dep

		Changed: make test now runs unit / acceptance tests

		Fixed req/res proto inheritance

3.0.0alpha2 / 2012-04-26

		Added make benchmark back

		Added res.send() support for String objects

		Added client-side data exposing example

		Added res.header() and req.header() aliases for BC

		Added express.createServer() for BC

		Perf: memoize parsed urls

		Perf: connect 2.2.0 dep

		Changed: make expressInit() middleware self-aware

		Fixed: use app.get() for all core settings

		Fixed redis session example

		Fixed session example. Closes #1105

		Fixed generated express dep. Closes #1078

3.0.0alpha1 / 2012-04-15

		Added app.locals.use(callback)

		Added app.locals object

		Added app.locals(obj)

		Added res.locals object

		Added res.locals(obj)

		Added res.format() for content-negotiation

		Added app.engine()

		Added res.cookie() JSON cookie support

		Added “trust proxy” setting

		Added req.subdomains

		Added req.protocol

		Added req.secure

		Added req.path

		Added req.ips

		Added req.fresh

		Added req.stale

		Added comma-delmited / array support for req.accepts()

		Added debug instrumentation

		Added res.set(obj)

		Added res.set(field, value)

		Added res.get(field)

		Added app.get(setting). Closes #842

		Added req.acceptsLanguage()

		Added req.acceptsCharset()

		Added req.accepted

		Added req.acceptedLanguages

		Added req.acceptedCharsets

		Added “json replacer” setting

		Added “json spaces” setting

		Added X-Forwarded-Proto support to res.redirect(). Closes #92

		Added --less support to express(1)

		Added express.response prototype

		Added express.request prototype

		Added express.application prototype

		Added app.path()

		Added app.render()

		Added res.type() to replace res.contentType()

		Changed: res.redirect() to add relative support

		Changed: enable “jsonp callback” by default

		Changed: renamed “case sensitive routes” to “case sensitive routing”

		Rewrite of all tests with mocha

		Removed “root” setting

		Removed res.redirect('home') support

		Removed req.notify()

		Removed app.register()

		Removed app.redirect()

		Removed app.is()

		Removed app.helpers()

		Removed app.dynamicHelpers()

		Fixed res.sendfile() with non-GET. Closes #723

		Fixed express(1) public dir for windows. Closes #866

2.5.9/ 2012-04-02

		Added support for PURGE request method [pbuyle]

		Fixed express(1) generated app app.address() before listening [mmalecki]

2.5.8 / 2012-02-08

		Update mkdirp dep. Closes #991

2.5.7 / 2012-02-06

		Fixed app.all duplicate DELETE requests [mscdex]

2.5.6 / 2012-01-13

		Updated hamljs dev dep. Closes #953

2.5.5 / 2012-01-08

		Fixed: set filename on cached templates [matthewleon]

2.5.4 / 2012-01-02

		Fixed express(1) eol on 0.4.x. Closes #947

2.5.3 / 2011-12-30

		Fixed req.is() when a charset is present

2.5.2 / 2011-12-10

		Fixed: express(1) LF -> CRLF for windows

2.5.1 / 2011-11-17

		Changed: updated connect to 1.8.x

		Removed sass.js support from express(1)

2.5.0 / 2011-10-24

		Added ./routes dir for generated app by default

		Added npm install reminder to express(1) app gen

		Added 0.5.x support

		Removed make test-cov since it wont work with node 0.5.x

		Fixed express(1) public dir for windows. Closes #866

2.4.7 / 2011-10-05

		Added mkdirp to express(1). Closes #795

		Added simple json-config example

		Added shorthand for the parsed request’s pathname via req.path

		Changed connect dep to 1.7.x to fix npm issue...

		Fixed res.redirect() HEAD support. [reported by xerox]

		Fixed req.flash(), only escape args

		Fixed absolute path checking on windows. Closes #829 [reported by andrewpmckenzie]

2.4.6 / 2011-08-22

		Fixed multiple param callback regression. Closes #824 [reported by TroyGoode]

2.4.5 / 2011-08-19

		Added support for routes to handle errors. Closes #809

		Added app.routes.all(). Closes #803

		Added “basepath” setting to work in conjunction with reverse proxies etc.

		Refactored Route to use a single array of callbacks

		Added support for multiple callbacks for app.param(). Closes #801
Closes #805

		Changed: removed .call(self) for route callbacks

		Dependency: qs >= 0.3.1

		Fixed res.redirect() on windows due to join() usage. Closes #808

2.4.4 / 2011-08-05

		Fixed res.header() intention of a set, even when undefined

		Fixed *, value no longer required

		Fixed res.send(204) support. Closes #771

2.4.3 / 2011-07-14

		Added docs for status option special-case. Closes #739

		Fixed options.filename, exposing the view path to template engines

2.4.2. / 2011-07-06

		Revert “removed jsonp stripping” for XSS

2.4.1 / 2011-07-06

		Added res.json() JSONP support. Closes #737

		Added extending-templates example. Closes #730

		Added “strict routing” setting for trailing slashes

		Added support for multiple envs in app.configure() calls. Closes #735

		Changed: res.send() using res.json()

		Changed: when cookie path === null don’t default it

		Changed; default cookie path to “home” setting. Closes #731

		Removed pids/logs creation from express(1)

2.4.0 / 2011-06-28

		Added chainable res.status(code)

		Added res.json(), an explicit version of res.send(obj)

		Added simple web-service example

2.3.12 / 2011-06-22

		#express is now on freenode! come join!

		Added req.get(field, param)

		Added links to Japanese documentation, thanks @hideyukisaito!

		Added; the express(1) generated app outputs the env

		Added content-negotiation example

		Dependency: connect >= 1.5.1 < 2.0.0

		Fixed view layout bug. Closes #720

		Fixed; ignore body on 304. Closes #701

2.3.11 / 2011-06-04

		Added npm test

		Removed generation of dummy test file from express(1)

		Fixed; express(1) adds express as a dep

		Fixed; prune on prepublish

2.3.10 / 2011-05-27

		Added req.route, exposing the current route

		Added package.json generation support to express(1)

		Fixed call to app.param() function for optional params. Closes #682

2.3.9 / 2011-05-25

		Fixed bug-ish with ../' inres.partial()` calls

2.3.8 / 2011-05-24

		Fixed app.options()

2.3.7 / 2011-05-23

		Added route Collection, ex: app.get('/user/:id').remove();

		Added support for app.param(fn) to define param logic

		Removed app.param() support for callback with return value

		Removed module.parent check from express(1) generated app. Closes #670

		Refactored router. Closes #639

2.3.6 / 2011-05-20

		Changed; using devDependencies instead of git submodules

		Fixed redis session example

		Fixed markdown example

		Fixed view caching, should not be enabled in development

2.3.5 / 2011-05-20

		Added export .view as alias for .View

2.3.4 / 2011-05-08

		Added ./examples/say

		Fixed res.sendfile() bug preventing the transfer of files with spaces

2.3.3 / 2011-05-03

		Added “case sensitive routes” option.

		Changed; split methods supported per rfc [slaskis]

		Fixed route-specific middleware when using the same callback function several times

2.3.2 / 2011-04-27

		Fixed view hints

2.3.1 / 2011-04-26

		Added app.match() as app.match.all()

		Added app.lookup() as app.lookup.all()

		Added app.remove() for app.remove.all()

		Added app.remove.VERB()

		Fixed template caching collision issue. Closes #644

		Moved router over from connect and started refactor

2.3.0 / 2011-04-25

		Added options support to res.clearCookie()

		Added res.helpers() as alias of res.locals()

		Added; json defaults to UTF-8 with res.send(). Closes #632. [Daniel * Dependency connect >= 1.4.0

		Changed; auto set Content-Type in res.attachement [Aaron Heckmann]

		Renamed “cache views” to “view cache”. Closes #628

		Fixed caching of views when using several apps. Closes #637

		Fixed gotcha invoking app.param() callbacks once per route middleware.
Closes #638

		Fixed partial lookup precedence. Closes #631
Shaw]

2.2.2 / 2011-04-12

		Added second callback support for res.download() connection errors

		Fixed filename option passing to template engine

2.2.1 / 2011-04-04

		Added layout(path) helper to change the layout within a view. Closes #610

		Fixed partial() collection object support.
Previously only anything with .length would work.
When .length is present one must still be aware of holes,
however now { collection: {foo: 'bar'}} is valid, exposes
keyInCollection and keysInCollection.

		Performance improved with better view caching

		Removed request and response locals

		Changed; errorHandler page title is now Express instead of Connect

2.2.0 / 2011-03-30

		Added app.lookup.VERB(), ex app.lookup.put('/user/:id'). Closes #606

		Added app.match.VERB(), ex app.match.put('/user/12'). Closes #606

		Added app.VERB(path) as alias of app.lookup.VERB().

		Dependency connect >= 1.2.0

2.1.1 / 2011-03-29

		Added; expose err.view object when failing to locate a view

		Fixed res.partial() call next(err) when no callback is given [reported by aheckmann]

		Fixed; res.send(undefined) responds with 204 [aheckmann]

2.1.0 / 2011-03-24

		Added <root>/_?<name> partial lookup support. Closes #447

		Added request, response, and app local variables

		Added settings local variable, containing the app’s settings

		Added req.flash() exception if req.session is not available

		Added res.send(bool) support (json response)

		Fixed stylus example for latest version

		Fixed; wrap try/catch around res.render()

2.0.0 / 2011-03-17

		Fixed up index view path alternative.

		Changed; res.locals() without object returns the locals

2.0.0rc3 / 2011-03-17

		Added res.locals(obj) to compliment res.local(key, val)

		Added res.partial() callback support

		Fixed recursive error reporting issue in res.render()

2.0.0rc2 / 2011-03-17

		Changed; partial() “locals” are now optional

		Fixed SlowBuffer support. Closes #584 [reported by tyrda01]

		Fixed .filename view engine option [reported by drudge]

		Fixed blog example

		Fixed {req,res}.app reference when mounting [Ben Weaver]

2.0.0rc / 2011-03-14

		Fixed; expose HTTPSServer constructor

		Fixed express(1) default test charset. Closes #579 [reported by secoif]

		Fixed; default charset to utf-8 instead of utf8 for lame IE [reported by NickP]

2.0.0beta3 / 2011-03-09

		Added support for res.contentType() literal
The original res.contentType('.json'),
res.contentType('application/json'), and res.contentType('json')
will work now.

		Added res.render() status option support back

		Added charset option for res.render()

		Added .charset support (via connect 1.0.4)

		Added view resolution hints when in development and a lookup fails

		Added layout lookup support relative to the page view.
For example while rendering ./views/user/index.jade if you create
./views/user/layout.jade it will be used in favour of the root layout.

		Fixed res.redirect(). RFC states absolute url [reported by unlink]

		Fixed; default res.send() string charset to utf8

		Removed Partial constructor (not currently used)

2.0.0beta2 / 2011-03-07

		Added res.render() .locals support back to aid in migration process

		Fixed flash example

2.0.0beta / 2011-03-03

		Added HTTPS support

		Added res.cookie() maxAge support

		Added req.header() Referrer / Referer special-case, either works

		Added mount support for res.redirect(), now respects the mount-point

		Added union() util, taking place of merge(clone()) combo

		Added stylus support to express(1) generated app

		Added secret to session middleware used in examples and generated app

		Added res.local(name, val) for progressive view locals

		Added default param support to req.param(name, default)

		Added app.disabled() and app.enabled()

		Added app.register() support for omitting leading ”.”, either works

		Added res.partial(), using the same interface as partial() within a view. Closes #539

		Added app.param() to map route params to async/sync logic

		Added; aliased app.helpers() as app.locals(). Closes #481

		Added extname with no leading ”.” support to res.contentType()

		Added cache views setting, defaulting to enabled in “production” env

		Added index file partial resolution, eg: partial(‘user’) may try views/user/index.jade.

		Added req.accepts() support for extensions

		Changed; res.download() and res.sendfile() now utilize Connect’s
static file server connect.static.send().

		Changed; replaced connect.utils.mime() with npm mime module

		Changed; allow req.query to be pre-defined (via middleware or other parent

		Changed view partial resolution, now relative to parent view

		Changed view engine signature. no longer engine.render(str, options, callback), now engine.compile(str, options) -> Function, the returned function accepts fn(locals).

		Fixed req.param() bug returning Array.prototype methods. Closes #552

		Fixed; using Stream#pipe() instead of sys.pump() in res.sendfile()

		Fixed; using qs module instead of querystring

		Fixed; strip unsafe chars from jsonp callbacks

		Removed “stream threshold” setting

1.0.8 / 2011-03-01

		Allow req.query to be pre-defined (via middleware or other parent app)

		“connect”: “>= 0.5.0 < 1.0.0”. Closes #547

		Removed the long deprecated EXPRESS_ENV support

1.0.7 / 2011-02-07

		Fixed render() setting inheritance.
Mounted apps would not inherit “view engine”

1.0.6 / 2011-02-07

		Fixed view engine setting bug when period is in dirname

1.0.5 / 2011-02-05

		Added secret to generated app session() call

1.0.4 / 2011-02-05

		Added qs dependency to package.json

		Fixed namespaced require()s for latest connect support

1.0.3 / 2011-01-13

		Remove unsafe characters from JSONP callback names [Ryan Grove]

1.0.2 / 2011-01-10

		Removed nested require, using connect.router

1.0.1 / 2010-12-29

		Fixed for middleware stacked via createServer()
previously the foo middleware passed to createServer(foo)
would not have access to Express methods such as res.send()
or props like req.query etc.

1.0.0 / 2010-11-16

		Added; deduce partial object names from the last segment.
For example by default partial('forum/post', postObject) will
give you the post object, providing a meaningful default.

		Added http status code string representation to res.redirect() body

		Added; res.redirect() supporting text/plain and text/html via Accept.

		Added req.is() to aid in content negotiation

		Added partial local inheritance [suggested by masylum]. Closes #102
providing access to parent template locals.

		Added -s, –session[s] flag to express(1) to add session related middleware

		Added –template flag to express(1) to specify the
template engine to use.

		Added –css flag to express(1) to specify the
stylesheet engine to use (or just plain css by default).

		Added app.all() support [thanks aheckmann]

		Added partial direct object support.
You may now partial('user', user) providing the “user” local,
vs previously partial('user', { object: user }).

		Added route-separation example since many people question ways
to do this with CommonJS modules. Also view the blog example for
an alternative.

		Performance; caching view path derived partial object names

		Fixed partial local inheritance precedence. [reported by Nick Poulden] Closes #454

		Fixed jsonp support; text/javascript as per mailinglist discussion

1.0.0rc4 / 2010-10-14

		Added NODE_ENV support, EXPRESS_ENV is deprecated and will be removed in 1.0.0

		Added route-middleware support (very helpful, see the docs [http://expressjs.com/guide.html#Route-Middleware])

		Added jsonp callback setting to enable/disable jsonp autowrapping [Dav Glass]

		Added callback query check on response.send to autowrap JSON objects for simple webservice implementations [Dav Glass]

		Added partial() support for array-like collections. Closes #434

		Added support for swappable querystring parsers

		Added session usage docs. Closes #443

		Added dynamic helper caching. Closes #439 [suggested by maritz]

		Added authentication example

		Added basic Range support to res.sendfile() (and res.download() etc)

		Changed; express(1) generated app using 2 spaces instead of 4

		Default env to “development” again [aheckmann]

		Removed context option is no more, use “scope”

		Fixed; exposing ./support libs to examples so they can run without installs

		Fixed mvc example

1.0.0rc3 / 2010-09-20

		Added confirmation for express(1) app generation. Closes #391

		Added extending of flash formatters via app.flashFormatters

		Added flash formatter support. Closes #411

		Added streaming support to res.sendfile() using sys.pump() when >= “stream threshold”

		Added stream threshold setting for res.sendfile()

		Added res.send() HEAD support

		Added res.clearCookie()

		Added res.cookie()

		Added res.render() headers option

		Added res.redirect() response bodies

		Added res.render() status option support. Closes #425 [thanks aheckmann]

		Fixed res.sendfile() responding with 403 on malicious path

		Fixed res.download() bug; when an error occurs remove Content-Disposition

		Fixed; mounted apps settings now inherit from parent app [aheckmann]

		Fixed; stripping Content-Length / Content-Type when 204

		Fixed res.send() 204. Closes #419

		Fixed multiple Set-Cookie headers via res.header(). Closes #402

		Fixed bug messing with error handlers when listenFD() is called instead of listen(). [thanks guillermo]

1.0.0rc2 / 2010-08-17

		Added app.register() for template engine mapping. Closes #390

		Added res.render() callback support as second argument (no options)

		Added callback support to res.download()

		Added callback support for res.sendfile()

		Added support for middleware access via express.middlewareName() vs connect.middlewareName()

		Added “partials” setting to docs

		Added default expresso tests to express(1) generated app. Closes #384

		Fixed res.sendfile() error handling, defer via next()

		Fixed res.render() callback when a layout is used [thanks guillermo]

		Fixed; make install creating ~/.node_libraries when not present

		Fixed issue preventing error handlers from being defined anywhere. Closes #387

1.0.0rc / 2010-07-28

		Added mounted hook. Closes #369

		Added connect dependency to package.json

		Removed “reload views” setting and support code
development env never caches, production always caches.

		Removed param in route callbacks, signature is now
simply (req, res, next), previously (req, res, params, next).
Use req.params for path captures, req.query for GET params.

		Fixed “home” setting

		Fixed middleware/router precedence issue. Closes #366

		Fixed; configure() callbacks called immediately. Closes #368

1.0.0beta2 / 2010-07-23

		Added more examples

		Added; exporting Server constructor

		Added Server#helpers() for view locals

		Added Server#dynamicHelpers() for dynamic view locals. Closes #349

		Added support for absolute view paths

		Added; home setting defaults to Server#route for mounted apps. Closes #363

		Added Guillermo Rauch to the contributor list

		Added support for “as” for non-collection partials. Closes #341

		Fixed install.sh, ensuring ~/.node_libraries exists. Closes #362 [thanks jf]

		Fixed res.render() exceptions, now passed to next() when no callback is given [thanks guillermo]

		Fixed instanceof Array checks, now Array.isArray()

		Fixed express(1) expansion of public dirs. Closes #348

		Fixed middleware precedence. Closes #345

		Fixed view watcher, now async [thanks aheckmann]

1.0.0beta / 2010-07-15

		Re-write
		much faster

		much lighter

		Check ExpressJS.com [http://expressjs.com] for migration guide and updated docs

0.14.0 / 2010-06-15

		Utilize relative requires

		Added Static bufferSize option [aheckmann]

		Fixed caching of view and partial subdirectories [aheckmann]

		Fixed mime.type() comments now that ”.ext” is not supported

		Updated haml submodule

		Updated class submodule

		Removed bin/express

0.13.0 / 2010-06-01

		Added node v0.1.97 compatibility

		Added support for deleting cookies via Request#cookie(‘key’, null)

		Updated haml submodule

		Fixed not-found page, now using using charset utf-8

		Fixed show-exceptions page, now using using charset utf-8

		Fixed view support due to fs.readFile Buffers

		Changed; mime.type() no longer accepts ”.type” due to node extname() changes

0.12.0 / 2010-05-22

		Added node v0.1.96 compatibility

		Added view helpers export which act as additional local variables

		Updated haml submodule

		Changed ETag; removed inode, modified time only

		Fixed LF to CRLF for setting multiple cookies

		Fixed cookie complation; values are now urlencoded

		Fixed cookies parsing; accepts quoted values and url escaped cookies

0.11.0 / 2010-05-06

		Added support for layouts using different engines
		this.render(‘page.html.haml’, { layout: ‘super-cool-layout.html.ejs’ })

		this.render(‘page.html.haml’, { layout: ‘foo’ }) // assumes ‘foo.html.haml’

		this.render(‘page.html.haml’, { layout: false }) // no layout

		Updated ext submodule

		Updated haml submodule

		Fixed EJS partial support by passing along the context. Issue #307

0.10.1 / 2010-05-03

		Fixed binary uploads.

0.10.0 / 2010-04-30

		Added charset support via Request#charset (automatically assigned to ‘UTF-8’ when respond()’s
encoding is set to ‘utf8’ or ‘utf-8’.

		Added “encoding” option to Request#render(). Closes #299

		Added “dump exceptions” setting, which is enabled by default.

		Added simple ejs template engine support

		Added error response support for text/plain, application/json. Closes #297

		Added callback function param to Request#error()

		Added Request#sendHead()

		Added Request#stream()

		Added support for Request#respond(304, null) for empty response bodies

		Added ETag support to Request#sendfile()

		Added options to Request#sendfile(), passed to fs.createReadStream()

		Added filename arg to Request#download()

		Performance enhanced due to pre-reversing plugins so that plugins.reverse() is not called on each request

		Performance enhanced by preventing several calls to toLowerCase() in Router#match()

		Changed; Request#sendfile() now streams

		Changed; Renamed Request#halt() to Request#respond(). Closes #289

		Changed; Using sys.inspect() instead of JSON.encode() for error output

		Changed; run() returns the http.Server instance. Closes #298

		Changed; Defaulting Server#host to null (INADDR_ANY)

		Changed; Logger “common” format scale of 0.4f

		Removed Logger “request” format

		Fixed; Catching ENOENT in view caching, preventing error when “views/partials” is not found

		Fixed several issues with http client

		Fixed Logger Content-Length output

		Fixed bug preventing Opera from retaining the generated session id. Closes #292

0.9.0 / 2010-04-14

		Added DSL level error() route support

		Added DSL level notFound() route support

		Added Request#error()

		Added Request#notFound()

		Added Request#render() callback function. Closes #258

		Added “max upload size” setting

		Added “magic” variables to collection partials (__index__, __length__, __isFirst__, __isLast__). Closes #254

		Added haml.js [http://github.com/visionmedia/haml.js] submodule; removed haml-js

		Added callback function support to Request#halt() as 3rd/4th arg

		Added preprocessing of route param wildcards using param(). Closes #251

		Added view partial support (with collections etc)

		Fixed bug preventing falsey params (such as ?page=0). Closes #286

		Fixed setting of multiple cookies. Closes #199

		Changed; view naming convention is now NAME.TYPE.ENGINE (for example page.html.haml)

		Changed; session cookie is now httpOnly

		Changed; Request is no longer global

		Changed; Event is no longer global

		Changed; “sys” module is no longer global

		Changed; moved Request#download to Static plugin where it belongs

		Changed; Request instance created before body parsing. Closes #262

		Changed; Pre-caching views in memory when “cache view contents” is enabled. Closes #253

		Changed; Pre-caching view partials in memory when “cache view partials” is enabled

		Updated support to node –version 0.1.90

		Updated dependencies

		Removed set(“session cookie”) in favour of use(Session, { cookie: { ... }})

		Removed utils.mixin(); use Object#mergeDeep()

0.8.0 / 2010-03-19

		Added coffeescript example app. Closes #242

		Changed; cache api now async friendly. Closes #240

		Removed deprecated ‘express/static’ support. Use ‘express/plugins/static’

0.7.6 / 2010-03-19

		Added Request#isXHR. Closes #229

		Added make install (for the executable)

		Added express executable for setting up simple app templates

		Added “GET /public/*” to Static plugin, defaulting to /public

		Added Static plugin

		Fixed; Request#render() only calls cache.get() once

		Fixed; Namespacing View caches with “view:”

		Fixed; Namespacing Static caches with “static:”

		Fixed; Both example apps now use the Static plugin

		Fixed set(“views”). Closes #239

		Fixed missing space for combined log format

		Deprecated Request#sendfile() and ‘express/static’

		Removed Server#running

0.7.5 / 2010-03-16

		Added Request#flash() support without args, now returns all flashes

		Updated ext submodule

0.7.4 / 2010-03-16

		Fixed session reaper

		Changed; class.js replacing js-oo Class implementation (quite a bit faster, no browser cruft)

0.7.3 / 2010-03-16

		Added package.json

		Fixed requiring of haml / sass due to kiwi removal

0.7.2 / 2010-03-16

		Fixed GIT submodules (HAH!)

0.7.1 / 2010-03-16

		Changed; Express now using submodules again until a PM is adopted

		Changed; chat example using millisecond conversions from ext

0.7.0 / 2010-03-15

		Added Request#pass() support (finds the next matching route, or the given path)

		Added Logger plugin (default “common” format replaces CommonLogger)

		Removed Profiler plugin

		Removed CommonLogger plugin

0.6.0 / 2010-03-11

		Added seed.yml for kiwi package management support

		Added HTTP client query string support when method is GET. Closes #205

		Added support for arbitrary view engines.
For example “foo.engine.html” will now require(‘engine’),
the exports from this module are cached after the first require().

		Added async plugin support

		Removed usage of RESTful route funcs as http client
get() etc, use http.get() and friends

		Removed custom exceptions

0.5.0 / 2010-03-10

		Added ext dependency (library of js extensions)

		Removed extname() / basename() utils. Use path module

		Removed toArray() util. Use arguments.values

		Removed escapeRegexp() util. Use RegExp.escape()

		Removed process.mixin() dependency. Use utils.mixin()

		Removed Collection

		Removed ElementCollection

		Shameless self promotion of ebook “Advanced JavaScript” (http://dev-mag.com) ;)

0.4.0 / 2010-02-11

		Added flash() example to sample upload app

		Added high level restful http client module (express/http)

		Changed; RESTful route functions double as HTTP clients. Closes #69

		Changed; throwing error when routes are added at runtime

		Changed; defaulting render() context to the current Request. Closes #197

		Updated haml submodule

0.3.0 / 2010-02-11

		Updated haml / sass submodules. Closes #200

		Added flash message support. Closes #64

		Added accepts() now allows multiple args. fixes #117

		Added support for plugins to halt. Closes #189

		Added alternate layout support. Closes #119

		Removed Route#run(). Closes #188

		Fixed broken specs due to use(Cookie) missing

0.2.1 / 2010-02-05

		Added “plot” format option for Profiler (for gnuplot processing)

		Added request number to Profiler plugin

		Fixed binary encoding for multi-part file uploads, was previously defaulting to UTF8

		Fixed issue with routes not firing when not files are present. Closes #184

		Fixed process.Promise -> events.Promise

0.2.0 / 2010-02-03

		Added parseParam() support for name[] etc. (allows for file inputs with “multiple” attr) Closes #180

		Added Both Cache and Session option “reapInterval” may be “reapEvery”. Closes #174

		Added expiration support to cache api with reaper. Closes #133

		Added cache Store.Memory#reap()

		Added Cache; cache api now uses first class Cache instances

		Added abstract session Store. Closes #172

		Changed; cache Memory.Store#get() utilizing Collection

		Renamed MemoryStore -> Store.Memory

		Fixed use() of the same plugin several time will always use latest options. Closes #176

0.1.0 / 2010-02-03

		Changed; Hooks (before / after) pass request as arg as well as evaluated in their context

		Updated node support to 0.1.27 Closes #169

		Updated dirname(__filename) -> __dirname

		Updated libxmljs support to v0.2.0

		Added session support with memory store / reaping

		Added quick uid() helper

		Added multi-part upload support

		Added Sass.js support / submodule

		Added production env caching view contents and static files

		Added static file caching. Closes #136

		Added cache plugin with memory stores

		Added support to StaticFile so that it works with non-textual files.

		Removed dirname() helper

		Removed several globals (now their modules must be required)

0.0.2 / 2010-01-10

		Added view benchmarks; currently haml vs ejs

		Added Request#attachment() specs. Closes #116

		Added use of node’s parseQuery() util. Closes #123

		Added make init for submodules

		Updated Haml

		Updated sample chat app to show messages on load

		Updated libxmljs parseString -> parseHtmlString

		Fixed make init to work with older versions of git

		Fixed specs can now run independent specs for those who cant build deps. Closes #127

		Fixed issues introduced by the node url module changes. Closes 126.

		Fixed two assertions failing due to Collection#keys() returning strings

		Fixed faulty Collection#toArray() spec due to keys() returning strings

		Fixed make test now builds libxmljs.node before testing

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

karma-chai-plugins

Chai [http://chaijs.com] browser plugins set for Karma [http://karma-runner.github.io]

[image: Dependency Status] [https://gemnasium.com/princed/karma-chai-plugins]

Installation

Install the karma-chai-plugins:

$ npm install karma-chai-plugins --save-dev

Add chai and plugins you need to the frameworks key in your Karma configuration:

module.exports = (config) ->
 config.set

 # frameworks to use
 frameworks: ['mocha', 'chai', 'chai-as-promised']

 # ...

Bundled plugins

		chai [http://chaijs.com]

		chai-as-promised [http://chaijs.com/plugins/chai-as-promised]

		chai-jquery [http://chaijs.com/plugins/chai-jquery] (jQuery should be included manually)

		sinon-chai [http://chaijs.com/plugins/sinon-chai] (sinon will be included automatically)

		chai-things [http://chaijs.com/plugins/chai-things]

Browser support

Same as Chai.js [http://chaijs.com/guide/installation/#browser-section]: IE 9+, Chrome 7+, FireFox 4+, Safari 5+ except should style that is currently not compatible with IE 9.

Consider karma-expect [https://github.com/princed/karma-expect], if you need run tests in IE8 and lower.

Limited require.js support

karma-chai-plugins supports requirejs in tests, but for now it should be stated in frameworks before chai and other plugins:

module.exports = (config) ->
 config.set

 # frameworks to use
 frameworks: ['mocha', 'requirejs', 'chai', 'chai-as-promised']

 # ...

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/aws-sdk/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

AWS SDK for JavaScript

[image: NPM] [https://nodei.co/npm/aws-sdk/]

[image: Gitter chat] [https://gitter.im/aws/aws-sdk-js]

[image: Version] [http://badge.fury.io/js/aws-sdk] [image: Build Status] [https://travis-ci.org/aws/aws-sdk-js] [image: Coverage Status] [https://coveralls.io/r/aws/aws-sdk-js?branch=master]

The official AWS SDK for JavaScript, available for browsers and mobile devices,
or Node.js backends

Release notes can be found at http://aws.amazon.com/releasenotes/SDK/JavaScript

If you are upgrading from 1.x to 2.0 of the SDK, please see
the {file:UPGRADING.md} notes for information on how to migrate existing code
to work with the new major version.

Installing

In the Browser

To use the SDK in the browser, simply add the following script tag to your
HTML pages:

<script src="https://sdk.amazonaws.com/js/aws-sdk-2.0.31.min.js"></script>

The AWS SDK is also compatible with browserify [http://browserify.org].

In Node.js

The preferred way to install the AWS SDK for Node.js is to use the
npm [http://npmjs.org] package manager for Node.js. Simply type the following
into a terminal window:

npm install aws-sdk

Usage and Getting Started

You can find a getting started guide at:

http://docs.aws.amazon.com/AWSJavaScriptSDK/guide/

Supported Services

Note:
Although all services are supported in the browser version of the SDK,
not all of the services are available in the default hosted build (using the
script tag provided above). A list of services in the hosted build are provided
in the "Working With Services"
section of the browser SDK guide, including instructions on how to build a
custom version of the SDK with extra services.

The SDK currently supports the following services:

 		Service Name
 		Class Name
 		API Version

 		Amazon CloudFront		AWS.CloudFront		2014-10-21

 		Amazon CloudSearch		AWS.CloudSearch		2013-01-01

 		Amazon CloudSearch Domain		AWS.CloudSearchDomain		2013-01-01

 		Amazon CloudWatch		AWS.CloudWatch		2010-08-01

 		Amazon CloudWatch Logs		AWS.CloudWatchLogs		2014-03-28

 		Amazon Cognito Identity		AWS.CognitoIdentity		2014-06-30

 		Amazon Cognito Sync		AWS.CognitoSync		2014-06-30

 		Amazon DynamoDB		AWS.DynamoDB		2012-08-10

 		Amazon Elastic Compute Cloud		AWS.EC2		2014-10-01

 		Amazon Elastic MapReduce		AWS.EMR		2009-03-31

 		Amazon Elastic Transcoder		AWS.ElasticTranscoder		2012-09-25

 		Amazon ElastiCache		AWS.ElastiCache		2014-09-30

 		Amazon Glacier		AWS.Glacier		2012-06-01

 		Amazon Kinesis		AWS.Kinesis		2013-12-02

 		Amazon Redshift		AWS.Redshift		2012-12-01

 		Amazon Relational Database Service		AWS.RDS		2014-09-01

 		Amazon Route 53		AWS.Route53		2013-04-01

 		Amazon Route 53 Domains		AWS.Route53Domains		2014-05-15

 		Amazon Simple Email Service		AWS.SES		2010-12-01

 		Amazon Simple Notification Service		AWS.SNS		2010-03-31

 		Amazon Simple Queue Service		AWS.SQS		2012-11-05

 		Amazon Simple Storage Service		AWS.S3		2006-03-01

 		Amazon Simple Workflow Service		AWS.SWF		2012-01-25

 		Amazon SimpleDB		AWS.SimpleDB		2009-04-15

 		Auto Scaling		AWS.AutoScaling		2011-01-01

 		AWS CloudFormation		AWS.CloudFormation		2010-05-15

 		AWS CloudTrail		AWS.CloudTrail		2013-11-01

 		AWS CodeDeploy		AWS.CodeDeploy		2014-10-06

 		AWS Config		AWS.ConfigService		2014-11-12

 		AWS Data Pipeline		AWS.DataPipeline		2012-10-29

 		AWS Direct Connect		AWS.DirectConnect		2012-10-25

 		AWS Elastic Beanstalk		AWS.ElasticBeanstalk		2010-12-01

 		AWS Identity and Access Management		AWS.IAM		2010-05-08

 		AWS Import/Export		AWS.ImportExport		2010-06-01

 		AWS Key Management Service		AWS.KMS		2014-11-01

 		AWS Lambda		AWS.Lambda		2014-11-11

 		AWS OpsWorks		AWS.OpsWorks		2013-02-18

 		AWS Security Token Service		AWS.STS		2011-06-15

 		AWS Storage Gateway		AWS.StorageGateway		2013-06-30

 		AWS Support		AWS.Support		2013-04-15

 		Elastic Load Balancing		AWS.ELB		2012-06-01

License

This SDK is distributed under the
Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0],
see LICENSE.txt and NOTICE.txt for more information.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-sessions/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

express-sessions

ExpressJS/Mongoose Session Storage

Installation

npm install express-sessions

Usage

var mongoose = require('mongoose');

mongoose.connect();

app.use(express.session({
 secret: 'a4f8071f-c873-4447-8ee2',
 cookie: { maxAge: 2628000000 },
 store: new (require('express-sessions'))({
 storage: 'mongodb',
 instance: mongoose, // optional
 host: 'localhost', // optional
 port: 27017, // optional
 db: 'test', // optional
 collection: 'sessions', // optional
 expire: 86400 // optional
 })
}));

Or

var redis = require('redis');
var client = redis.createClient(6379, 'localhost');

app.use(express.session({
 secret: 'a4f8071f-c873-4447-8ee2',
 cookie: { maxAge: 2628000000 },
 store: new (require('express-sessions'))({
 storage: 'redis',
 instance: client, // optional
 host: 'localhost', // optional
 port: 6379, // optional
 collection: 'sessions', // optional
 expire: 86400 // optional
 })
}));

That’s it!

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/aws-sdk/UPGRADING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

@!title Upgrading Notes (1.x to 2.0)

Upgrading Notes (1.x to 2.0)

This document captures breaking changes from 1.x versions to the first
stable 2.x (non-RC) release of the AWS SDK for JavaScript.

1. Automatic Conversion of Base64 and Timestamp Types on Input/Output

The SDK will now automatically encode and decode base64-encoded values, as well
as timestamp values, on the user’s behalf. This change affects any operation
where Base64 or Timestamp values were sent by a request or returned in a
response, i.e., AWS.DynamoDB and AWS.SQS, which allow for Base64
encoded values.

User code that previously did base64 conversion no longer requires this.
Furthermore, values encoded as base64 are now returned as Buffer objects
from server responses (and can also be passed as Buffer input). For
example, the following 1.x SQS.sendMessage() parameters:

var params = {
 MessageBody: 'Some Message',
 MessageAttributes: {
 attrName: {
 DataType: 'Binary',
 BinaryValue: new Buffer('example text').toString('base64')
 }
 }
};

Can be rewritten as:

var params = {
 MessageBody: 'Some Message',
 MessageAttributes: {
 attrName: {
 DataType: 'Binary',
 BinaryValue: 'example text'
 }
 }
};

And the message will be read as:

sqs.receiveMessage(params, function(err, data) {
 // buf is <Buffer 65 78 61 6d 70 6c 65 20 74 65 78 74>
 var buf = data.Messages[0].MessageAttributes.attrName.BinaryValue;
 console.log(buf.toString()); // "example text"
});

2. Moved response.data.RequestId to response.requestId

The SDK now stores request IDs for all services in a consistent place on the
response object, rather than inside the response.data property. This is to
improve consistency across services that expose request IDs in different ways.
Note that this is also a breaking change that renames the
response.data.RequestId property to response.requestId
(or this.requestId inside of a callback).

To migrate your code, change:

svc.operation(params, function (err, data) {
 console.log('Request ID:', data.RequestId);
});

To the following:

svc.operation(params, function () {
 console.log('Request ID:', this.requestId);
});

3. Exposed Wrapper Elements

If you use {AWS.ElastiCache}, {AWS.RDS}, or {AWS.Redshift}, you must now access
the response through the top-level output property in the response for certain
operations. This change corrects the SDK to behave according to documentation
output, which was previously listing this wrapper element.

Example:

RDS.describeEngineDefaultParameters() used to return:

{ Parameters: [...] }

This operation now returns:

{ EngineDefaults: { Parameters: [...] } }

The full list of affected operations for each service are:

AWS.ElastiCache: authorizeCacheSecurityGroupIngress, createCacheCluster,
createCacheParameterGroup, createCacheSecurityGroup, createCacheSubnetGroup,
createReplicationGroup, deleteCacheCluster, deleteReplicationGroup,
describeEngineDefaultParameters, modifyCacheCluster, modifyCacheSubnetGroup,
modifyReplicationGroup, purchaseReservedCacheNodesOffering, rebootCacheCluster,
revokeCacheSecurityGroupIngress

AWS.RDS: addSourceIdentifierToSubscription, authorizeDBSecurityGroupIngress,
copyDBSnapshot, createDBInstance, createDBInstanceReadReplica,
createDBParameterGroup, createDBSecurityGroup, createDBSnapshot,
createDBSubnetGroup, createEventSubscription, createOptionGroup,
deleteDBInstance, deleteDBSnapshot, deleteEventSubscription,
describeEngineDefaultParameters, modifyDBInstance, modifyDBSubnetGroup,
modifyEventSubscription, modifyOptionGroup, promoteReadReplica,
purchaseReservedDBInstancesOffering, rebootDBInstance,
removeSourceIdentifierFromSubscription, restoreDBInstanceFromDBSnapshot,
restoreDBInstanceToPointInTime, revokeDBSecurityGroupIngress

AWS.Redshift: authorizeClusterSecurityGroupIngress, authorizeSnapshotAccess,
copyClusterSnapshot, createCluster, createClusterParameterGroup,
createClusterSecurityGroup, createClusterSnapshot, createClusterSubnetGroup,
createEventSubscription, createHsmClientCertificate, createHsmConfiguration,
deleteCluster, deleteClusterSnapshot, describeDefaultClusterParameters,
disableSnapshotCopy, enableSnapshotCopy, modifyCluster,
modifyClusterSubnetGroup, modifyEventSubscription,
modifySnapshotCopyRetentionPeriod, purchaseReservedNodeOffering, rebootCluster,
restoreFromClusterSnapshot, revokeClusterSecurityGroupIngress,
revokeSnapshotAccess, rotateEncryptionKey

4. Dropped .Client and .client Properties

The .Client and .client properties have been removed from Service objects.
If you are using the .Client property on a Service class or a .client
property on an instance of the service, remove these properties from your code.

Upgrading example:

The following 1.x code:

var sts = new AWS.STS.Client();
// or
var sts = new AWS.STS();

sts.client.operation(...);

Should be changed to the following:

var sts = new AWS.STS();
sts.operation(...)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/cookie-parser/node_modules/cookie-signature/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.4 / 2014-06-25

		corrected avoidance of timing attacks (thanks @tenbits!)

1.0.3 / 2014-01-28

		[incorrect] fix for timing attacks

1.0.2 / 2014-01-28

		fix missing repository warning

		fix typo in test

1.0.1 / 2013-04-15

		Revert “Changed underlying HMAC algo. to sha512.”

		Revert “Fix for timing attacks on MAC verification.”

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/aws-sdk/node_modules/xml2js/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-xml2js

Ever had the urge to parse XML? And wanted to access the data in some sane,
easy way? Don’t want to compile a C parser, for whatever reason? Then xml2js is
what you’re looking for!

Description

Simple XML to JavaScript object converter. Uses
sax-js [https://github.com/isaacs/sax-js/].

Note: If you’re looking for a full DOM parser, you probably want
JSDom [https://github.com/tmpvar/jsdom].

Installation

Simplest way to install xml2js is to use npm [http://npmjs.org], just npm install xml2js which will download xml2js and all dependencies.

Usage

No extensive tutorials required because you are a smart developer! The task of
parsing XML should be an easy one, so let’s make it so! Here’s some examples.

Shoot-and-forget usage

You want to parse XML as simple and easy as possible? It’s dangerous to go
alone, take this:

var parseString = require('xml2js').parseString;
var xml = "<root>Hello xml2js!</root>"
parseString(xml, function (err, result) {
 console.dir(result);
});

Can’t get easier than this, right? This works starting with xml2js 0.2.3.
With CoffeeScript it looks like this:

parseString = require('xml2js').parseString
xml = "<root>Hello xml2js!</root>"
parseString xml, (err, result) ->
 console.dir result

If you need some special options, fear not, xml2js supports a number of
options (see below), you can specify these as second argument:

parseString(xml, {trim: true}, function (err, result) {
});

Simple as pie usage

That’s right, if you have been using xml-simple or a home-grown
wrapper, this is was added in 0.1.11 just for you:

var fs = require('fs'),
 xml2js = require('xml2js');

var parser = new xml2js.Parser();
fs.readFile(__dirname + '/foo.xml', function(err, data) {
 parser.parseString(data, function (err, result) {
 console.dir(result);
 console.log('Done');
 });
});

Look ma, no event listeners!

You can also use xml2js from
CoffeeScript [http://jashkenas.github.com/coffee-script/], further reducing
the clutter:

fs = require 'fs',
xml2js = require 'xml2js'

parser = new xml2js.Parser()
fs.readFile __dirname + '/foo.xml', (err, data) ->
 parser.parseString data, (err, result) ->
 console.dir result
 console.log 'Done.'

“Traditional” usage

Alternatively you can still use the traditional addListener variant that was
supported since forever:

var fs = require('fs'),
 xml2js = require('xml2js');

var parser = new xml2js.Parser();
parser.addListener('end', function(result) {
 console.dir(result);
 console.log('Done.');
});
fs.readFile(__dirname + '/foo.xml', function(err, data) {
 parser.parseString(data);
});

If you want to parse multiple files, you have multiple possibilites:

		You can create one xml2js.Parser per file. That’s the recommended one
and is promised to always just work.

		You can call reset() on your parser object.

		You can hope everything goes well anyway. This behaviour is not
guaranteed work always, if ever. Use option #1 if possible. Thanks!

So you wanna some JSON?

Just wrap the result object in a call to JSON.stringify like this
JSON.stringify(result). You get a string containing the JSON representation
of the parsed object that you can feed to JSON-hungry consumers.

Displaying results

You might wonder why, using console.dir or console.log the output at some
level is only [Object]. Don’t worry, this is not because xml2js got lazy.
That’s because Node uses util.inspect to convert the object into strings and
that function stops after depth=2 which is a bit low for most XML.

To display the whole deal, you can use console.log(util.inspect(result, false, null)), which displays the whole result.

So much for that, but what if you use
eyes [https://github.com/cloudhead/eyes.js] for nice colored output and it
truncates the output with …? Don’t fear, there’s also a solution for that,
you just need to increase the maxLength limit by creating a custom inspector
var inspect = require('eyes').inspector({maxLength: false}) and then you can
easily inspect(result).

Options

Apart from the default settings, there is a number of options that can be
specified for the parser. Options are specified by new Parser({optionName: value}). Possible options are:

		attrkey (default: $): Prefix that is used to access the attributes.
Version 0.1 default was @.

		charkey (default: _): Prefix that is used to access the character
content. Version 0.1 default was #.

		explicitCharkey (default: false)

		trim (default: false): Trim the whitespace at the beginning and end of
text nodes.

		normalizeTags (default: false): Normalize all tag names to lowercase.

		normalize (default: false): Trim whitespaces inside text nodes.

		explicitRoot (default: true): Set this if you want to get the root
node in the resulting object.

		emptyTag (default: undefined): what will the value of empty nodes be.
Default is {}.

		explicitArray (default: true): Always put child nodes in an array if
true; otherwise an array is created only if there is more than one.

		ignoreAttrs (default: false): Ignore all XML attributes and only create
text nodes.

		mergeAttrs (default: false): Merge attributes and child elements as
properties of the parent, instead of keying attributes off a child
attribute object. This option is ignored if ignoreAttrs is false.

		validator (default null): You can specify a callable that validates
the resulting structure somehow, however you want. See unit tests
for an example.

		xmlns (default false): Give each element a field usually called ‘$ns’
(the first character is the same as attrkey) that contains its local name
and namespace URI.

		explicitChildren (default false): Put child elements to separate
property. Doesn’t work with mergeAttrs = true. If element has no children
then “children” won’t be created. Added in 0.2.5.

		childkey (default $$): Prefix that is used to access child elements if
explicitChildren is set to true. Added in 0.2.5.

		charsAsChildren (default false): Determines whether chars should be
considered children if explicitChildren is on. Added in 0.2.5.

		async (default false): Should the callbacks be async? This might be
an incompatible change if your code depends on sync execution of callbacks.
xml2js 0.3 might change this default, so the recommendation is to not
depend on sync execution anyway. Added in 0.2.6.

Updating to new version

Version 0.2 changed the default parsing settings, but version 0.1.14 introduced
the default settings for version 0.2, so these settings can be tried before the
migration.

var xml2js = require('xml2js');
var parser = new xml2js.Parser(xml2js.defaults["0.2"]);

To get the 0.1 defaults in version 0.2 you can just use
xml2js.defaults["0.1"] in the same place. This provides you with enough time
to migrate to the saner way of parsing in xml2js 0.2. We try to make the
migration as simple and gentle as possible, but some breakage cannot be
avoided.

So, what exactly did change and why? In 0.2 we changed some defaults to parse
the XML in a more universal and sane way. So we disabled normalize and trim
so xml2js does not cut out any text content. You can reenable this at will of
course. A more important change is that we return the root tag in the resulting
JavaScript structure via the explicitRoot setting, so you need to access the
first element. This is useful for anybody who wants to know what the root node
is and preserves more information. The last major change was to enable
explicitArray, so everytime it is possible that one might embed more than one
sub-tag into a tag, xml2js >= 0.2 returns an array even if the array just
includes one element. This is useful when dealing with APIs that return
variable amounts of subtags.

Running tests, development

[image: Build Status] [https://travis-ci.org/Leonidas-from-XIV/node-xml2js]

The development requirements are handled by npm, you just need to install them.
We also have a number of unit tests, they can be run using npm test directly
from the project root. This runs zap to discover all the tests and execute
them.

If you like to contribute, keep in mind that xml2js is written in CoffeeScript,
so don’t develop on the JavaScript files that are checked into the repository
for convenience reasons. Also, please write some unit test to check your
behaviour and if it is some user-facing thing, add some documentation to this
README, so people will know it exists. Thanks in advance!

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-sessions/node_modules/express/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.5.11 / 2012-06-29

		Fixed backport of req.protocol

2.5.10 / 2012-06-15

		Remove annoying engines field from package.json

		Backport support for trusting X-Forwarded-Proto

		use version of package.json for express command

2.5.9/ 2012-04-02

		Added support for PURGE request method [pbuyle]

		Fixed express(1) generated app app.address() before listening [mmalecki]

2.5.8 / 2012-02-08

		Update mkdirp dep. Closes #991

2.5.7 / 2012-02-06

		Fixed app.all duplicate DELETE requests [mscdex]

2.5.6 / 2012-01-13

		Updated hamljs dev dep. Closes #953

2.5.5 / 2012-01-08

		Fixed: set filename on cached templates [matthewleon]

2.5.4 / 2012-01-02

		Fixed express(1) eol on 0.4.x. Closes #947

2.5.3 / 2011-12-30

		Fixed req.is() when a charset is present

2.5.2 / 2011-12-10

		Fixed: express(1) LF -> CRLF for windows

2.5.1 / 2011-11-17

		Changed: updated connect to 1.8.x

		Removed sass.js support from express(1)

2.5.0 / 2011-10-24

		Added ./routes dir for generated app by default

		Added npm install reminder to express(1) app gen

		Added 0.5.x support

		Removed make test-cov since it wont work with node 0.5.x

		Fixed express(1) public dir for windows. Closes #866

2.4.7 / 2011-10-05

		Added mkdirp to express(1). Closes #795

		Added simple json-config example

		Added shorthand for the parsed request’s pathname via req.path

		Changed connect dep to 1.7.x to fix npm issue...

		Fixed res.redirect() HEAD support. [reported by xerox]

		Fixed req.flash(), only escape args

		Fixed absolute path checking on windows. Closes #829 [reported by andrewpmckenzie]

2.4.6 / 2011-08-22

		Fixed multiple param callback regression. Closes #824 [reported by TroyGoode]

2.4.5 / 2011-08-19

		Added support for routes to handle errors. Closes #809

		Added app.routes.all(). Closes #803

		Added “basepath” setting to work in conjunction with reverse proxies etc.

		Refactored Route to use a single array of callbacks

		Added support for multiple callbacks for app.param(). Closes #801
Closes #805

		Changed: removed .call(self) for route callbacks

		Dependency: qs >= 0.3.1

		Fixed res.redirect() on windows due to join() usage. Closes #808

2.4.4 / 2011-08-05

		Fixed res.header() intention of a set, even when undefined

		Fixed *, value no longer required

		Fixed res.send(204) support. Closes #771

2.4.3 / 2011-07-14

		Added docs for status option special-case. Closes #739

		Fixed options.filename, exposing the view path to template engines

2.4.2. / 2011-07-06

		Revert “removed jsonp stripping” for XSS

2.4.1 / 2011-07-06

		Added res.json() JSONP support. Closes #737

		Added extending-templates example. Closes #730

		Added “strict routing” setting for trailing slashes

		Added support for multiple envs in app.configure() calls. Closes #735

		Changed: res.send() using res.json()

		Changed: when cookie path === null don’t default it

		Changed; default cookie path to “home” setting. Closes #731

		Removed pids/logs creation from express(1)

2.4.0 / 2011-06-28

		Added chainable res.status(code)

		Added res.json(), an explicit version of res.send(obj)

		Added simple web-service example

2.3.12 / 2011-06-22

		#express is now on freenode! come join!

		Added req.get(field, param)

		Added links to Japanese documentation, thanks @hideyukisaito!

		Added; the express(1) generated app outputs the env

		Added content-negotiation example

		Dependency: connect >= 1.5.1 < 2.0.0

		Fixed view layout bug. Closes #720

		Fixed; ignore body on 304. Closes #701

2.3.11 / 2011-06-04

		Added npm test

		Removed generation of dummy test file from express(1)

		Fixed; express(1) adds express as a dep

		Fixed; prune on prepublish

2.3.10 / 2011-05-27

		Added req.route, exposing the current route

		Added package.json generation support to express(1)

		Fixed call to app.param() function for optional params. Closes #682

2.3.9 / 2011-05-25

		Fixed bug-ish with ../' inres.partial()` calls

2.3.8 / 2011-05-24

		Fixed app.options()

2.3.7 / 2011-05-23

		Added route Collection, ex: app.get('/user/:id').remove();

		Added support for app.param(fn) to define param logic

		Removed app.param() support for callback with return value

		Removed module.parent check from express(1) generated app. Closes #670

		Refactored router. Closes #639

2.3.6 / 2011-05-20

		Changed; using devDependencies instead of git submodules

		Fixed redis session example

		Fixed markdown example

		Fixed view caching, should not be enabled in development

2.3.5 / 2011-05-20

		Added export .view as alias for .View

2.3.4 / 2011-05-08

		Added ./examples/say

		Fixed res.sendfile() bug preventing the transfer of files with spaces

2.3.3 / 2011-05-03

		Added “case sensitive routes” option.

		Changed; split methods supported per rfc [slaskis]

		Fixed route-specific middleware when using the same callback function several times

2.3.2 / 2011-04-27

		Fixed view hints

2.3.1 / 2011-04-26

		Added app.match() as app.match.all()

		Added app.lookup() as app.lookup.all()

		Added app.remove() for app.remove.all()

		Added app.remove.VERB()

		Fixed template caching collision issue. Closes #644

		Moved router over from connect and started refactor

2.3.0 / 2011-04-25

		Added options support to res.clearCookie()

		Added res.helpers() as alias of res.locals()

		Added; json defaults to UTF-8 with res.send(). Closes #632. [Daniel * Dependency connect >= 1.4.0

		Changed; auto set Content-Type in res.attachement [Aaron Heckmann]

		Renamed “cache views” to “view cache”. Closes #628

		Fixed caching of views when using several apps. Closes #637

		Fixed gotcha invoking app.param() callbacks once per route middleware.
Closes #638

		Fixed partial lookup precedence. Closes #631
Shaw]

2.2.2 / 2011-04-12

		Added second callback support for res.download() connection errors

		Fixed filename option passing to template engine

2.2.1 / 2011-04-04

		Added layout(path) helper to change the layout within a view. Closes #610

		Fixed partial() collection object support.
Previously only anything with .length would work.
When .length is present one must still be aware of holes,
however now { collection: {foo: 'bar'}} is valid, exposes
keyInCollection and keysInCollection.

		Performance improved with better view caching

		Removed request and response locals

		Changed; errorHandler page title is now Express instead of Connect

2.2.0 / 2011-03-30

		Added app.lookup.VERB(), ex app.lookup.put('/user/:id'). Closes #606

		Added app.match.VERB(), ex app.match.put('/user/12'). Closes #606

		Added app.VERB(path) as alias of app.lookup.VERB().

		Dependency connect >= 1.2.0

2.1.1 / 2011-03-29

		Added; expose err.view object when failing to locate a view

		Fixed res.partial() call next(err) when no callback is given [reported by aheckmann]

		Fixed; res.send(undefined) responds with 204 [aheckmann]

2.1.0 / 2011-03-24

		Added <root>/_?<name> partial lookup support. Closes #447

		Added request, response, and app local variables

		Added settings local variable, containing the app’s settings

		Added req.flash() exception if req.session is not available

		Added res.send(bool) support (json response)

		Fixed stylus example for latest version

		Fixed; wrap try/catch around res.render()

2.0.0 / 2011-03-17

		Fixed up index view path alternative.

		Changed; res.locals() without object returns the locals

2.0.0rc3 / 2011-03-17

		Added res.locals(obj) to compliment res.local(key, val)

		Added res.partial() callback support

		Fixed recursive error reporting issue in res.render()

2.0.0rc2 / 2011-03-17

		Changed; partial() “locals” are now optional

		Fixed SlowBuffer support. Closes #584 [reported by tyrda01]

		Fixed .filename view engine option [reported by drudge]

		Fixed blog example

		Fixed {req,res}.app reference when mounting [Ben Weaver]

2.0.0rc / 2011-03-14

		Fixed; expose HTTPSServer constructor

		Fixed express(1) default test charset. Closes #579 [reported by secoif]

		Fixed; default charset to utf-8 instead of utf8 for lame IE [reported by NickP]

2.0.0beta3 / 2011-03-09

		Added support for res.contentType() literal
The original res.contentType('.json'),
res.contentType('application/json'), and res.contentType('json')
will work now.

		Added res.render() status option support back

		Added charset option for res.render()

		Added .charset support (via connect 1.0.4)

		Added view resolution hints when in development and a lookup fails

		Added layout lookup support relative to the page view.
For example while rendering ./views/user/index.jade if you create
./views/user/layout.jade it will be used in favour of the root layout.

		Fixed res.redirect(). RFC states absolute url [reported by unlink]

		Fixed; default res.send() string charset to utf8

		Removed Partial constructor (not currently used)

2.0.0beta2 / 2011-03-07

		Added res.render() .locals support back to aid in migration process

		Fixed flash example

2.0.0beta / 2011-03-03

		Added HTTPS support

		Added res.cookie() maxAge support

		Added req.header() Referrer / Referer special-case, either works

		Added mount support for res.redirect(), now respects the mount-point

		Added union() util, taking place of merge(clone()) combo

		Added stylus support to express(1) generated app

		Added secret to session middleware used in examples and generated app

		Added res.local(name, val) for progressive view locals

		Added default param support to req.param(name, default)

		Added app.disabled() and app.enabled()

		Added app.register() support for omitting leading ”.”, either works

		Added res.partial(), using the same interface as partial() within a view. Closes #539

		Added app.param() to map route params to async/sync logic

		Added; aliased app.helpers() as app.locals(). Closes #481

		Added extname with no leading ”.” support to res.contentType()

		Added cache views setting, defaulting to enabled in “production” env

		Added index file partial resolution, eg: partial(‘user’) may try views/user/index.jade.

		Added req.accepts() support for extensions

		Changed; res.download() and res.sendfile() now utilize Connect’s
static file server connect.static.send().

		Changed; replaced connect.utils.mime() with npm mime module

		Changed; allow req.query to be pre-defined (via middleware or other parent

		Changed view partial resolution, now relative to parent view

		Changed view engine signature. no longer engine.render(str, options, callback), now engine.compile(str, options) -> Function, the returned function accepts fn(locals).

		Fixed req.param() bug returning Array.prototype methods. Closes #552

		Fixed; using Stream#pipe() instead of sys.pump() in res.sendfile()

		Fixed; using qs module instead of querystring

		Fixed; strip unsafe chars from jsonp callbacks

		Removed “stream threshold” setting

1.0.8 / 2011-03-01

		Allow req.query to be pre-defined (via middleware or other parent app)

		“connect”: “>= 0.5.0 < 1.0.0”. Closes #547

		Removed the long deprecated EXPRESS_ENV support

1.0.7 / 2011-02-07

		Fixed render() setting inheritance.
Mounted apps would not inherit “view engine”

1.0.6 / 2011-02-07

		Fixed view engine setting bug when period is in dirname

1.0.5 / 2011-02-05

		Added secret to generated app session() call

1.0.4 / 2011-02-05

		Added qs dependency to package.json

		Fixed namespaced require()s for latest connect support

1.0.3 / 2011-01-13

		Remove unsafe characters from JSONP callback names [Ryan Grove]

1.0.2 / 2011-01-10

		Removed nested require, using connect.router

1.0.1 / 2010-12-29

		Fixed for middleware stacked via createServer()
previously the foo middleware passed to createServer(foo)
would not have access to Express methods such as res.send()
or props like req.query etc.

1.0.0 / 2010-11-16

		Added; deduce partial object names from the last segment.
For example by default partial('forum/post', postObject) will
give you the post object, providing a meaningful default.

		Added http status code string representation to res.redirect() body

		Added; res.redirect() supporting text/plain and text/html via Accept.

		Added req.is() to aid in content negotiation

		Added partial local inheritance [suggested by masylum]. Closes #102
providing access to parent template locals.

		Added -s, –session[s] flag to express(1) to add session related middleware

		Added –template flag to express(1) to specify the
template engine to use.

		Added –css flag to express(1) to specify the
stylesheet engine to use (or just plain css by default).

		Added app.all() support [thanks aheckmann]

		Added partial direct object support.
You may now partial('user', user) providing the “user” local,
vs previously partial('user', { object: user }).

		Added route-separation example since many people question ways
to do this with CommonJS modules. Also view the blog example for
an alternative.

		Performance; caching view path derived partial object names

		Fixed partial local inheritance precedence. [reported by Nick Poulden] Closes #454

		Fixed jsonp support; text/javascript as per mailinglist discussion

1.0.0rc4 / 2010-10-14

		Added NODE_ENV support, EXPRESS_ENV is deprecated and will be removed in 1.0.0

		Added route-middleware support (very helpful, see the docs [http://expressjs.com/guide.html#Route-Middleware])

		Added jsonp callback setting to enable/disable jsonp autowrapping [Dav Glass]

		Added callback query check on response.send to autowrap JSON objects for simple webservice implementations [Dav Glass]

		Added partial() support for array-like collections. Closes #434

		Added support for swappable querystring parsers

		Added session usage docs. Closes #443

		Added dynamic helper caching. Closes #439 [suggested by maritz]

		Added authentication example

		Added basic Range support to res.sendfile() (and res.download() etc)

		Changed; express(1) generated app using 2 spaces instead of 4

		Default env to “development” again [aheckmann]

		Removed context option is no more, use “scope”

		Fixed; exposing ./support libs to examples so they can run without installs

		Fixed mvc example

1.0.0rc3 / 2010-09-20

		Added confirmation for express(1) app generation. Closes #391

		Added extending of flash formatters via app.flashFormatters

		Added flash formatter support. Closes #411

		Added streaming support to res.sendfile() using sys.pump() when >= “stream threshold”

		Added stream threshold setting for res.sendfile()

		Added res.send() HEAD support

		Added res.clearCookie()

		Added res.cookie()

		Added res.render() headers option

		Added res.redirect() response bodies

		Added res.render() status option support. Closes #425 [thanks aheckmann]

		Fixed res.sendfile() responding with 403 on malicious path

		Fixed res.download() bug; when an error occurs remove Content-Disposition

		Fixed; mounted apps settings now inherit from parent app [aheckmann]

		Fixed; stripping Content-Length / Content-Type when 204

		Fixed res.send() 204. Closes #419

		Fixed multiple Set-Cookie headers via res.header(). Closes #402

		Fixed bug messing with error handlers when listenFD() is called instead of listen(). [thanks guillermo]

1.0.0rc2 / 2010-08-17

		Added app.register() for template engine mapping. Closes #390

		Added res.render() callback support as second argument (no options)

		Added callback support to res.download()

		Added callback support for res.sendfile()

		Added support for middleware access via express.middlewareName() vs connect.middlewareName()

		Added “partials” setting to docs

		Added default expresso tests to express(1) generated app. Closes #384

		Fixed res.sendfile() error handling, defer via next()

		Fixed res.render() callback when a layout is used [thanks guillermo]

		Fixed; make install creating ~/.node_libraries when not present

		Fixed issue preventing error handlers from being defined anywhere. Closes #387

1.0.0rc / 2010-07-28

		Added mounted hook. Closes #369

		Added connect dependency to package.json

		Removed “reload views” setting and support code
development env never caches, production always caches.

		Removed param in route callbacks, signature is now
simply (req, res, next), previously (req, res, params, next).
Use req.params for path captures, req.query for GET params.

		Fixed “home” setting

		Fixed middleware/router precedence issue. Closes #366

		Fixed; configure() callbacks called immediately. Closes #368

1.0.0beta2 / 2010-07-23

		Added more examples

		Added; exporting Server constructor

		Added Server#helpers() for view locals

		Added Server#dynamicHelpers() for dynamic view locals. Closes #349

		Added support for absolute view paths

		Added; home setting defaults to Server#route for mounted apps. Closes #363

		Added Guillermo Rauch to the contributor list

		Added support for “as” for non-collection partials. Closes #341

		Fixed install.sh, ensuring ~/.node_libraries exists. Closes #362 [thanks jf]

		Fixed res.render() exceptions, now passed to next() when no callback is given [thanks guillermo]

		Fixed instanceof Array checks, now Array.isArray()

		Fixed express(1) expansion of public dirs. Closes #348

		Fixed middleware precedence. Closes #345

		Fixed view watcher, now async [thanks aheckmann]

1.0.0beta / 2010-07-15

		Re-write
		much faster

		much lighter

		Check ExpressJS.com [http://expressjs.com] for migration guide and updated docs

0.14.0 / 2010-06-15

		Utilize relative requires

		Added Static bufferSize option [aheckmann]

		Fixed caching of view and partial subdirectories [aheckmann]

		Fixed mime.type() comments now that ”.ext” is not supported

		Updated haml submodule

		Updated class submodule

		Removed bin/express

0.13.0 / 2010-06-01

		Added node v0.1.97 compatibility

		Added support for deleting cookies via Request#cookie(‘key’, null)

		Updated haml submodule

		Fixed not-found page, now using using charset utf-8

		Fixed show-exceptions page, now using using charset utf-8

		Fixed view support due to fs.readFile Buffers

		Changed; mime.type() no longer accepts ”.type” due to node extname() changes

0.12.0 / 2010-05-22

		Added node v0.1.96 compatibility

		Added view helpers export which act as additional local variables

		Updated haml submodule

		Changed ETag; removed inode, modified time only

		Fixed LF to CRLF for setting multiple cookies

		Fixed cookie complation; values are now urlencoded

		Fixed cookies parsing; accepts quoted values and url escaped cookies

0.11.0 / 2010-05-06

		Added support for layouts using different engines
		this.render(‘page.html.haml’, { layout: ‘super-cool-layout.html.ejs’ })

		this.render(‘page.html.haml’, { layout: ‘foo’ }) // assumes ‘foo.html.haml’

		this.render(‘page.html.haml’, { layout: false }) // no layout

		Updated ext submodule

		Updated haml submodule

		Fixed EJS partial support by passing along the context. Issue #307

0.10.1 / 2010-05-03

		Fixed binary uploads.

0.10.0 / 2010-04-30

		Added charset support via Request#charset (automatically assigned to ‘UTF-8’ when respond()’s
encoding is set to ‘utf8’ or ‘utf-8’.

		Added “encoding” option to Request#render(). Closes #299

		Added “dump exceptions” setting, which is enabled by default.

		Added simple ejs template engine support

		Added error reponse support for text/plain, application/json. Closes #297

		Added callback function param to Request#error()

		Added Request#sendHead()

		Added Request#stream()

		Added support for Request#respond(304, null) for empty response bodies

		Added ETag support to Request#sendfile()

		Added options to Request#sendfile(), passed to fs.createReadStream()

		Added filename arg to Request#download()

		Performance enhanced due to pre-reversing plugins so that plugins.reverse() is not called on each request

		Performance enhanced by preventing several calls to toLowerCase() in Router#match()

		Changed; Request#sendfile() now streams

		Changed; Renamed Request#halt() to Request#respond(). Closes #289

		Changed; Using sys.inspect() instead of JSON.encode() for error output

		Changed; run() returns the http.Server instance. Closes #298

		Changed; Defaulting Server#host to null (INADDR_ANY)

		Changed; Logger “common” format scale of 0.4f

		Removed Logger “request” format

		Fixed; Catching ENOENT in view caching, preventing error when “views/partials” is not found

		Fixed several issues with http client

		Fixed Logger Content-Length output

		Fixed bug preventing Opera from retaining the generated session id. Closes #292

0.9.0 / 2010-04-14

		Added DSL level error() route support

		Added DSL level notFound() route support

		Added Request#error()

		Added Request#notFound()

		Added Request#render() callback function. Closes #258

		Added “max upload size” setting

		Added “magic” variables to collection partials (__index__, __length__, __isFirst__, __isLast__). Closes #254

		Added haml.js [http://github.com/visionmedia/haml.js] submodule; removed haml-js

		Added callback function support to Request#halt() as 3rd/4th arg

		Added preprocessing of route param wildcards using param(). Closes #251

		Added view partial support (with collections etc)

		Fixed bug preventing falsey params (such as ?page=0). Closes #286

		Fixed setting of multiple cookies. Closes #199

		Changed; view naming convention is now NAME.TYPE.ENGINE (for example page.html.haml)

		Changed; session cookie is now httpOnly

		Changed; Request is no longer global

		Changed; Event is no longer global

		Changed; “sys” module is no longer global

		Changed; moved Request#download to Static plugin where it belongs

		Changed; Request instance created before body parsing. Closes #262

		Changed; Pre-caching views in memory when “cache view contents” is enabled. Closes #253

		Changed; Pre-caching view partials in memory when “cache view partials” is enabled

		Updated support to node –version 0.1.90

		Updated dependencies

		Removed set(“session cookie”) in favour of use(Session, { cookie: { ... }})

		Removed utils.mixin(); use Object#mergeDeep()

0.8.0 / 2010-03-19

		Added coffeescript example app. Closes #242

		Changed; cache api now async friendly. Closes #240

		Removed deprecated ‘express/static’ support. Use ‘express/plugins/static’

0.7.6 / 2010-03-19

		Added Request#isXHR. Closes #229

		Added make install (for the executable)

		Added express executable for setting up simple app templates

		Added “GET /public/*” to Static plugin, defaulting to /public

		Added Static plugin

		Fixed; Request#render() only calls cache.get() once

		Fixed; Namespacing View caches with “view:”

		Fixed; Namespacing Static caches with “static:”

		Fixed; Both example apps now use the Static plugin

		Fixed set(“views”). Closes #239

		Fixed missing space for combined log format

		Deprecated Request#sendfile() and ‘express/static’

		Removed Server#running

0.7.5 / 2010-03-16

		Added Request#flash() support without args, now returns all flashes

		Updated ext submodule

0.7.4 / 2010-03-16

		Fixed session reaper

		Changed; class.js replacing js-oo Class implementation (quite a bit faster, no browser cruft)

0.7.3 / 2010-03-16

		Added package.json

		Fixed requiring of haml / sass due to kiwi removal

0.7.2 / 2010-03-16

		Fixed GIT submodules (HAH!)

0.7.1 / 2010-03-16

		Changed; Express now using submodules again until a PM is adopted

		Changed; chat example using millisecond conversions from ext

0.7.0 / 2010-03-15

		Added Request#pass() support (finds the next matching route, or the given path)

		Added Logger plugin (default “common” format replaces CommonLogger)

		Removed Profiler plugin

		Removed CommonLogger plugin

0.6.0 / 2010-03-11

		Added seed.yml for kiwi package management support

		Added HTTP client query string support when method is GET. Closes #205

		Added support for arbitrary view engines.
For example “foo.engine.html” will now require(‘engine’),
the exports from this module are cached after the first require().

		Added async plugin support

		Removed usage of RESTful route funcs as http client
get() etc, use http.get() and friends

		Removed custom exceptions

0.5.0 / 2010-03-10

		Added ext dependency (library of js extensions)

		Removed extname() / basename() utils. Use path module

		Removed toArray() util. Use arguments.values

		Removed escapeRegexp() util. Use RegExp.escape()

		Removed process.mixin() dependency. Use utils.mixin()

		Removed Collection

		Removed ElementCollection

		Shameless self promotion of ebook “Advanced JavaScript” (http://dev-mag.com) ;)

0.4.0 / 2010-02-11

		Added flash() example to sample upload app

		Added high level restful http client module (express/http)

		Changed; RESTful route functions double as HTTP clients. Closes #69

		Changed; throwing error when routes are added at runtime

		Changed; defaulting render() context to the current Request. Closes #197

		Updated haml submodule

0.3.0 / 2010-02-11

		Updated haml / sass submodules. Closes #200

		Added flash message support. Closes #64

		Added accepts() now allows multiple args. fixes #117

		Added support for plugins to halt. Closes #189

		Added alternate layout support. Closes #119

		Removed Route#run(). Closes #188

		Fixed broken specs due to use(Cookie) missing

0.2.1 / 2010-02-05

		Added “plot” format option for Profiler (for gnuplot processing)

		Added request number to Profiler plugin

		Fixed binary encoding for multi-part file uploads, was previously defaulting to UTF8

		Fixed issue with routes not firing when not files are present. Closes #184

		Fixed process.Promise -> events.Promise

0.2.0 / 2010-02-03

		Added parseParam() support for name[] etc. (allows for file inputs with “multiple” attr) Closes #180

		Added Both Cache and Session option “reapInterval” may be “reapEvery”. Closes #174

		Added expiration support to cache api with reaper. Closes #133

		Added cache Store.Memory#reap()

		Added Cache; cache api now uses first class Cache instances

		Added abstract session Store. Closes #172

		Changed; cache Memory.Store#get() utilizing Collection

		Renamed MemoryStore -> Store.Memory

		Fixed use() of the same plugin several time will always use latest options. Closes #176

0.1.0 / 2010-02-03

		Changed; Hooks (before / after) pass request as arg as well as evaluated in their context

		Updated node support to 0.1.27 Closes #169

		Updated dirname(__filename) -> __dirname

		Updated libxmljs support to v0.2.0

		Added session support with memory store / reaping

		Added quick uid() helper

		Added multi-part upload support

		Added Sass.js support / submodule

		Added production env caching view contents and static files

		Added static file caching. Closes #136

		Added cache plugin with memory stores

		Added support to StaticFile so that it works with non-textual files.

		Removed dirname() helper

		Removed several globals (now their modules must be required)

0.0.2 / 2010-01-10

		Added view benchmarks; currently haml vs ejs

		Added Request#attachment() specs. Closes #116

		Added use of node’s parseQuery() util. Closes #123

		Added make init for submodules

		Updated Haml

		Updated sample chat app to show messages on load

		Updated libxmljs parseString -> parseHtmlString

		Fixed make init to work with older versions of git

		Fixed specs can now run independant specs for those who cant build deps. Closes #127

		Fixed issues introduced by the node url module changes. Closes 126.

		Fixed two assertions failing due to Collection#keys() returning strings

		Fixed faulty Collection#toArray() spec due to keys() returning strings

		Fixed make test now builds libxmljs.node before testing

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/aws-sdk/node_modules/xmlbuilder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

xmlbuilder-js

An XMLBuilder for node.js [http://nodejs.org/] similar to
java-xmlbuilder [http://code.google.com/p/java-xmlbuilder/].

[image: Build Status] [http://travis-ci.org/oozcitak/xmlbuilder-js]

Installation:

npm install xmlbuilder

Important:

I had to break compatibility while adding multiple instances in 0.1.3.
As a result, version from v0.1.3 are not compatible with previous versions.

Usage:

var builder = require('xmlbuilder');
var xml = builder.create('root')
 .ele('xmlbuilder', {'for': 'node-js'})
 .ele('repo', {'type': 'git'}, 'git://github.com/oozcitak/xmlbuilder-js.git')
 .end({ pretty: true});

console.log(xml);

will result in:

<?xml version="1.0"?>
<root>
 <xmlbuilder for="node-js">
 <repo type="git">git://github.com/oozcitak/xmlbuilder-js.git</repo>
 </xmlbuilder>
</root>

If you need to do some processing:

var root = builder.create('squares');
root.com('f(x) = x^2');
for(var i = 1; i <= 5; i++)
{
 var item = root.ele('data');
 item.att('x', i);
 item.att('y', i * i);
}

This will result in:

<?xml version="1.0"?>
<squares>
 <!-- f(x) = x^2 -->
 <data x="1" y="1"/>
 <data x="2" y="4"/>
 <data x="3" y="9"/>
 <data x="4" y="16"/>
 <data x="5" y="25"/>
</squares>

See the Usage [https://github.com/oozcitak/xmlbuilder-js/wiki/Usage] page in the wiki for more detailed instructions.

License:

xmlbuilder-js is MIT Licensed [http://opensource.org/licenses/mit-license.php].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-sessions/node_modules/express/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Express

Insanely fast (and small) server-side JavaScript web development framework
built on node [http://nodejs.org] and Connect [http://github.com/senchalabs/connect].

 var app = express.createServer();

 app.get('/', function(req, res){
 res.send('Hello World');
 });

 app.listen(3000);

Installation

$ npm install express

or to access the express(1) executable install globally:

$ npm install -g express

Quick Start

The quickest way to get started with express is to utilize the executable express(1) to generate an application as shown below:

Create the app:

$ npm install -g express
$ express /tmp/foo && cd /tmp/foo

Install dependencies:

$ npm install -d

Start the server:

$ node app.js

Features

		Robust routing

		Redirection helpers

		Dynamic view helpers

		Content negotiation

		Focus on high performance

		View rendering and partials support

		Environment based configuration

		Session based flash notifications

		Built on Connect [http://github.com/senchalabs/connect]

		High test coverage

		Executable for generating applications quickly

		Application level view options

Via Connect:

		Session support

		Cache API

		Mime helpers

		ETag support

		Persistent flash notifications

		Cookie support

		JSON-RPC

		Logging

		and much more!

Contributors

The following are the major contributors of Express (in no specific order).

		TJ Holowaychuk (visionmedia [http://github.com/visionmedia])

		Ciaran Jessup (ciaranj [http://github.com/ciaranj])

		Aaron Heckmann (aheckmann [http://github.com/aheckmann])

		Guillermo Rauch (guille [http://github.com/guille])

More Information

		#express on freenode

		express-expose [http://github.com/visionmedia/express-expose] expose objects, functions, modules and more to client-side js with ease

		express-configure [http://github.com/visionmedia/express-configuration] async configuration support

		express-messages [http://github.com/visionmedia/express-messages] flash notification rendering helper

		express-namespace [http://github.com/visionmedia/express-namespace] namespaced route support

		express-params [https://github.com/visionmedia/express-params] param pre-condition functions

		express-mongoose [https://github.com/LearnBoost/express-mongoose] plugin for easy rendering of Mongoose async Query results

		Follow tjholowaychuk [http://twitter.com/tjholowaychuk] on twitter for updates

		Google Group [http://groups.google.com/group/express-js] for discussion

		Visit the Wiki [http://github.com/visionmedia/express/wiki]

		日本語ドキュメンテーション [http://hideyukisaito.com/doc/expressjs/] by hideyukisaito [https://github.com/hideyukisaito]

		Screencast - Introduction [http://bit.ly/eRYu0O]

		Screencast - View Partials [http://bit.ly/dU13Fx]

		Screencast - Route Specific Middleware [http://bit.ly/hX4IaH]

		Screencast - Route Path Placeholder Preconditions [http://bit.ly/eNqmVs]

Node Compatibility

Express 1.x is compatible with node 0.2.x and connect < 1.0.

Express 2.x is compatible with node 0.4.x or 0.6.x, and connect 1.x

Express 3.x (master) will be compatible with node 0.6.x and connect 2.x

Viewing Examples

First install the dev dependencies to install all the example / test suite deps:

$ npm install

then run whichever tests you want:

$ node examples/jade/app.js

Running Tests

To run the test suite first invoke the following command within the repo, installing the development dependencies:

$ npm install

then run the tests:

$ make test

License

(The MIT License)

Copyright (c) 2009-2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/graceful-fs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

graceful-fs

graceful-fs functions as a drop-in replacement for the fs module,
making various improvements.

The improvements are meant to normalize behavior across different
platforms and environments, and to make filesystem access more
resilient to errors.

Improvements over fs module [http://api.nodejs.org/fs.html]

graceful-fs:

		Queues up open and readdir calls, and retries them once
something closes if there is an EMFILE error from too many file
descriptors.

		fixes lchmod for Node versions prior to 0.6.2.

		implements fs.lutimes if possible. Otherwise it becomes a noop.

		ignores EINVAL and EPERM errors in chown, fchown or
lchown if the user isn’t root.

		makes lchmod and lchown become noops, if not available.

		retries reading a file if read results in EAGAIN error.

On Windows, it retries renaming a file for up to one second if EACCESS
or EPERM error occurs, likely because antivirus software has locked
the directory.

USAGE

// use just like fs
var fs = require('graceful-fs')

// now go and do stuff with it...
fs.readFileSync('some-file-or-whatever')

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/aws-sdk/node_modules/xml2js/node_modules/sax/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sax js

A sax-style parser for XML and HTML.

Designed with node [http://nodejs.org/] in mind, but should work fine in
the browser or other CommonJS implementations.

What This Is

		A very simple tool to parse through an XML string.

		A stepping stone to a streaming HTML parser.

		A handy way to deal with RSS and other mostly-ok-but-kinda-broken XML
docs.

What This Is (probably) Not

		An HTML Parser - That’s a fine goal, but this isn’t it. It’s just
XML.

		A DOM Builder - You can use it to build an object model out of XML,
but it doesn’t do that out of the box.

		XSLT - No DOM = no querying.

		100% Compliant with (some other SAX implementation) - Most SAX
implementations are in Java and do a lot more than this does.

		An XML Validator - It does a little validation when in strict mode, but
not much.

		A Schema-Aware XSD Thing - Schemas are an exercise in fetishistic
masochism.

		A DTD-aware Thing - Fetching DTDs is a much bigger job.

Regarding <!DOCTYPEs and <!ENTITYs

The parser will handle the basic XML entities in text nodes and attribute
values: & < > ' ". It’s possible to define additional
entities in XML by putting them in the DTD. This parser doesn’t do anything
with that. If you want to listen to the ondoctype event, and then fetch
the doctypes, and read the entities and add them to parser.ENTITIES, then
be my guest.

Unknown entities will fail in strict mode, and in loose mode, will pass
through unmolested.

Usage

var sax = require("./lib/sax"),
 strict = true, // set to false for html-mode
 parser = sax.parser(strict);

parser.onerror = function (e) {
 // an error happened.
};
parser.ontext = function (t) {
 // got some text. t is the string of text.
};
parser.onopentag = function (node) {
 // opened a tag. node has "name" and "attributes"
};
parser.onattribute = function (attr) {
 // an attribute. attr has "name" and "value"
};
parser.onend = function () {
 // parser stream is done, and ready to have more stuff written to it.
};

parser.write('<xml>Hello, <who name="world">world</who>!</xml>').close();

// stream usage
// takes the same options as the parser
var saxStream = require("sax").createStream(strict, options)
saxStream.on("error", function (e) {
 // unhandled errors will throw, since this is a proper node
 // event emitter.
 console.error("error!", e)
 // clear the error
 this._parser.error = null
 this._parser.resume()
})
saxStream.on("opentag", function (node) {
 // same object as above
})
// pipe is supported, and it's readable/writable
// same chunks coming in also go out.
fs.createReadStream("file.xml")
 .pipe(saxStream)
 .pipe(fs.createReadStream("file-copy.xml"))

Arguments

Pass the following arguments to the parser function. All are optional.

strict - Boolean. Whether or not to be a jerk. Default: false.

opt - Object bag of settings regarding string formatting. All default to false.

Settings supported:

		trim - Boolean. Whether or not to trim text and comment nodes.

		normalize - Boolean. If true, then turn any whitespace into a single
space.

		lowercase - Boolean. If true, then lowercase tag names and attribute names
in loose mode, rather than uppercasing them.

		xmlns - Boolean. If true, then namespaces are supported.

		position - Boolean. If false, then don’t track line/col/position.

Methods

write - Write bytes onto the stream. You don’t have to do this all at
once. You can keep writing as much as you want.

close - Close the stream. Once closed, no more data may be written until
it is done processing the buffer, which is signaled by the end event.

resume - To gracefully handle errors, assign a listener to the error
event. Then, when the error is taken care of, you can call resume to
continue parsing. Otherwise, the parser will not continue while in an error
state.

Members

At all times, the parser object will have the following members:

line, column, position - Indications of the position in the XML
document where the parser currently is looking.

startTagPosition - Indicates the position where the current tag starts.

closed - Boolean indicating whether or not the parser can be written to.
If it’s true, then wait for the ready event to write again.

strict - Boolean indicating whether or not the parser is a jerk.

opt - Any options passed into the constructor.

tag - The current tag being dealt with.

And a bunch of other stuff that you probably shouldn’t touch.

Events

All events emit with a single argument. To listen to an event, assign a
function to on<eventname>. Functions get executed in the this-context of
the parser object. The list of supported events are also in the exported
EVENTS array.

When using the stream interface, assign handlers using the EventEmitter
on function in the normal fashion.

error - Indication that something bad happened. The error will be hanging
out on parser.error, and must be deleted before parsing can continue. By
listening to this event, you can keep an eye on that kind of stuff. Note:
this happens much more in strict mode. Argument: instance of Error.

text - Text node. Argument: string of text.

doctype - The <!DOCTYPE declaration. Argument: doctype string.

processinginstruction - Stuff like <?xml foo="blerg" ?>. Argument:
object with name and body members. Attributes are not parsed, as
processing instructions have implementation dependent semantics.

sgmldeclaration - Random SGML declarations. Stuff like <!ENTITY p>
would trigger this kind of event. This is a weird thing to support, so it
might go away at some point. SAX isn’t intended to be used to parse SGML,
after all.

opentag - An opening tag. Argument: object with name and attributes.
In non-strict mode, tag names are uppercased, unless the lowercase
option is set. If the xmlns option is set, then it will contain
namespace binding information on the ns member, and will have a
local, prefix, and uri member.

closetag - A closing tag. In loose mode, tags are auto-closed if their
parent closes. In strict mode, well-formedness is enforced. Note that
self-closing tags will have closeTag emitted immediately after openTag.
Argument: tag name.

attribute - An attribute node. Argument: object with name and value.
In non-strict mode, attribute names are uppercased, unless the lowercase
option is set. If the xmlns option is set, it will also contains namespace
information.

comment - A comment node. Argument: the string of the comment.

opencdata - The opening tag of a <![CDATA[block.

cdata - The text of a <![CDATA[block. Since <![CDATA[blocks can get
quite large, this event may fire multiple times for a single block, if it
is broken up into multiple write()s. Argument: the string of random
character data.

closecdata - The closing tag (]]>) of a <![CDATA[block.

opennamespace - If the xmlns option is set, then this event will
signal the start of a new namespace binding.

closenamespace - If the xmlns option is set, then this event will
signal the end of a namespace binding.

end - Indication that the closed stream has ended.

ready - Indication that the stream has reset, and is ready to be written
to.

noscript - In non-strict mode, <script> tags trigger a "script"
event, and their contents are not checked for special xml characters.
If you pass noscript: true, then this behavior is suppressed.

Reporting Problems

It’s best to write a failing test if you find an issue. I will always
accept pull requests with failing tests if they demonstrate intended
behavior, but it is very hard to figure out what issue you’re describing
without a test. Writing a test is also the best way for you yourself
to figure out if you really understand the issue you think you have with
sax-js.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-sessions/node_modules/express/node_modules/mime/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime

Support for mapping between file extensions and MIME types. This module uses the latest version of the Apache “mime.types” file (maps over 620 types to 800+ extensions). It is also trivially easy to add your own types and extensions, should you need to do that.

Install

Install with npm [http://github.com/isaacs/npm]:

npm install mime

API - Queries

mime.lookup(path)

Get the mime type associated with a file. This is method is case-insensitive. Everything in path up to and including the last ‘/’ or ‘.’ is ignored, so you can pass it paths, filenames, or extensions, like so:

var mime = require('mime');

mime.lookup('/path/to/file.txt'); // => 'text/plain'
mime.lookup('file.txt'); // => 'text/plain'
mime.lookup('.txt'); // => 'text/plain'
mime.lookup('htm'); // => 'text/html'

mime.extension(type) - lookup the default extension for type

mime.extension('text/html'); // => 'html'
mime.extension('application/octet-stream'); // => 'bin'

mime.charsets.lookup() - map mime-type to charset

mime.charsets.lookup('text/plain'); // => 'UTF-8'

(The logic for charset lookups is pretty rudimentary. Feel free to suggest improvements.)

API - Customizing

The following APIs allow you to add your own type mappings within your project. If you feel a type should be included as part of node-mime, see requesting new types [https://github.com/bentomas/node-mime/wiki/Requesting-New-Types].

mime.define() - Add custom mime/extension mappings

mime.define({
 'text/x-some-format': ['x-sf', 'x-sft', 'x-sfml'],
 'application/x-my-type': ['x-mt', 'x-mtt'],
 // etc ...
});

mime.lookup('x-sft'); // => 'text/x-some-format'
mime.extension('text/x-some-format'); // => 'x-sf'

mime.load(filepath) - Load mappings from an Apache ”.types” format file

mime.load('./my_project.types');

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/pend/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Pend

Dead-simple optimistic async helper.

Usage

var Pend = require('pend');
var pend = new Pend();
pend.max = 10; // defaults to Infinity
pend.go(function(cb) {
 console.log("this function is immediately executed");
 setTimeout(function() {
 console.log("calling cb 1");
 cb();
 }, 500);
});
pend.go(function(cb) {
 console.log("this function is also immediately executed");
 setTimeout(function() {
 console.log("calling cb 2");
 cb();
 }, 1000);
});
pend.wait(function(err) {
 console.log("this is excuted when the first 2 have returned.");
 console.log("err is a possible error in the standard callback style.");
});

Output:

this function is immediately executed
this function is also immediately executed
calling cb 1
calling cb 2
this is excuted when the first 2 have returned.
err is a possible error in the standard callback style.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/debug/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.0 / 2014-10-15

		node: implement DEBUG_FD env variable support

		package: update “browserify” to v6.1.0

		package: add “license” field to package.json (#135, @panuhorsmalahti)

2.0.0 / 2014-09-01

		package: update “browserify” to v5.11.0

		node: use stderr rather than stdout for logging (#29, @stephenmathieson)

1.0.4 / 2014-07-15

		dist: recompile

		example: remove console.info() log usage

		example: add “Content-Type” UTF-8 header to browser example

		browser: place %c marker after the space character

		browser: reset the “content” color via color: inherit

		browser: add colors support for Firefox >= v31

		debug: prefer an instance log() function over the global one (#119)

		Readme: update documentation about styled console logs for FF v31 (#116, @wryk)

1.0.3 / 2014-07-09

		Add support for multiple wildcards in namespaces (#122, @seegno)

		browser: fix lint

1.0.2 / 2014-06-10

		browser: update color palette (#113, @gscottolson)

		common: make console logging function configurable (#108, @timoxley)

		node: fix %o colors on old node <= 0.8.x

		Makefile: find node path using shell/which (#109, @timoxley)

1.0.1 / 2014-06-06

		browser: use removeItem() to clear localStorage

		browser, node: don’t set DEBUG if namespaces is undefined (#107, @leedm777)

		package: add “contributors” section

		node: fix comment typo

		README: list authors

1.0.0 / 2014-06-04

		make ms diff be global, not be scope

		debug: ignore empty strings in enable()

		node: make DEBUG_COLORS able to disable coloring

		*: export the colors array

		npmignore: don’t publish the dist dir

		Makefile: refactor to use browserify

		package: add “browserify” as a dev dependency

		Readme: add Web Inspector Colors section

		node: reset terminal color for the debug content

		node: map “%o” to util.inspect()

		browser: map “%j” to JSON.stringify()

		debug: add custom “formatters”

		debug: use “ms” module for humanizing the diff

		Readme: add “bash” syntax highlighting

		browser: add Firebug color support

		browser: add colors for WebKit browsers

		node: apply log to console

		rewrite: abstract common logic for Node & browsers

		add .jshintrc file

0.8.1 / 2014-04-14

		package: re-add the “component” section

0.8.0 / 2014-03-30

		add enable() method for nodejs. Closes #27

		change from stderr to stdout

		remove unnecessary index.js file

0.7.4 / 2013-11-13

		remove “browserify” key from package.json (fixes something in browserify)

0.7.3 / 2013-10-30

		fix: catch localStorage security error when cookies are blocked (Chrome)

		add debug(err) support. Closes #46

		add .browser prop to package.json. Closes #42

0.7.2 / 2013-02-06

		fix package.json

		fix: Mobile Safari (private mode) is broken with debug

		fix: Use unicode to send escape character to shell instead of octal to work with strict mode javascript

0.7.1 / 2013-02-05

		add repository URL to package.json

		add DEBUG_COLORED to force colored output

		add browserify support

		fix component. Closes #24

0.7.0 / 2012-05-04

		Added .component to package.json

		Added debug.component.js build

0.6.0 / 2012-03-16

		Added support for “-” prefix in DEBUG [Vinay Pulim]

		Added .enabled flag to the node version [TooTallNate]

0.5.0 / 2012-02-02

		Added: humanize diffs. Closes #8

		Added debug.disable() to the CS variant

		Removed padding. Closes #10

		Fixed: persist client-side variant again. Closes #9

0.4.0 / 2012-02-01

		Added browser variant support for older browsers [TooTallNate]

		Added debug.enable('project:*') to browser variant [TooTallNate]

		Added padding to diff (moved it to the right)

0.3.0 / 2012-01-26

		Added millisecond diff when isatty, otherwise UTC string

0.2.0 / 2012-01-22

		Added wildcard support

0.1.0 / 2011-12-02

		Added: remove colors unless stderr isatty [TooTallNate]

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/on-finished/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

on-finished

![NPM Version][npm-image] [https://npmjs.org/package/on-finished]
![NPM Downloads][downloads-image] [https://npmjs.org/package/on-finished]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/on-finished]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/on-finished?branch=master]

Execute a callback when a request closes, finishes, or errors.

Install

$ npm install on-finished

API

var onFinished = require('on-finished')

onFinished(res, listener)

Attach a listener to listen for the response to finish. The listener will
be invoked only once when the response finished. If the response finished
to to an error, the first argument will contain the error.

Listening to the end of a response would be used to close things associated
with the response, like open files.

onFinished(res, function (err) {
 // clean up open fds, etc.
})

onFinished(req, listener)

Attach a listener to listen for the request to finish. The listener will
be invoked only once when the request finished. If the request finished
to to an error, the first argument will contain the error.

Listening to the end of a request would be used to know when to continue
after reading the data.

var data = ''

req.setEncoding('utf8')
res.on('data', function (str) {
 data += str
})

onFinished(req, function (err) {
 // data is read unless there is err
})

onFinished.isFinished(res)

Determine if res is already finished. This would be useful to check and
not even start certain operations if the response has already finished.

onFinished.isFinished(req)

Determine if req is already finished. This would be useful to check and
not even start certain operations if the request has already finished.

Example

The following code ensures that file descriptors are always closed
once the response finishes.

var destroy = require('destroy')
var http = require('http')
var onFinished = require('on-finished')

http.createServer(function onRequest(req, res) {
 var stream = fs.createReadStream('package.json')
 stream.pipe(res)
 onFinished(res, function (err) {
 destroy(stream)
 })
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/on-finished/node_modules/ee-first/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

EE First

![NPM version][npm-image] [https://npmjs.org/package/ee-first]
![Build status][travis-image] [https://travis-ci.org/jonathanong/ee-first]
![Test coverage][coveralls-image] [https://coveralls.io/r/jonathanong/ee-first?branch=master]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/ee-first]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Get the first event in a set of event emitters and event pairs,
then clean up after itself.

Install

$ npm install ee-first

API

var first = require('ee-first')

first(arr, listener)

Invoke listener on the first event from the list specified in arr. arr is
an array of arrays, with each array in the format [ee, ...event]. listener
will be called only once, the first time any of the given events are emitted. If
error is one of the listened events, then if that fires first, the listener
will be given the err argument.

The listener is invoked as listener(err, ee, event, args), where err is the
first argument emitted from an error event, if applicable; ee is the event
emitter that fired; event is the string event name that fired; and args is an
array of the arguments that were emitted on the event.

var ee1 = new EventEmitter()
var ee2 = new EventEmitter()

first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

.cancel()

The group of listeners can be cancelled before being invoked and have all the event
listeners removed from the underlying event emitters.

var thunk = first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

// cancel and clean up
thunk.cancel()

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/debug/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/morgan/node_modules/on-finished/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.1 / 2014-10-22

		Fix handling of pipelined requests

2.1.0 / 2014-08-16

		Check if socket is detached

		Return undefined for isFinished if state unknown

2.0.0 / 2014-08-16

		Add isFinished function

		Move to jshttp organization

		Remove support for plain socket argument

		Rename to on-finished

		Support both req and res as arguments

		deps: ee-first@1.0.5

1.2.2 / 2014-06-10

		Reduce listeners added to emitters
		avoids “event emitter leak” warnings when used multiple times on same request

1.2.1 / 2014-06-08

		Fix returned value when already finished

1.2.0 / 2014-06-05

		Call callback when called on already-finished socket

1.1.4 / 2014-05-27

		Support node.js 0.8

1.1.3 / 2014-04-30

		Make sure errors passed as instanceof Error

1.1.2 / 2014-04-18

		Default the socket to passed-in object

1.1.1 / 2014-01-16

		Rename module to finished

1.1.0 / 2013-12-25

		Call callback when called on already-errored socket

1.0.1 / 2013-12-20

		Actually pass the error to the callback

1.0.0 / 2013-12-20

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

gzip-size [image: Build Status] [https://travis-ci.org/sindresorhus/gzip-size]

Get the gzipped size of a string or buffer

Install

$ npm install --save gzip-size

Usage

var gzipSize = require('gzip-size');
var string = 'Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.';

console.log(string.length);
//=> 191

console.log(gzipSize.sync(string));
//=> 78

API

gzipSize(input, callback)

input

RequiredType: string, buffer

callback(err, size)

RequiredType: function

gzipSize.sync(input)

Returns the size.

input

RequiredType: string, buffer

CLI

$ npm install --global gzip-size

$ gzip-size --help

 Usage
 gzip-size <file>
 cat <file> | gzip-size

 Example
 gzip-size index.js
 211

Tip

Combine it with pretty-bytes [https://github.com/sindresorhus/pretty-bytes] to get a human readable output:

$ pretty-bytes $(gzip-size jquery.min.js)
29.34 kB

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/concat-stream/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

concat-stream

Writable stream that concatenates strings or binary data and calls a callback with the result. Not a transform stream – more of a stream sink.

[image: NPM] [https://nodei.co/npm/concat-stream/]

[image: browser support] [https://ci.testling.com/maxogden/concat-stream]

examples

Buffers

var concat = require('concat-stream')
var fs = require('fs')

var read = fs.createReadStream('readme.md')
var write = concat(function(data) {
 // data is all of readme.md as a Buffer
})

read.pipe(write)

Arrays

var write = concat(function(data) {})
write.write([1,2,3])
write.write([4,5,6])
write.end()
// data will be [1,2,3,4,5,6] in the above callback

Uint8Arrays

var write = concat(function(data) {})
var a = new Uint8Array(3)
a[0] = 97; a[1] = 98; a[2] = 99
write.write(a)
write.write('!')
write.end(Buffer('!!1'))

See test/ for more examples

methods

var concat = require('concat-stream')

var writable = concat(opts={}, cb)

Return a writable stream that will fire cb(data) with all of the data that
was written to the stream. Data can be written to writable as strings,
Buffers, arrays of byte integers, and Uint8Arrays.

By default concat-stream will give you back the same data type as the type of the first buffer written to the stream. Use opts.encoding to set what format data should be returned as, e.g. if you if you don’t want to rely on the built-in type checking or for some other reason.

		string - get a string

		buffer - get back a Buffer

		array - get an array of byte integers

		uint8array, u8, uint8 - get back a Uint8Array

		object, get back an array of Objects

If you don’t specify an encoding, and the types can’t be inferred (e.g. you write things that aren’t int he list above), it will try to convert concat them into a Buffer.

license

MIT LICENSE

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

grunt-contrib-uglify v0.6.0 [image: Build Status: Linux] [https://travis-ci.org/gruntjs/grunt-contrib-uglify] [image: Build Status: Windows]

Minify files with UglifyJS.

Getting Started

This plugin requires Grunt ~0.4.0

If you haven’t used Grunt [http://gruntjs.com/] before, be sure to check out the Getting Started [http://gruntjs.com/getting-started] guide, as it explains how to create a Gruntfile [http://gruntjs.com/sample-gruntfile] as well as install and use Grunt plugins. Once you’re familiar with that process, you may install this plugin with this command:

npm install grunt-contrib-uglify --save-dev

Once the plugin has been installed, it may be enabled inside your Gruntfile with this line of JavaScript:

grunt.loadNpmTasks('grunt-contrib-uglify');

Uglify task

Run this task with the grunt uglify command.

Task targets, files and options may be specified according to the grunt Configuring tasks [http://gruntjs.com/configuring-tasks] guide.

Migrating from 2.x to 3.x

Version 3.x introduced changes to configuring source maps. Accordingly, if you don’t use the source map options you should be able to upgrade seamlessly. If you do use source maps, see below.

Removed options

sourceMapRoot - The location of your sources is now calculated for you when sourceMap is set to truesourceMapPrefix - No longer necessary for the above reasonsourceMappingURL - Once again, this is calculated automatically

Changed options

sourceMap - Only accepts a Boolean value. Generates a map with a default name for you

New options

sourceMapName - Accepts a string or function to change the location or name of your map
sourceMapIncludeSources - Embed the content of your source files directly into the map
expression - Accepts a Boolean value. Parse a single expression (JSON or single functions)

Options

This task primarily delegates to UglifyJS2 [https://github.com/mishoo/UglifyJS2], so please consider the UglifyJS documentation [http://lisperator.net/uglifyjs/] as required reading for advanced configuration.

mangle

Type: Boolean ObjectDefault: {}

Turn on or off mangling with default options. If an Object is specified, it is passed directly to ast.mangle_names() and ast.compute_char_frequency() (mimicking command line behavior).

compress

Type: Boolean ObjectDefault: {}

Turn on or off source compression with default options. If an Object is specified, it is passed as options to UglifyJS.Compressor().

beautify

Type: Boolean ObjectDefault: false

Turns on beautification of the generated source code. An Object will be merged and passed with the options sent to UglifyJS.OutputStream()

expression

Type: Boolean
Default: false

Parse a single expression, rather than a program (for parsing JSON)

report

Choices: 'min', 'gzip'Default: 'min'

Either report only minification result or report minification and gzip results.
This is useful to see exactly how well clean-css is performing but using 'gzip' will make the task take 5-10x longer to complete. Example output [https://github.com/sindresorhus/maxmin#readme].

sourceMap

Type: BooleanDefault: false

If true, a source map file will be generated in the same directory as the dest file. By default it will have the same basename as the dest file, but with a .map extension.

sourceMapName

Type: String FunctionDefault: undefined

To customize the name or location of the generated source map, pass a string to indicate where to write the source map to. If a function is provided, the uglify destination is passed as the argument and the return value will be used as the file name.

sourceMapIn

Type: String FunctionDefault: undefined

The location of an input source map from an earlier compilation, e.g. from CoffeeScript. If a function is provided, the
uglify source is passed as the argument and the return value will be used as the sourceMap name. This only makes sense
when there’s one source file.

sourceMapIncludeSources

Type: Boolean
Default: false

Pass this flag if you want to include the content of source files in the source map as sourcesContent property.

enclose

Type: ObjectDefault: undefined

Wrap all of the code in a closure with a configurable arguments/parameters list.
Each key-value pair in the enclose object is effectively an argument-parameter pair.

wrap

Type: StringDefault: undefined

Wrap all of the code in a closure, an easy way to make sure nothing is leaking.
For variables that need to be public exports and global variables are made available.
The value of wrap is the global variable exports will be available as.

maxLineLen

Type: Number
Default: 32000

Limit the line length in symbols. Pass maxLineLen = 0 to disable this safety feature.

ASCIIOnly

Type: Boolean
Default: false

Enables to encode non-ASCII characters as \uXXXX.

exportAll

Type: BooleanDefault: false

When using wrap this will make all global functions and variables available via the export variable.

preserveComments

Type: Boolean String FunctionDefault: undefinedOptions: false 'all' 'some'

Turn on preservation of comments.

		false will strip all comments

		'all' will preserve all comments in code blocks that have not been squashed or dropped

		'some' will preserve all comments that start with a bang (!) or include a closure compiler style directive (@preserve @license @cc_on)

		Function specify your own comment preservation function. You will be passed the current node and the current comment and are expected to return either true or false

banner

Type: StringDefault: empty string

This string will be prepended to the minified output. Template strings (e.g. <%= config.value %> will be expanded automatically.

footer

Type: StringDefault: empty string

This string will be appended to the minified output. Template strings (e.g. <%= config.value %> will be expanded automatically.

Usage examples

Basic compression

This configuration will compress and mangle the input files using the default options.

// Project configuration.
grunt.initConfig({
 uglify: {
 my_target: {
 files: {
 'dest/output.min.js': ['src/input1.js', 'src/input2.js']
 }
 }
 }
});

No mangling

Specify mangle: false to prevent changes to your variable and function names.

// Project configuration.
grunt.initConfig({
 uglify: {
 options: {
 mangle: false
 },
 my_target: {
 files: {
 'dest/output.min.js': ['src/input.js']
 }
 }
 }
});

Reserved identifiers

You can specify identifiers to leave untouched with an except array in the mangle options.

// Project configuration.
grunt.initConfig({
 uglify: {
 options: {
 mangle: {
 except: ['jQuery', 'Backbone']
 }
 },
 my_target: {
 files: {
 'dest/output.min.js': ['src/input.js']
 }
 }
 }
});

Source maps

Generate a source map by setting the sourceMap option to true. The generated
source map will be in the same directory as the destination file. Its name will be the
basename of the destination file with a .map extension. Override these
defaults with the sourceMapName attribute.

// Project configuration.
grunt.initConfig({
 uglify: {
 my_target: {
 options: {
 sourceMap: true,
 sourceMapName: 'path/to/sourcemap.map'
 },
 files: {
 'dest/output.min.js': ['src/input.js']
 }
 }
 }
});

Advanced source maps

Set the sourceMapIncludeSources option to true to embed your sources directly into the map. To include
a source map from a previous compilation pass it as the value of the sourceMapIn option.

// Project configuration.
grunt.initConfig({
 uglify: {
 my_target: {
 options: {
 sourceMap: true,
 sourceMapIncludeSources: true,
 sourceMapIn: 'example/coffeescript-sourcemap.js', // input sourcemap from a previous compilation
 },
 files: {
 'dest/output.min.js': ['src/input.js'],
 },
 },
 },
});

Refer to the UglifyJS SourceMap Documentation [http://lisperator.net/uglifyjs/codegen#source-map] for more information.

Discard console.* functions

Specify drop_console: true as part of the compress options to discard calls to console.* functions.

// Project configuration.
grunt.initConfig({
 uglify: {
 options: {
 compress: {
 drop_console: true
 }
 },
 my_target: {
 files: {
 'dest/output.min.js': ['src/input.js']
 }
 }
 }
});

Beautify

Specify beautify: true to beautify your code for debugging/troubleshooting purposes.
Pass an object to manually configure any other output options passed directly to UglifyJS.OutputStream().

See UglifyJS Codegen documentation [http://lisperator.net/uglifyjs/codegen] for more information.

Note that manual configuration will require you to explicitly set beautify: true if you want traditional, beautified output.

// Project configuration.
grunt.initConfig({
 uglify: {
 my_target: {
 options: {
 beautify: true
 },
 files: {
 'dest/output.min.js': ['src/input.js']
 }
 },
 my_advanced_target: {
 options: {
 beautify: {
 width: 80,
 beautify: true
 }
 },
 files: {
 'dest/output.min.js': ['src/input.js']
 }
 }
 }
});

Banner comments

In this example, running grunt uglify:my_target will prepend a banner created by interpolating the banner template string with the config object. Here, those properties are the values imported from the package.json file (which are available via the pkg config property) plus today’s date.

Note: you don’t have to use an external JSON file. It’s also valid to create the pkg object inline in the config. That being said, if you already have a JSON file, you might as well reference it.

// Project configuration.
grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 uglify: {
 options: {
 banner: '/*! <%= pkg.name %> - v<%= pkg.version %> - ' +
 '<%= grunt.template.today("yyyy-mm-dd") %> */'
 },
 my_target: {
 files: {
 'dest/output.min.js': ['src/input.js']
 }
 }
 }
});

Conditional compilation

You can also enable UglifyJS conditional compilation. This is commonly used to remove debug code blocks for production builds.

See UglifyJS global definitions documentation [http://lisperator.net/uglifyjs/compress#global-defs] for more information.

// Project configuration.
grunt.initConfig({
 uglify: {
 options: {
 compress: {
 global_defs: {
 "DEBUG": false
 },
 dead_code: true
 }
 },
 my_target: {
 files: {
 'dest/output.min.js': ['src/input.js']
 }
 }
 }
});

Compiling all files in a folder dynamically

This configuration will compress and mangle the files dynamically.

// Project configuration.
grunt.initConfig({
 uglify: {
 my_target: {
 files: [{
 expand: true,
 cwd: 'src/js',
 src: '**/*.js',
 dest: 'dest/js'
 }]
 }
 }
});

Release History

		2014-09-17   v0.6.0   Output fixes. ASCIIOnly option. Other fixes.

		2014-07-25   v0.5.1   Chalk updates. Output updates.

		2014-03-01   v0.4.0   remove grunt-lib-contrib dependency and add more colors

		2014-02-27   v0.3.3   remove unnecessary calls to grunt.template.process

		2014-01-22   v0.3.2   fix handling of sourceMapIncludeSources option.

		2014-01-20   v0.3.1   fix relative path issue in sourcemaps

		2014-01-16   v0.3.0   refactor sourcemap support

		2013-11-09   v0.2.7   prepending banner if sourceMap option not set, addresses

		2013-11-08   v0.2.6   merged 45, 53, 85 (105 by way of duping 53) Added support for banners in uglified files with sourcemaps Updated docs

		2013-10-28   v0.2.5   Added warning for banners when using sourcemaps

		2013-09-02   v0.2.4   updated sourcemap format via /83

		2013-06-10   v0.2.3   added footer option

		2013-05-31   v0.2.2   Reverted /56 due to /58 until chrome/239660 [https://code.google.com/p/chromium/issues/detail?id=239660&q=sourcemappingurl&colspec=ID%20Pri%20M%20Iteration%20ReleaseBlock%20Cr%20Status%20Owner%20Summary%20OS%20Modified] firefox/870361 [https://bugzilla.mozilla.org/show_bug.cgi?id=870361] drop

		2013-05-22   v0.2.1   Bumped uglify to ~2.3.5 /55 /40 Changed sourcemappingUrl syntax /56 Disabled sorting of names for consistent mangling /44 Updated docs for sourceMapRoot /47 /25

		2013-03-14   v0.2.0   No longer report gzip results by default. Support report option.

		2013-01-30   v0.1.2   Added better error reporting Support for dynamic names of multiple sourcemaps

		2013-02-15   v0.1.1   First official release for Grunt 0.4.0.

		2013-01-18   v0.1.1rc6   Updating grunt/gruntplugin dependencies to rc6. Changing in-development grunt/gruntplugin dependency versions from tilde version ranges to specific versions.

		2013-01-09   v0.1.1rc5   Updating to work with grunt v0.4.0rc5. Switching back to this.files api.

		2012-11-28   v0.1.0   Work in progress, not yet officially released.

Task submitted by “Cowboy” Ben Alman [http://benalman.com]

This file was generated on Wed Sep 17 2014 21:59:24.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/node_modules/minimatch/node_modules/brace-expansion/node_modules/balanced-match/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

balanced-match

Match balanced string pairs, like { and } or and .

[image: build status] [http://travis-ci.org/juliangruber/balanced-match]
[image: downloads] [https://www.npmjs.org/package/balanced-match]

[image: testling badge] [https://ci.testling.com/juliangruber/balanced-match]

Example

Get the first matching pair of braces:

var balanced = require('balanced-match');

console.log(balanced('{', '}', 'pre{in{nested}}post'));
console.log(balanced('{', '}', 'pre{first}between{second}post'));

The matches are:

$ node example.js
{ start: 3, end: 14, pre: 'pre', body: 'in{nested}', post: 'post' }
{ start: 3,
 end: 9,
 pre: 'pre',
 body: 'first',
 post: 'between{second}post' }

API

var m = balanced(a, b, str)

For the first non-nested matching pair of a and b in str, return an
object with those keys:

		start the index of the first match of a

		end the index of the matching b

		pre the preamble, a and b not included

		body the match, a and b not included

		post the postscript, a and b not included

If there’s no match, undefined will be returned.

If the str contains more a than b / there are unmatched pairs, the first match that was closed will be used. For example, {{a} will match ['{', 'a', ''].

Installation

With npm [https://npmjs.org] do:

npm install balanced-match

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

maxmin [image: Build Status] [https://travis-ci.org/sindresorhus/maxmin]

Get a pretty output of the original, minified, gzipped size of a string or buffer

[image:]

Useful for logging the difference between original and minified file in e.g. a build-system.

Install

$ npm install --save maxmin

Usage

var maxmin = require('maxmin');

var max = 'function smoothRangeRandom(min,max){var num=Math.floor(Math.random()*(max-min+1)+min);return this.prev=num===this.prev?++num:num};';

var min = '(function(b,c){var a=Math.floor(Math.random()*(c-b+1)+b);return this.a=a===this.a?++a:a})()';

console.log(maxmin(max, min, true));
//=> 130 B → 91 B → 53 B (gzip)

API

maxmin(max, min, useGzip)

max

RequiredType: string, buffer

Original string.

min

RequiredType: string, buffer

Minified string.

useGzip

Type: booleanDefault: false

Show gzipped size of min. Pretty slow.

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/fd-slicer/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

fd-slicer

Safe fs.ReadStream and fs.WriteStream using the same fd.

Let’s say that you want to perform a parallel upload of a file to a remote
server. To do this, we want to create multiple read streams. The first thing
you might think of is to use the {start: 0, end: 0} API of
fs.createReadStream. This gives you two choices:

		Use the same file descriptor for all fs.ReadStream objects.

		Open the file multiple times, resulting in a separate file descriptor
for each read stream.

Neither of these are acceptable options. The first one is a severe bug,
because the API docs for fs.write state:

Note that it is unsafe to use fs.write multiple times on the same file
without waiting for the callback. For this scenario, fs.createWriteStream
is strongly recommended.

fs.createWriteStream will solve the problem if you only create one of them
for the file descriptor, but it will exhibit this unsafety if you create
multiple write streams per file descriptor.

The second option suffers from a race condition. For each additional time the
file is opened after the first, it is possible that the file is modified. So
in our parallel uploading example, we might upload a corrupt file that never
existed on the client’s computer.

This module solves this problem by providing createReadStream and
createWriteStream that operate on a shared file descriptor and provides
the convenient stream API while still allowing slicing and dicing.

Usage

var FdSlicer = require('fd-slicer');
var fs = require('fs');

fs.open("file.txt", 'r', function(err, fd) {
 if (err) throw err;
 var fdSlicer = new FdSlicer(fd);
 var firstPart = fdSlicer.createReadStream({start: 0, end: 100});
 var secondPart = fdSlicer.createReadStream({start: 100});
 var firstOut = fs.createWriteStream("first.txt");
 var secondOut = fs.createWriteStream("second.txt");
 firstPart.pipe(firstOut);
 secondPart.pipe(secondOut);
});

API Documentation

FdSlicer(fd, [options])

var FdSlicer = require('fd-slicer');
fs.open("file.txt", 'r', function(err, fd) {
 if (err) throw err;
 var fdSlicer = new FdSlicer(fd);
 // ...
});

Make sure fd is a properly initialized file descriptor. If you want to
use createReadStream make sure you open it for reading and if you want
to use createWriteStream make sure you open it for writing.

options is an optional object which can contain:

		autoClose - if set to true, the file descriptor will be automatically
closed once the last stream that references it is closed. Defaults to
false. ref() and unref() can be used to increase or decrease the
reference count, respectively.

Properties

fd

The file descriptor passed in.

Methods

createReadStream(options)

Creates a read stream based on the file descriptor. Passes options to
the Readable stream constructor. Accepts start and end options just
like fs.createReadStream.

The stream that this returns supports destroy() to cancel it.

createWriteStream(options)

Creates a write stream based on the file descriptor. Passes options to
the Writable stream constructor. Accepts the start option just
like fs.createWriteStream.

The stream that this returns supports destroy() to cancel it.

read(buffer, offset, length, position, callback)

Equivalent to fs.read, but with concurrency protection.
callback must be defined.

write(buffer, offset, length, position, callback)

Equivalent to fs.write, but with concurrency protection.
callback must be defined.

ref()

Increase the autoClose reference count by 1.

unref()

Decrease the autoClose reference count by 1.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/cookie-parser/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie-parser

![NPM Version][npm-image] [https://npmjs.org/package/cookie-parser]
![NPM Downloads][downloads-image] [https://npmjs.org/package/cookie-parser]
![Build Status][travis-image] [https://travis-ci.org/expressjs/cookie-parser]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/cookie-parser?branch=master]

Parse Cookie header and populate req.cookies with an object keyed by the cookie
names. Optionally you may enable signed cookie support by passing a secret string,
which assigns req.secret so it may be used by other middleware.

Installation

$ npm install cookie-parser

API

var express = require('express')
var cookieParser = require('cookie-parser')

var app = express()
app.use(cookieParser())

cookieParser(secret, options)

		secret a string used for signing cookies. This is optional and if not specified, will not parse signed cookies.

		options an object that is passed to cookie.parse as the second option. See cookie [https://www.npmjs.org/package/cookie] for more information.
		decode a function to decode the value of the cookie

cookieParser.JSONCookie(str)

Parse a cookie value as a JSON cookie. This will return the parsed JSON value if it was a JSON cookie, otherwise it will return the passed value.

cookieParser.JSONCookies(cookies)

Given an object, this will iterate over the keys and call JSONCookie on each value. This will return the same object passed in.

cookieParser.signedCookie(str, secret)

Parse a cookie value as a signed cookie. This will return the parsed unsigned value if it was a signed cookie and the signature was valid, otherwise it will return the passed value.

cookieParser.signedCookies(cookies, secret)

Given an object, this will iterate over the keys and check if any value is a signed cookie. If it is a signed cookie and the signature is valid, the key will be deleted from the object and added to the new object that is returned.

Example

var express = require('express')
var cookieParser = require('cookie-parser')

var app = express()
app.use(cookieParser())

app.get('/', function(req, res) {
 console.log("Cookies: ", req.cookies)
})

app.listen(8080)

// curl command that sends an HTTP request with two cookies
// curl http://127.0.0.1:8080 --cookie "Cho=Kim;Greet=Hello"

MIT Licensed

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/cookie-parser/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.3.3 / 2014-09-05

		deps: cookie-signature@1.0.5

1.3.2 / 2014-06-26

		deps: cookie-signature@1.0.4
		fix for timing attacks

1.3.1 / 2014-06-17

		actually export signedCookie

1.3.0 / 2014-06-17

		add signedCookie export for single cookie unsigning

1.2.0 / 2014-06-17

		export parsing functions

		req.cookies and req.signedCookies are now plain objects

		slightly faster parsing of many cookies

1.1.0 / 2014-05-12

		Support for NodeJS version 0.8

		deps: cookie@0.1.2
		Fix for maxAge == 0

		made compat with expires field

		tweak maxAge NaN error message

1.0.1 / 2014-02-20

		add missing dependencies

1.0.0 / 2014-02-15

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/concat-stream/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/aws-sdk/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Contributing to the AWS SDK for JavaScript

We work hard to provide a high-quality and useful SDK, and we greatly value
feedback and contributions from our community. Whether it’s a bug report,
new feature, correction, or additional documentation, we welcome your issues
and pull requests. Please read through this document before submitting any
issues or pull requests to ensure we have all the necessary information to
effectively respond to your bug report or contribution.

Filing Bug Reports

You can file bug reports against the SDK on the GitHub issues [https://github.com/aws/aws-sdk-js/issues] page.

If you are filing a report for a bug or regression in the SDK, it’s extremely
helpful to provide as much information as possible when opening the original
issue. This helps us reproduce and investigate the possible bug without having
to wait for this extra information to be provided. Please read the following
guidelines prior to filing a bug report.

		Search through existing issues [https://github.com/aws/aws-sdk-js/issues] to ensure that your specific issue has
not yet been reported. If it is a common issue, it is likely there is
already a bug report for your problem.

		Ensure that you have tested the latest version of the SDK. Although you
may have an issue against an older version of the SDK, we cannot provide
bug fixes for old versions. It’s also possible that the bug may have been
fixed in the latest release.

		Provide as much information about your environment, SDK version, and
relevant dependencies as possible. For example, let us know what version
of Node.js you are using, or if it’s a browser issue, which browser you
are using. If the issue only occurs with a specific dependency loaded,
please provide that dependency name and version.

		Provide a minimal test case that reproduces your issue or any error
information you related to your problem. We can provide feedback much
more quickly if we know what operations you are calling in the SDK. If
you cannot provide a full test case, provide as much code as you can
to help us diagnose the problem. Any relevant information should be provided
as well, like whether this is a persistent issue, or if it only occurs
some of the time.

Submitting Pull Requests

We are always happy to receive code and documentation contributions to the SDK.
Please be aware of the following notes prior to opening a pull request:

		The SDK is released under the Apache license [http://aws.amazon.com/apache2.0/]. Any code you submit
will be released under that license. For substantial contributions, we may
ask you to sign a Contributor License Agreement (CLA) [http://en.wikipedia.org/wiki/Contributor_License_Agreement].

		If you would like to implement support for a significant feature that is not
yet available in the SDK, please talk to us beforehand to avoid any
duplication of effort.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/cookie-parser/node_modules/cookie-signature/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie-signature

Sign and unsign cookies.

Example

var cookie = require('cookie-signature');

var val = cookie.sign('hello', 'tobiiscool');
val.should.equal('hello.DGDUkGlIkCzPz+C0B064FNgHdEjox7ch8tOBGslZ5QI');

var val = cookie.sign('hello', 'tobiiscool');
cookie.unsign(val, 'tobiiscool').should.equal('hello');
cookie.unsign(val, 'luna').should.be.false;

License

(The MIT License)

Copyright (c) 2012 LearnBoost

<

tj@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/mime/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime

Comprehensive MIME type mapping API. Includes all 600+ types and 800+ extensions defined by the Apache project, plus additional types submitted by the node.js community.

Install

Install with npm [http://github.com/isaacs/npm]:

npm install mime

API - Queries

mime.lookup(path)

Get the mime type associated with a file, if no mime type is found application/octet-stream is returned. Performs a case-insensitive lookup using the extension in path (the substring after the last ‘/’ or ‘.’). E.g.

var mime = require('mime');

mime.lookup('/path/to/file.txt'); // => 'text/plain'
mime.lookup('file.txt'); // => 'text/plain'
mime.lookup('.TXT'); // => 'text/plain'
mime.lookup('htm'); // => 'text/html'

mime.default_type

Sets the mime type returned when mime.lookup fails to find the extension searched for. (Default is application/octet-stream.)

mime.extension(type)

Get the default extension for type

mime.extension('text/html'); // => 'html'
mime.extension('application/octet-stream'); // => 'bin'

mime.charsets.lookup()

Map mime-type to charset

mime.charsets.lookup('text/plain'); // => 'UTF-8'

(The logic for charset lookups is pretty rudimentary. Feel free to suggest improvements.)

API - Defining Custom Types

The following APIs allow you to add your own type mappings within your project. If you feel a type should be included as part of node-mime, see requesting new types [https://github.com/broofa/node-mime/wiki/Requesting-New-Types].

mime.define()

Add custom mime/extension mappings

mime.define({
 'text/x-some-format': ['x-sf', 'x-sft', 'x-sfml'],
 'application/x-my-type': ['x-mt', 'x-mtt'],
 // etc ...
});

mime.lookup('x-sft'); // => 'text/x-some-format'

The first entry in the extensions array is returned by mime.extension(). E.g.

mime.extension('text/x-some-format'); // => 'x-sf'

mime.load(filepath)

Load mappings from an Apache ”.types” format file

mime.load('./my_project.types');

The .types file format is simple - See the types dir for examples.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/cookie-parser/node_modules/cookie/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie [image: Build Status] [http://travis-ci.org/defunctzombie/node-cookie]

cookie is a basic cookie parser and serializer. It doesn’t make assumptions about how you are going to deal with your cookies. It basically just provides a way to read and write the HTTP cookie headers.

See RFC6265 [http://tools.ietf.org/html/rfc6265] for details about the http header for cookies.

how?

npm install cookie

var cookie = require('cookie');

var hdr = cookie.serialize('foo', 'bar');
// hdr = 'foo=bar';

var cookies = cookie.parse('foo=bar; cat=meow; dog=ruff');
// cookies = { foo: 'bar', cat: 'meow', dog: 'ruff' };

more

The serialize function takes a third parameter, an object, to set cookie options. See the RFC for valid values.

path

cookie path

expires

absolute expiration date for the cookie (Date object)

maxAge

relative max age of the cookie from when the client receives it (seconds)

domain

domain for the cookie

secure

true or false

httpOnly

true or false

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/examples/express/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Mongoose + Express examples

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/node_modules/once/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

once

Only call a function once.

usage

var once = require('once')

function load (file, cb) {
 cb = once(cb)
 loader.load('file')
 loader.once('load', cb)
 loader.once('error', cb)
}

Or add to the Function.prototype in a responsible way:

// only has to be done once
require('once').proto()

function load (file, cb) {
 cb = cb.once()
 loader.load('file')
 loader.once('load', cb)
 loader.once('error', cb)
}

Ironically, the prototype feature makes this module twice as
complicated as necessary.

To check whether you function has been called, use fn.called. Once the
function is called for the first time the return value of the original
function is saved in fn.value and subsequent calls will continue to
return this value.

var once = require('once')

function load (cb) {
 cb = once(cb)
 var stream = createStream()
 stream.once('data', cb)
 stream.once('end', function () {
 if (!cb.called) cb(new Error('not found'))
 })
}

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/examples/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 This directory contains runnable sample mongoose programs.

To run:

		first install Node.js [http://nodejs.org/]

		from the root of the project, execute npm install -d

		in the example directory, run npm install -d

		from the command line, execute: node example.js, replacing “example.js” with the name of a program.

Goal is to show:

		~~global schemas~~

		~~GeoJSON schemas / use (with crs)~~

		text search (once MongoDB removes the “Experimental/beta” label)

		~~lean queries~~

		~~statics~~

		methods and statics on subdocs

		custom types

		~~querybuilder~~

		~~promises~~

		accessing driver collection, db

		~~connecting to replica sets~~

		connecting to sharded clusters

		enabling a fail fast mode

		on the fly schemas

		storing files

		~~map reduce~~

		~~aggregation~~

		advanced hooks

		using $elemMatch to return a subset of an array

		query casting

		upserts

		pagination

		express + mongoose session handling

		~~group by (use aggregation)~~

		authentication

		schema migration techniques

		converting documents to plain objects (show transforms)

		how to $unset

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/node_modules/inflight/node_modules/wrappy/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

wrappy

Callback wrapping utility

USAGE

var wrappy = require("wrappy")

// var wrapper = wrappy(wrapperFunction)

// make sure a cb is called only once
// See also: http://npm.im/once for this specific use case
var once = wrappy(function (cb) {
 var called = false
 return function () {
 if (called) return
 called = true
 return cb.apply(this, arguments)
 }
})

function printBoo () {
 console.log('boo')
}
// has some rando property
printBoo.iAmBooPrinter = true

var onlyPrintOnce = once(printBoo)

onlyPrintOnce() // prints 'boo'
onlyPrintOnce() // does nothing

// random property is retained!
assert.equal(onlyPrintOnce.iAmBooPrinter, true)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/lib/drivers/SPEC.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Driver Spec

TODO

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/examples/express/connection-sharing/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 To run:

		Execute npm install from this directory

		Execute node app.js

		Navigate to localhost:8000

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/node_modules/once/node_modules/wrappy/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

wrappy

Callback wrapping utility

USAGE

var wrappy = require("wrappy")

// var wrapper = wrappy(wrapperFunction)

// make sure a cb is called only once
// See also: http://npm.im/once for this specific use case
var once = wrappy(function (cb) {
 var called = false
 return function () {
 if (called) return
 called = true
 return cb.apply(this, arguments)
 }
})

function printBoo () {
 console.log('boo')
}
// has some rando property
printBoo.iAmBooPrinter = true

var onlyPrintOnce = once(printBoo)

onlyPrintOnce() // prints 'boo'
onlyPrintOnce() // does nothing

// random property is retained!
assert.equal(onlyPrintOnce.iAmBooPrinter, true)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

High Level Amazon S3 Client

Features

		Automatically retry a configurable number of times when S3 returns an error.

		Includes logic to make multiple requests when there is a 1000 object limit.

		Ability to set a limit on the maximum parallelization of S3 requests.
Retries get pushed to the end of the paralellization queue.

		Ability to sync a dir to and from S3.

		Progress reporting.

		Supports files of any size (up to S3’s maximum 5 TB object size limit).

		Uploads large files quickly using parallel multipart uploads.

		Uses heuristics to compute multipart ETags client-side to avoid uploading
or downloading files unnecessarily.

		Automatically provide Content-Type for uploads based on file extension.

See also the companion CLI tool which is meant to be a drop-in replacement for
s3cmd: s3-cli [https://github.com/andrewrk/node-s3-cli].

Synopsis

Create a client

var s3 = require('s3');

var client = s3.createClient({
 maxAsyncS3: 20, // this is the default
 s3RetryCount: 3, // this is the default
 s3RetryDelay: 1000, // this is the default
 multipartUploadThreshold: 20971520, // this is the default (20 MB)
 multipartUploadSize: 15728640, // this is the default (15 MB)
 s3Options: {
 accessKeyId: "your s3 key",
 secretAccessKey: "your s3 secret",
 // any other options are passed to new AWS.S3()
 // See: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html#constructor-property
 },
});

Create a client from existing AWS.S3 object

var s3 = require('s3');
var awsS3Client = new AWS.S3(s3Options);
var options = {
 s3Client: awsS3Client,
 // more options available. See API docs below.
};
var client = s3.createClient(options);

Upload a file to S3

var params = {
 localFile: "some/local/file",

 s3Params: {
 Bucket: "s3 bucket name",
 Key: "some/remote/file",
 // other options supported by putObject, except Body and ContentLength.
 // See: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property
 },
};
var uploader = client.uploadFile(params);
uploader.on('error', function(err) {
 console.error("unable to upload:", err.stack);
});
uploader.on('progress', function() {
 console.log("progress", uploader.progressMd5Amount,
 uploader.progressAmount, uploader.progressTotal);
});
uploader.on('end', function() {
 console.log("done uploading");
});

Download a file from S3

var params = {
 localFile: "some/local/file",

 s3Params: {
 Bucket: "s3 bucket name",
 Key: "some/remote/file",
 // other options supported by getObject
 // See: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getObject-property
 },
};
var downloader = client.downloadFile(params);
downloader.on('error', function(err) {
 console.error("unable to download:", err.stack);
});
downloader.on('progress', function() {
 console.log("progress", downloader.progressAmount, downloader.progressTotal);
});
downloader.on('end', function() {
 console.log("done downloading");
});

Sync a directory to S3

var params = {
 localDir: "some/local/dir",
 deleteRemoved: true, // default false, whether to remove s3 objects
 // that have no corresponding local file.

 s3Params: {
 Bucket: "s3 bucket name",
 Prefix: "some/remote/dir/",
 // other options supported by putObject, except Body and ContentLength.
 // See: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property
 },
};
var uploader = client.uploadDir(params);
uploader.on('error', function(err) {
 console.error("unable to sync:", err.stack);
});
uploader.on('progress', function() {
 console.log("progress", uploader.progressAmount, uploader.progressTotal);
});
uploader.on('end', function() {
 console.log("done uploading");
});

Tips

		Consider increasing the socket pool size in the http and https global
agents. This will improve bandwidth when using uploadDir and downloadDir
functions. For example:

http.globalAgent.maxSockets = https.globalAgent.maxSockets = 20;

API Documentation

s3.createClient(options)

Creates an S3 client.

options:

		s3Client - optional, an instance of AWS.S3. Leave blank if you provide s3Options.

		s3Options - optional. leave blank if you provide s3Client.
		See AWS SDK documentation for available options which are passed to new AWS.S3():
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html#constructor-property

		maxAsyncS3 - maximum number of simultaneous requests this client will
ever have open to S3. defaults to 20.

		s3RetryCount - how many times to try an S3 operation before giving up.
Default 3.

		s3RetryDelay - how many milliseconds to wait before retrying an S3
operation. Default 1000.

		multipartUploadThreshold - if a file is this many bytes or greater, it
will be uploaded via a multipart request. Default is 20MB. Minimum is 5MB.
Maximum is 5GB.

		multipartUploadSize - when uploading via multipart, this is the part size.
The minimum size is 5MB. The maximum size is 5GB. Default is 15MB. Note that
S3 has a maximum of 10000 parts for a multipart upload, so if this value is
too small, it will be ignored in favor of the minimum necessary value
required to upload the file.

s3.getPublicUrl(bucket, key, [bucketLocation])

		bucket S3 bucket

		key S3 key

		bucketLocation string, one of these:
		“” (default) - US Standard

		“eu-west-1”

		“us-west-1”

		“us-west-2”

		“ap-southeast-1”

		“ap-southeast-2”

		“ap-northeast-1”

		“sa-east-1”

You can find out your bucket location programatically by using this API:
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketLocation-property

returns a string which looks like this:

https://s3.amazonaws.com/bucket/key

or maybe this if you are not in US Standard:

https://s3-eu-west-1.amazonaws.com/bucket/key

s3.getPublicUrlHttp(bucket, key)

		bucket S3 Bucket

		key S3 Key

Works for any region, and returns a string which looks like this:

http://bucket.s3.amazonaws.com/key

client.uploadFile(params)

See http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property

params:

		s3Params: params to pass to AWS SDK putObject.

		localFile: path to the file on disk you want to upload to S3.

		(optional) defaultContentType: Unless you explicitly set the ContentType
parameter in s3Params, it will be automatically set for you based on the
file extension of localFile. If the extension is unrecognized,
defaultContentType will be used instead. Defaults to
application/octet-stream.

The difference between using AWS SDK putObject and this one:

		This works with files, not streams or buffers.

		If the reported MD5 upon upload completion does not match, it retries.

		If the file size is large enough, uses multipart upload to upload parts in
parallel.

		Retry based on the client’s retry settings.

		Progress reporting.

		Sets the ContentType based on file extension if you do not provide it.

Returns an EventEmitter with these properties:

		progressMd5Amount

		progressAmount

		progressTotal

And these events:

		'error' (err)

		'end' (data) - emitted when the file is uploaded successfully
		data is the same object that you get from putObject in AWS SDK

		'progress' - emitted when progressMd5Amount, progressAmount, and
progressTotal properties change. Note that it is possible for progress to
go backwards when an upload fails and must be retried.

		'fileOpened' (fdSlicer) - emitted when localFile has been opened. The file
is opened with the fd-slicer [https://github.com/andrewrk/node-fd-slicer]
module because we might need to read from multiple locations in the file at
the same time. fdSlicer is an object for which you can call
createReadStream(options). See the fd-slicer README for more information.

		'fileClosed' - emitted when localFile has been closed.

And these methods:

		abort() - call this to stop the find operation.

client.downloadFile(params)

See http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getObject-property

params:

		localFile - the destination path on disk to write the s3 object into

		s3Params: params to pass to AWS SDK getObject.

The difference between using AWS SDK getObject and this one:

		This works with a destination file, not a stream or a buffer.

		If the reported MD5 upon download completion does not match, it retries.

		Retry based on the client’s retry settings.

		Progress reporting.

Returns an EventEmitter with these properties:

		progressAmount

		progressTotal

And these events:

		'error' (err)

		'end' - emitted when the file is downloaded successfully

		'progress' - emitted when progressAmount and progressTotal
properties change.

client.downloadBuffer(s3Params)

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getObject-property

		s3Params: params to pass to AWS SDK getObject.

The difference between using AWS SDK getObject and this one:

		This works with a buffer only.

		If the reported MD5 upon download completion does not match, it retries.

		Retry based on the client’s retry settings.

		Progress reporting.

Returns an EventEmitter with these properties:

		progressAmount

		progressTotal

And these events:

		'error' (err)

		'end' (buffer) - emitted when the file is downloaded successfully.
buffer is a Buffer containing the object data.

		'progress' - emitted when progressAmount and progressTotal
properties change.

client.listObjects(params)

See http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property

params:

		s3Params - params to pass to AWS SDK listObjects.

		(optional) recursive - true or false whether or not you want to recurse
into directories. Default false.

Note that if you set Delimiter in s3Params then you will get a list of
objects and folders in the directory you specify. You probably do not want to
set recursive to true at the same time as specifying a Delimiter because
this will cause a request per directory. If you want all objects that share a
prefix, leave the Delimiter option null or undefined.

Be sure that s3Params.Prefix ends with a trailing slash (/) unless you
are requesting the top-level listing, in which case s3Params.Prefix should
be empty string.

The difference between using AWS SDK listObjects and this one:

		Retries based on the client’s retry settings.

		Supports recursive directory listing.

		Makes multiple requests if the number of objects to list is greater than 1000.

Returns an EventEmitter with these properties:

		progressAmount

		objectsFound

		dirsFound

And these events:

		'error' (err)

		'end' - emitted when done listing and no more ‘data’ events will be emitted.

		'data' (data) - emitted when a batch of objects are found. This is
the same as the data object in AWS SDK.

		'progress' - emitted when progressAmount, objectsFound, and
dirsFound properties change.

And these methods:

		abort() - call this to stop the find operation.

client.deleteObjects(s3Params)

See http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteObjects-property

s3Params are the same.

The difference between using AWS SDK deleteObjects and this one:

		Retry based on the client’s retry settings.

		Make multiple requests if the number of objects you want to delete is
greater than 1000.

Returns an EventEmitter with these properties:

		progressAmount

		progressTotal

And these events:

		'error' (err)

		'end' - emitted when all objects are deleted.

		'progress' - emitted when the progressAmount or progressTotal properties change.

		'data' (data) - emitted when a request completes. There may be more.

client.uploadDir(params)

Syncs an entire directory to S3.

params:

		localDir - source path on local file system to sync to S3

		s3Params
		Prefix (required)

		Bucket (required)

		(optional) deleteRemoved - delete s3 objects with no corresponding local file.
default false

		(optional) getS3Params - function which will be called for every file that
needs to be uploaded. See below.

		(optional) defaultContentType: Unless you explicitly set the ContentType
parameter in s3Params, it will be automatically set for you based on the
file extension of localFile. If the extension is unrecognized,
defaultContentType will be used instead. Defaults to
application/octet-stream.

function getS3Params(localFile, stat, callback) {
 // call callback like this:
 var err = new Error(...); // only if there is an error
 var s3Params = { // if there is no error
 ContentType: getMimeType(localFile), // just an example
 };
 // pass `null` for `s3Params` if you want to skip uploading this file.
 callback(err, s3Params);
}

Returns an EventEmitter with these properties:

		progressAmount

		progressTotal

		progressMd5Amount

		progressMd5Total

		deleteAmount

		deleteTotal

		filesFound

		objectsFound

		doneFindingFiles

		doneFindingObjects

		doneMd5

And these events:

		'error' (err)

		'end' - emitted when all files are uploaded

		'progress' - emitted when any of the above progress properties change.

		'fileUploadStart' (localFilePath, s3Key) - emitted when a file begins
uploading.

		'fileUploadEnd' (localFilePath, s3Key) - emitted when a file successfully
finishes uploading.

uploadDir works like this:

		Start listing all S3 objects for the target Prefix. S3 guarantees
returned objects to be in sorted order.

		Meanwhile, recursively find all files in localDir.

		Once all local files are found, we sort them (the same way that S3 sorts).

		Next we iterate over the sorted local file list one at a time, computing
MD5 sums.

		Now S3 object listing and MD5 sum computing are happening in parallel. As
each operation progresses we compare both sorted lists side-by-side,
iterating over them one at a time, uploading files whose MD5 sums don’t
match the remote object (or the remote object is missing), and, if
deleteRemoved is set, deleting remote objects whose corresponding local
files are missing.

client.downloadDir(params)

Syncs an entire directory from S3.

params:

		localDir - destination directory on local file system to sync to

		s3Params
		Prefix (required)

		Bucket (required)

		(optional) deleteRemoved - delete local files with no corresponding s3 object. default false

		(optional) getS3Params - function which will be called for every object that
needs to be downloaded. See below.

function getS3Params(localFile, s3Object, callback) {
 // localFile is the destination path where the object will be written to
 // s3Object is same as one element in the `Contents` array from here:
 // http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property

 // call callback like this:
 var err = new Error(...); // only if there is an error
 var s3Params = { // if there is no error
 VersionId: "abcd", // just an example
 };
 // pass `null` for `s3Params` if you want to skip downloading this object.
 callback(err, s3Params);
}

Returns an EventEmitter with these properties:

		progressAmount

		progressTotal

		progressMd5Amount

		progressMd5Total

		deleteAmount

		deleteTotal

		filesFound

		objectsFound

		doneFindingFiles

		doneFindingObjects

		doneMd5

And these events:

		'error' (err)

		'end' - emitted when all files are downloaded

		'progress' - emitted when any of the progress properties above change

		'fileDownloadStart' (localFilePath, s3Key) - emitted when a file begins
downloading.

		'fileDownloadEnd' (localFilePath, s3Key) - emitted when a file successfully
finishes downloading.

downloadDir works like this:

		Start listing all S3 objects for the target Prefix. S3 guarantees
returned objects to be in sorted order.

		Meanwhile, recursively find all files in localDir.

		Once all local files are found, we sort them (the same way that S3 sorts).

		Next we iterate over the sorted local file list one at a time, computing
MD5 sums.

		Now S3 object listing and MD5 sum computing are happening in parallel. As
each operation progresses we compare both sorted lists side-by-side,
iterating over them one at a time, downloading objects whose MD5 sums don’t
match the local file (or the local file is missing), and, if
deleteRemoved is set, deleting local files whose corresponding objects
are missing.

client.deleteDir(s3Params)

Deletes an entire directory on S3.

s3Params:

		Bucket

		Prefix

		(optional) MFA

Returns an EventEmitter with these properties:

		progressAmount

		progressTotal

And these events:

		'error' (err)

		'end' - emitted when all objects are deleted.

		'progress' - emitted when the progressAmount or progressTotal properties change.

deleteDir works like this:

		Start listing all objects in a bucket recursively. S3 returns 1000 objects
per response.

		For each response that comes back with a list of objects in the bucket,
immediately send a delete request for all of them.

client.copyObject(s3Params)

See http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#copyObject-property

s3Params are the same. Don’t forget that CopySource must contain the
source bucket name as well as the source key name.

The difference between using AWS SDK copyObject and this one:

		Retry based on the client’s retry settings.

Returns an EventEmitter with these events:

		'error' (err)

		'end' (data)

client.moveObject(s3Params)

See http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#copyObject-property

s3Params are the same. Don’t forget that CopySource must contain the
source bucket name as well as the source key name.

Under the hood, this uses copyObject and then deleteObjects only if the
copy succeeded.

Returns an EventEmitter with these events:

		'error' (err)

		'copySuccess' (data)

		'end' (data)

Testing

S3_KEY=<valid_s3_key> S3_SECRET=<valid_s3_secret> S3_BUCKET=<valid_s3_bucket> npm test

Tests upload and download large amounts of data to and from S3. The test
timeout is set to 40 seconds because Internet connectivity waries wildly.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/node_modules/minimatch/node_modules/brace-expansion/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

brace-expansion

Brace expansion [https://www.gnu.org/software/bash/manual/html_node/Brace-Expansion.html],
as known from sh/bash, in JavaScript.

[image: build status] [http://travis-ci.org/juliangruber/brace-expansion]

[image: testling badge] [https://ci.testling.com/juliangruber/brace-expansion]

Example

var expand = require('brace-expansion');

expand('file-{a,b,c}.jpg')
// => ['file-a.jpg', 'file-b.jpg', 'file-c.jpg']

expand('-v{,,}')
// => ['-v', '-v', '-v']

expand('file{0..2}.jpg')
// => ['file0.jpg', 'file1.jpg', 'file2.jpg']

expand('file-{a..c}.jpg')
// => ['file-a.jpg', 'file-b.jpg', 'file-c.jpg']

expand('file{2..0}.jpg')
// => ['file2.jpg', 'file1.jpg', 'file0.jpg']

expand('file{0..4..2}.jpg')
// => ['file0.jpg', 'file2.jpg', 'file4.jpg']

expand('file-{a..e..2}.jpg')
// => ['file-a.jpg', 'file-c.jpg', 'file-e.jpg']

expand('file{00..10..5}.jpg')
// => ['file00.jpg', 'file05.jpg', 'file10.jpg']

expand('{{A..C},{a..c}}')
// => ['A', 'B', 'C', 'a', 'b', 'c']

expand('ppp{,config,oe{,conf}}')
// => ['ppp', 'pppconfig', 'pppoe', 'pppoeconf']

API

var expand = require('brace-expansion');

var expanded = expand(str)

Return an array of all possible and valid expansions of str. If none are
found, [str] is returned.

Valid expansions are:

/^(.*,)+(.+)?$/
// {a,b,...}

A comma seperated list of options, like {a,b} or {a,{b,c}} or {,a,}.

/^-?\d+\.\.-?\d+(\.\.-?\d+)?$/
// {x..y[..incr]}

A numeric sequence from x to y inclusive, with optional increment.
If x or y start with a leading 0, all the numbers will be padded
to have equal length. Negative numbers and backwards iteration work too.

/^-?\d+\.\.-?\d+(\.\.-?\d+)?$/
// {x..y[..incr]}

An alphabetic sequence from x to y inclusive, with optional increment.
x and y must be exactly one character, and if given, incr must be a
number.

For compatibility reasons, the string ${ is not eligible for brace expansion.

Installation

With npm [https://npmjs.org] do:

npm install brace-expansion

Contributors

		Julian Gruber [https://github.com/juliangruber]

		Isaac Z. Schlueter [https://github.com/isaacs]

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

4.3.1

		Update dependencies

4.3.0

		fix open file descriptor leak. Thanks
Ross Wilson [https://github.com/wilsonwc]

		add downloadBuffer API

		uploadDir: add ‘fileUploadStart’, ‘fileUploadEnd’ events

		downloadDir: add ‘fileDownloadStart’, ‘fileDownloadEnd’ events

		update aws-sdk to 2.0.19

4.2.0

		use new AWS SDK API to avoid PassThrough stream workaround

		update aws-sdk to 2.0.17

4.1.1

		uploadFile and uploadDir now have optional argument defaultContentType.

		Fixes default Content-Type able to be mutated by third party modules
changing the global mime.default_type variable.

4.1.0

		Content-Type header is now automatically filled out if you do not explicitly
provide it or set it to null.

4.0.0

		support for multipart uploading and downloading. This raises the maximum
supported file size to the S3 maximum of 5 TB. It also allows this module
to be used to download files which were uploaded via multipart.

		uploadFile no longer emits ‘stream’ (possibly multiple times). Instead, it
emits ‘fileOpened’ exactly once, and the parameter can be used to create
read streams.

		uploadFile uses fstat instead of stat. Fixes a possible file system race
condition.

		uploadfile no longer accepts the localFileStat parameter.

		default maxAsyncS3 increased from 14 to 20

		added multipartUploadThreshold, multipartUploadSize

3.1.3

		uploadDir and downloadDir: fix incorrectly deleting files

		update aws-sdk to 2.0.8

3.1.2

		add license

		update aws-sdk to 2.0.6. Fixes SSL download reliability.

3.1.1

		uploadDir handles source directory not existing error correctly

3.1.0

		uploadFile computes MD5 and sends bytes at the same time

		getPublicUrl handles us-east-1 bucket location correctly

3.0.2

		fix upload path on Windows

3.0.1

		Default maxAsyncS3 setting change from 30 to 14.

		Add Expect: 100-continue header to downloads.

3.0.0

		uploadDir and downloadDir completely rewritten with more efficient
algorithm, which is explained in the documentation.

		Default maxAsyncS3 setting changed from Infinity to 30.

		No longer recommend adding graceful-fs to your app.

		No longer recommend increasing ulimit for number of open files.

		Add followSymlinks option to uploadDir and downloadDir

		uploadDir and downloadDir support these additional progress properties:
		filesFound

		objectsFound

		deleteAmount

		deleteTotal

		doneFindingFiles

		doneFindingObjects

		progressMd5Amount

		progressMd5Total

		doneMd5

2.0.0

		getPublicUrl API changed to support bucket regions. Use getPublicUrlHttp
if you want an insecure URL.

1.3.0

		downloadFile respects maxAsyncS3

		Add copyObject API

		AWS JS SDK updated to 2.0.0-rc.18

		errors with retryable set to false are not retried

		Add moveObject API

		uploadFile emits a stream event.

1.2.1

		fix listObjects for greater than 1000 objects

		downloadDir supports getS3Params parameter

		uploadDir and downloadDir expose objectsFound progress

1.2.0

		uploadDir accepts getS3Params function parameter

1.1.1

		fix handling of directory seperator in Windows

		allow uploadDir and downloadDir with empty Prefix

1.1.0

		Add an API function to get the HTTP url to an S3 resource

1.0.0

		complete module rewrite

		depend on official AWS SDK instead of knox

		support uploadDir, downloadDir, listObjects, deleteObject, and deleteDir

0.3.1

		fix resp.req.url sometimes not defined causing crash

		fix emitting end event before write completely finished

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/fd-slicer/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.2.1

		Update pend dependency to latest bugfix version.

0.2.0

		Add read and write functions

0.1.0

		Add autoClose option and ref() and unref().

0.0.2

		Add API documentation

		read stream: create buffer at last possible moment

0.0.1

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/s3/node_modules/streamsink/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-streamsink

Pipe a stream to a StreamSink, and then you can create a ReadableStream,
String, or Buffer from the StreamSink.

Usage

var StreamSink = require('streamsink');

var sink = new StreamSink();

fs.createReadStream("foo.txt").pipe(sink);
sink.on('finish', function() {
 // sink has now buffered foo.txt
 sink.createReadStream().pipe(someDestination);

 // or use toString([encoding], [start], [end])
 console.log(sink.toString('utf8'));

 // or use toBuffer()
 sink.toBuffer();
});

// you can also create instances from a list of buffers
var sink = StreamSink.fromBufferList([new Buffer("aoeu"), new Buffer("foo")]);

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/concat-stream/node_modules/readable-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readable-stream

Node-core streams for userland

[image: NPM] [https://nodei.co/npm/readable-stream/]
[image: NPM] [https://nodei.co/npm/readable-stream/]

This package is a mirror of the Streams2 and Streams3 implementations in Node-core.

If you want to guarantee a stable streams base, regardless of what version of Node you, or the users of your libraries are using, use readable-stream only and avoid the “stream” module in Node-core.

readable-stream comes in two major versions, v1.0.x and v1.1.x. The former tracks the Streams2 implementation in Node 0.10, including bug-fixes and minor improvements as they are added. The latter tracks Streams3 as it develops in Node 0.11; we will likely see a v1.2.x branch for Node 0.12.

readable-stream uses proper patch-level versioning so if you pin to "~1.0.0" you’ll get the latest Node 0.10 Streams2 implementation, including any fixes and minor non-breaking improvements. The patch-level versions of 1.0.x and 1.1.x should mirror the patch-level versions of Node-core releases. You should prefer the 1.0.x releases for now and when you’re ready to start using Streams3, pin to "~1.1.0"

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/concat-stream/node_modules/readable-stream/node_modules/isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

isarray

Array#isArray for older browsers.

Usage

var isArray = require('isarray');

console.log(isArray([])); // => true
console.log(isArray({})); // => false

Installation

With npm [http://npmjs.org] do

$ npm install isarray

Then bundle for the browser with
browserify [https://github.com/substack/browserify].

With component [http://component.io] do

$ component install juliangruber/isarray

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/browserify-zlib/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

browserify-zlib

Emulates Node’s zlib [http://nodejs.org/api/zlib.html] module for Browserify [http://browserify.org]
using pako [https://github.com/nodeca/pako]. It uses the actual Node source code and passes the Node zlib tests
by emulating the C++ binding that actually calls zlib.

[image: browser support]
 [https://ci.testling.com/devongovett/browserify-zlib]

[image: node tests]
 [https://travis-ci.org/devongovett/browserify-zlib]

Not implemented

The following options/methods are not supported because pako does not support them yet.

		The params method

		The dictionary option

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/browserify-zlib/node_modules/pako/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.2.5 / 2014-07-19

		Workaround for Chrome 38.0.2096.0 script parser bug, #30

0.2.4 / 2014-07-07

		Fixed bug in inflate wrapper, #29

0.2.3 / 2014-06-09

		Maintenance release, dependencies update.

0.2.2 / 2014-06-04

		Fixed iOS 5.1 Safary issue with apply(typed_array), #26.

0.2.1 / 2014-05-01

		Fixed collision on switch dynamic/fixed tables.

0.2.0 / 2014-04-18

		Added custom gzip headers support.

		Added strings support.

		Improved memory allocations for small chunks.

		ZStream properties rename/cleanup.

		More coverage tests.

0.1.1 / 2014-03-20

		Bugfixes for inflate/deflate.

0.1.0 / 2014-03-15

		First release.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/concat-stream/node_modules/readable-stream/node_modules/core-util-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

core-util-is

The util.is* functions introduced in Node v0.12.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/concat-stream/node_modules/readable-stream/node_modules/string_decoder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 string_decoder.js (require('string_decoder')) from Node.js core

Copyright Joyent, Inc. and other Node contributors. See LICENCE file for details.

Version numbers match the versions found in Node core, e.g. 0.10.24 matches Node 0.10.24, likewise 0.11.10 matches Node 0.11.10. Prefer the stable version over the unstable.

The build/ directory contains a build script that will scrape the source from the joyent/node [https://github.com/joyent/node] repo given a specific Node version.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/pretty-bytes/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

pretty-bytes [image: Build Status] [https://travis-ci.org/sindresorhus/pretty-bytes]

Convert bytes to a human readable string: 1337 → 1.34 kB

Useful for displaying file sizes for humans.

		

Note that it uses base-10 (eg. kilobyte).Read about the difference between kilobyte and kibibyte. [http://pacoup.com/2009/05/26/kb-kb-kib-whats-up-with-that/]

Install

$ npm install --save pretty-bytes

$ bower install --save pretty-bytes

$ component install sindresorhus/pretty-bytes

Usage

prettyBytes(1337);
//=> '1.34 kB'

prettyBytes(100);
//=> '100 B'

CLI

$ npm install --global pretty-bytes

$ pretty-bytes --help

 Usage
 pretty-bytes <number>
 echo <number> | pretty-bytes

 Example
 pretty-bytes 1337
 1.34 kB

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/node_modules/assertion-error/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2013-06-08

		readme: change travis and component urls

		refactor: [*] prepare for move to chaijs gh org

0.1.0 / 2013-04-07

		test: use vanilla test runner/assert

		pgk: remove unused deps

		lib: implement

		“Initial commit”

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/pretty-bytes/node_modules/get-stdin/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

get-stdin [image: Build Status] [https://travis-ci.org/sindresorhus/get-stdin]

Easier stdin

Install

$ npm install --save get-stdin

Usage

// example.js
var stdin = require('get-stdin');

stdin(function (data) {
 console.log(data);
 //=> unicorns
});

$ echo unicorns | node example.js
unicorns

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/node_modules/assertion-error/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

AssertionError [image: Build Status] [https://travis-ci.org/chaijs/assertion-error]

Error constructor for test and validation frameworks that implements standardized AssertionError specification.

Installation

Node.js

assertion-error is available on npm [http://npmjs.org].

$ npm install assertion-error

Component

assertion-error is available as a component [https://github.com/component/component].

$ component install chaijs/assertion-error

License

(The MIT License)

Copyright (c) 2013 Jake Luer jake@qualiancy.com (http://qualiancy.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/gzip-size/node_modules/browserify-zlib/node_modules/pako/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

pako - zlib port to javascript, very fast!

[image: Build Status] [https://travis-ci.org/nodeca/pako]
[image: NPM version] [https://www.npmjs.org/package/pako]

Why pako is cool:

		Almost as fast in modern JS engines as C implementation (see benchmarks).

		Works in browsers, you can browserify any separate component.

		Chunking support for big blobs.

		Results are binary equal to well known zlib [http://www.zlib.net/] (now v1.2.8 ported).

This project was done to understand how fast JS can be and is it necessary to
develop native C modules for CPU-intensive tasks. Enjoy the result!

Famous projects, using pako:

		browserify [http://browserify.org/] (via browserify-zlib [https://github.com/devongovett/browserify-zlib])

		JSZip [http://stuk.github.io/jszip/]

		mincer [https://github.com/nodeca/mincer]

		JS-Git [https://github.com/creationix/js-git] and
Tedit [https://chrome.google.com/webstore/detail/tedit-development-environ/ooekdijbnbbjdfjocaiflnjgoohnblgf]
by @creatronix [https://github.com/creationix]

Benchmarks:

node v0.10.26, 1mb sample:

 deflate-dankogai x 4.73 ops/sec ±0.82% (15 runs sampled)
 deflate-gildas x 4.58 ops/sec ±2.33% (15 runs sampled)
 deflate-imaya x 3.22 ops/sec ±3.95% (12 runs sampled)
 ! deflate-pako x 6.99 ops/sec ±0.51% (21 runs sampled)
 deflate-pako-string x 5.89 ops/sec ±0.77% (18 runs sampled)
 deflate-pako-untyped x 4.39 ops/sec ±1.58% (14 runs sampled)
 * deflate-zlib x 14.71 ops/sec ±4.23% (59 runs sampled)
 inflate-dankogai x 32.16 ops/sec ±0.13% (56 runs sampled)
 inflate-imaya x 30.35 ops/sec ±0.92% (53 runs sampled)
 ! inflate-pako x 69.89 ops/sec ±1.46% (71 runs sampled)
 inflate-pako-string x 19.22 ops/sec ±1.86% (49 runs sampled)
 inflate-pako-untyped x 17.19 ops/sec ±0.85% (32 runs sampled)
 * inflate-zlib x 70.03 ops/sec ±1.64% (81 runs sampled)

node v0.11.12, 1mb sample:

 deflate-dankogai x 5.60 ops/sec ±0.49% (17 runs sampled)
 deflate-gildas x 5.06 ops/sec ±6.00% (16 runs sampled)
 deflate-imaya x 3.52 ops/sec ±3.71% (13 runs sampled)
 ! deflate-pako x 11.52 ops/sec ±0.22% (32 runs sampled)
 deflate-pako-string x 9.53 ops/sec ±1.12% (27 runs sampled)
 deflate-pako-untyped x 5.44 ops/sec ±0.72% (17 runs sampled)
 * deflate-zlib x 14.05 ops/sec ±3.34% (63 runs sampled)
 inflate-dankogai x 42.19 ops/sec ±0.09% (56 runs sampled)
 inflate-imaya x 79.68 ops/sec ±1.07% (68 runs sampled)
 ! inflate-pako x 97.52 ops/sec ±0.83% (80 runs sampled)
 inflate-pako-string x 45.19 ops/sec ±1.69% (57 runs sampled)
 inflate-pako-untyped x 24.35 ops/sec ±2.59% (40 runs sampled)
 * inflate-zlib x 60.32 ops/sec ±1.36% (69 runs sampled)

zlib’s test is partialy afferted by marshling (that make sense for inflate only).
You can change deflate level to 0 in benchmark source, to investigate details.
For deflate level 6 results can be considered as correct.

Install:

node.js:

npm install pako

browser:

bower install pako

Example & API

Full docs - http://nodeca.github.io/pako/

var pako = require('pako');

// Deflate
//
var input = new Uint8Array();
//... fill input data here
var output = pako.deflate(input);

// Inflate (simple wrapper can throw exception on broken stream)
//
var compressed = new Uint8Array();
//... fill data to uncompress here
try {
 var result = pako.inflate(compressed);
catch (err) {
 console.log(err);
}

//
// Alternate interface for chunking & without exceptions
//

var inflator = new pako.Inflate();

inflator.push(chunk1, false);
inflator.push(chunk2, false);
...
inflator.push(chunkN, true); // true -> last chunk

if (inflator.err) {
 console.log(inflator.msg);
}

var output = inflator.result;

Sometime you can wish to work with strings. For example, to send
big objects as json to server. Pako detects input data type. You can
force output to be string with option { to: 'string' }.

var pako = require('pako');

var test = { my: 'super', puper: [456, 567], awesome: 'pako' };

var binaryString = pako.deflate(JSON.stringify(test), { to: 'string' });

//
// Here you can do base64 encode, make xhr requests and so on.
//

var restored = JSON.parse(pako.inflate(binaryString, { to: 'string' }));

Notes

Pako does not contain some specific zlib functions:

		deflate - methods deflateCopy, deflateBound, deflateParams,
deflatePending, deflatePrime, deflateSetDictionary, deflateTune.

		inflate - inflateGetDictionary, inflateCopy, inflateMark,
inflatePrime, inflateSetDictionary, inflateSync, inflateSyncPoint,
inflateUndermine.

Authors

		Andrey Tupitsin @anrd83 [https://github.com/andr83]

		Vitaly Puzrin @puzrin [https://github.com/puzrin]

Personal thanks to Vyacheslav Egorov (@mraleph [https://github.com/mraleph])
for his awesome tutoruals about optimising JS code for v8,
IRHydra [http://mrale.ph/irhydra/] tool and his advices.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/qs/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.3.1 [https://github.com/hapijs/qs/issues?milestone=16&state=closed]

		#52 [https://github.com/hapijs/qs/issues/52] Return "

undefined"

 and "

false"

 instead of throwing "

TypeError"

.

2.3.0 [https://github.com/hapijs/qs/issues?milestone=15&state=closed]

		#50 [https://github.com/hapijs/qs/issues/50] add option to omit array indices, closes #46

2.2.5 [https://github.com/hapijs/qs/issues?milestone=14&state=closed]

		#39 [https://github.com/hapijs/qs/issues/39] Is there an alternative to Buffer.isBuffer?

		#49 [https://github.com/hapijs/qs/issues/49] refactor utils.merge, fixes #45

		#41 [https://github.com/hapijs/qs/issues/41] avoid browserifying Buffer, for #39

2.2.4 [https://github.com/hapijs/qs/issues?milestone=13&state=closed]

		#38 [https://github.com/hapijs/qs/issues/38] how to handle object keys beginning with a number

2.2.3 [https://github.com/hapijs/qs/issues?milestone=12&state=closed]

		#37 [https://github.com/hapijs/qs/issues/37] parser discards first empty value in array

		#36 [https://github.com/hapijs/qs/issues/36] Update to lab 4.x

2.2.2 [https://github.com/hapijs/qs/issues?milestone=11&state=closed]

		#33 [https://github.com/hapijs/qs/issues/33] Error when plain object in a value

		#34 [https://github.com/hapijs/qs/issues/34] use Object.prototype.hasOwnProperty.call instead of obj.hasOwnProperty

		#24 [https://github.com/hapijs/qs/issues/24] Changelog? Semver?

2.2.1 [https://github.com/hapijs/qs/issues?milestone=10&state=closed]

		#32 [https://github.com/hapijs/qs/issues/32] account for circular references properly, closes #31

		#31 [https://github.com/hapijs/qs/issues/31] qs.parse stackoverflow on circular objects

2.2.0 [https://github.com/hapijs/qs/issues?milestone=9&state=closed]

		#26 [https://github.com/hapijs/qs/issues/26] Don‘

t use Buffer global if it‘

s not present

		#30 [https://github.com/hapijs/qs/issues/30] Bug when merging non-object values into arrays

		#29 [https://github.com/hapijs/qs/issues/29] Don‘

t call Utils.clone at the top of Utils.merge

		#23 [https://github.com/hapijs/qs/issues/23] Ability to not limit parameters?

2.1.0 [https://github.com/hapijs/qs/issues?milestone=8&state=closed]

		#22 [https://github.com/hapijs/qs/issues/22] Enable using a RegExp as delimiter

2.0.0 [https://github.com/hapijs/qs/issues?milestone=7&state=closed]

		#18 [https://github.com/hapijs/qs/issues/18] Why is there arrayLimit?

		#20 [https://github.com/hapijs/qs/issues/20] Configurable parametersLimit

		#21 [https://github.com/hapijs/qs/issues/21] make all limits optional, for #18, for #20

1.2.2 [https://github.com/hapijs/qs/issues?milestone=6&state=closed]

		#19 [https://github.com/hapijs/qs/issues/19] Don‘

t overwrite null values

1.2.1 [https://github.com/hapijs/qs/issues?milestone=5&state=closed]

		#16 [https://github.com/hapijs/qs/issues/16] ignore non-string delimiters

		#15 [https://github.com/hapijs/qs/issues/15] Close code block

1.2.0 [https://github.com/hapijs/qs/issues?milestone=4&state=closed]

		#12 [https://github.com/hapijs/qs/issues/12] Add optional delim argument

		#13 [https://github.com/hapijs/qs/issues/13] fix #11: flattened keys in array are now correctly parsed

1.1.0 [https://github.com/hapijs/qs/issues?milestone=3&state=closed]

		#7 [https://github.com/hapijs/qs/issues/7] Empty values of a POST array disappear after being submitted

		#9 [https://github.com/hapijs/qs/issues/9] Should not omit equals signs (=) when value is null

		#6 [https://github.com/hapijs/qs/issues/6] Minor grammar fix in README

1.0.2 [https://github.com/hapijs/qs/issues?milestone=2&state=closed]

		#5 [https://github.com/hapijs/qs/issues/5] array holes incorrectly copied into object on large index

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/node_modules/deep-eql/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.1.3 / 2013-10-10

		pkg: update type-detect version

		index,test: conditional require in test bootstrap

0.1.2 / 2013-09-18

		bug: [fix] misnamed variable from code migration (reference error)

0.1.1 / 2013-09-18

		bug: [fix] last key of deep object ignored

0.1.0 / 2013-09-18

		tests: add iterable

		docs: readme

		makefile: [ci] update cov handling

		testing: [env] use karma for phantom

		add tests (uncompleted)

		add library

		add dependencies

		“Initial commit”

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/maxmin/node_modules/figures/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

figures [image: Build Status] [https://travis-ci.org/sindresorhus/figures]

Unicode symbols with Windows CMD fallbacks

[image:]

and more...

Windows CMD only supports a limited character set [http://en.wikipedia.org/wiki/Code_page_437].

Install

$ npm install --save figures

Usage

See the source for supported symbols.

var figures = require('figures');

console.log(figures.tick);
// On real OSes: ✔︎
// On Windows: √

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/qs/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Please view our hapijs contributing guide [https://github.com/hapijs/hapi/blob/master/CONTRIBUTING.md].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/node_modules/deep-eql/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

deep-eql [image: Build Status] [https://travis-ci.org/chaijs/deep-eql] [image: Coverage Status] [https://coveralls.io/r/chaijs/deep-eql?branch=master]

Improved deep equality testing for Node.js and the browser.

Installation

Node.js

deep-eql is available on npm [http://npmjs.org].

$ npm install deep-eql

Component

deep-eql is available as a component [https://github.com/component/component].

$ component install chaijs/deep-eql

Usage

Rules

		Strict equality for non-traversable nodes according to egal [http://wiki.ecmascript.org/doku.php?id=harmony:egal].
		eql(NaN, NaN).should.be.true;

		eql(-0, +0).should.be.false;

		Arguments are not Arrays:
		eql([], arguments).should.be.false;

		eql([], Array.prototype.slice.call(arguments)).should.be.true;

License

(The MIT License)

Copyright (c) 2013 Jake Luer jake@alogicalparadox.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

express-session

![NPM Version][npm-image] [https://npmjs.org/package/express-session]
![NPM Downloads][downloads-image] [https://npmjs.org/package/express-session]
![Build Status][travis-image] [https://travis-ci.org/expressjs/session]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/session?branch=master]
![Gratipay][gratipay-image] [https://gratipay.com/dougwilson/]

Installation

$ npm install express-session

API

var express = require('express')
var session = require('express-session')

var app = express()

app.use(session({secret: 'keyboard cat'}))

session(options)

Setup session store with the given options.

Session data is not saved in the cookie itself, just the session ID.

Options

		name - cookie name (formerly known as key). (default: 'connect.sid')

		store - session store instance.

		secret - session cookie is signed with this secret to prevent tampering.

		cookie - session cookie settings.
		(default: { path: '/', httpOnly: true, secure: false, maxAge: null })

		genid - function to call to generate a new session ID. (default: uses uid2 library)

		rolling - forces a cookie set on every response. This resets the expiration date. (default: false)

		resave - forces session to be saved even when unmodified. (default: true)

		proxy - trust the reverse proxy when setting secure cookies (via “x-forwarded-proto” header). When set to true, the “x-forwarded-proto” header will be used. When set to false, all headers are ignored. When left unset, will use the “trust proxy” setting from express. (default: undefined)

		saveUninitialized - forces a session that is “uninitialized” to be saved to the store. A session is uninitialized when it is new but not modified. This is useful for implementing login sessions, reducing server storage usage, or complying with laws that require permission before setting a cookie. (default: true)

		unset - controls result of unsetting req.session (through delete, setting to null, etc.). This can be “keep” to keep the session in the store but ignore modifications or “destroy” to destroy the stored session. (default: 'keep')

options.genid

Generate a custom session ID for new sessions. Provide a function that returns a string that will be used as a session ID. The function is given req as the first argument if you want to use some value attached to req when generating the ID.

NOTE be careful you generate unique IDs so your sessions do not conflict.

app.use(session({
 genid: function(req) {
 return genuuid(); // use UUIDs for session IDs
 },
 secret: 'keyboard cat'
}))

Cookie options

Please note that secure: true is a recommended option. However, it requires an https-enabled website, i.e., HTTPS is necessary for secure cookies.
If secure is set, and you access your site over HTTP, the cookie will not be set. If you have your node.js behind a proxy and are using secure: true, you need to set “trust proxy” in express:

var app = express()
app.set('trust proxy', 1) // trust first proxy
app.use(session({
 secret: 'keyboard cat',
 cookie: { secure: true }
}))

For using secure cookies in production, but allowing for testing in development, the following is an example of enabling this setup based on NODE_ENV in express:

var app = express()
var sess = {
 secret: 'keyboard cat',
 cookie: {}
}

if (app.get('env') === 'production') {
 app.set('trust proxy', 1) // trust first proxy
 sess.cookie.secure = true // serve secure cookies
}

app.use(session(sess))

By default cookie.maxAge is null, meaning no “expires” parameter is set
so the cookie becomes a browser-session cookie. When the user closes the
browser the cookie (and session) will be removed.

req.session

To store or access session data, simply use the request property req.session,
which is (generally) serialized as JSON by the store, so nested objects
are typically fine. For example below is a user-specific view counter:

app.use(session({ secret: 'keyboard cat', cookie: { maxAge: 60000 }}))

app.use(function(req, res, next) {
 var sess = req.session
 if (sess.views) {
 sess.views++
 res.setHeader('Content-Type', 'text/html')
 res.write('<p>views: ' + sess.views + '</p>')
 res.write('<p>expires in: ' + (sess.cookie.maxAge / 1000) + 's</p>')
 res.end()
 } else {
 sess.views = 1
 res.end('welcome to the session demo. refresh!')
 }
})

Session.regenerate()

To regenerate the session simply invoke the method, once complete
a new SID and Session instance will be initialized at req.session.

req.session.regenerate(function(err) {
 // will have a new session here
})

Session.destroy()

Destroys the session, removing req.session, will be re-generated next request.

req.session.destroy(function(err) {
 // cannot access session here
})

Session.reload()

Reloads the session data.

req.session.reload(function(err) {
 // session updated
})

Session.save()

req.session.save(function(err) {
 // session saved
})

Session.touch()

Updates the .maxAge property. Typically this is
not necessary to call, as the session middleware does this for you.

req.session.cookie

Each session has a unique cookie object accompany it. This allows
you to alter the session cookie per visitor. For example we can
set req.session.cookie.expires to false to enable the cookie
to remain for only the duration of the user-agent.

Cookie.maxAge

Alternatively req.session.cookie.maxAge will return the time
remaining in milliseconds, which we may also re-assign a new value
to adjust the .expires property appropriately. The following
are essentially equivalent

var hour = 3600000
req.session.cookie.expires = new Date(Date.now() + hour)
req.session.cookie.maxAge = hour

For example when maxAge is set to 60000 (one minute), and 30 seconds
has elapsed it will return 30000 until the current request has completed,
at which time req.session.touch() is called to reset req.session.maxAge
to its original value.

req.session.cookie.maxAge // => 30000

Session Store Implementation

Every session store must implement the following methods

		.get(sid, callback)

		.set(sid, session, callback)

		.destroy(sid, callback)

Recommended methods include, but are not limited to:

		.length(callback)

		.clear(callback)

For an example implementation view the connect-redis [http://github.com/visionmedia/connect-redis] repo.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/send/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

send

![NPM Version][npm-image] [https://npmjs.org/package/send]
![NPM Downloads][downloads-image] [https://npmjs.org/package/send]
![Build Status][travis-image] [https://travis-ci.org/tj/send]
![Test Coverage][coveralls-image] [https://coveralls.io/r/tj/send?branch=master]
![Gittip][gittip-image] [https://www.gittip.com/dougwilson/]

Send is Connect’s static() extracted for generalized use, a streaming static file
server supporting partial responses (Ranges), conditional-GET negotiation, high test coverage, and granular events which may be leveraged to take appropriate actions in your application or framework.

Installation

$ npm install send

API

var send = require('send')

send(req, path, [options])

Create a new SendStream for the given path to send to a res. The req is
the Node.js HTTP request and the path is a urlencoded path to send (urlencoded,
not the actual file-system path).

Options

dotfiles

Set how “dotfiles” are treated when encountered. A dotfile is a file
or directory that begins with a dot (”.”). Note this check is done on
the path itself without checking if the path actually exists on the
disk. If root is specified, only the dotfiles above the root are
checked (i.e. the root itself can be within a dotfile when when set
to “deny”).

The default value is 'ignore'.

		'allow' No special treatment for dotfiles.

		'deny' Send a 403 for any request for a dotfile.

		'ignore' Pretend like the dotfile does not exist and 404.

etag

Enable or disable etag generation, defaults to true.

extensions

If a given file doesn’t exist, try appending one of the given extensions,
in the given order. By default, this is disabled (set to false). An
example value that will serve extension-less HTML files: ['html', 'htm'].
This is skipped if the requested file already has an extension.

index

By default send supports “index.html” files, to disable this
set false or to supply a new index pass a string or an array
in preferred order.

lastModified

Enable or disable Last-Modified header, defaults to true. Uses the file
system’s last modified value.

maxAge

Provide a max-age in milliseconds for http caching, defaults to 0.
This can also be a string accepted by the
ms [https://www.npmjs.org/package/ms#readme] module.

root

Serve files relative to path.

Events

The SendStream is an event emitter and will emit the following events:

		error an error occurred (err)

		directory a directory was requested

		file a file was requested (path, stat)

		headers the headers are about to be set on a file (res, path, stat)

		stream file streaming has started (stream)

		end streaming has completed

.pipe

The pipe method is used to pipe the response into the Node.js HTTP response
object, typically send(req, path, options).pipe(res).

Error-handling

By default when no error listeners are present an automatic response will be made, otherwise you have full control over the response, aka you may show a 5xx page etc.

Caching

It does not perform internal caching, you should use a reverse proxy cache such
as Varnish for this, or those fancy things called CDNs. If your application is small enough that it would benefit from single-node memory caching, it’s small enough that it does not need caching at all ;).

Debugging

To enable debug() instrumentation output export DEBUG:

$ DEBUG=send node app

Running tests

$ npm install
$ npm test

Examples

Small:

var http = require('http');
var send = require('send');

var app = http.createServer(function(req, res){
 send(req, req.url).pipe(res);
}).listen(3000);

Serving from a root directory with custom error-handling:

var http = require('http');
var send = require('send');
var url = require('url');

var app = http.createServer(function(req, res){
 // your custom error-handling logic:
 function error(err) {
 res.statusCode = err.status || 500;
 res.end(err.message);
 }

 // your custom headers
 function headers(res, path, stat) {
 // serve all files for download
 res.setHeader('Content-Disposition', 'attachment');
 }

 // your custom directory handling logic:
 function redirect() {
 res.statusCode = 301;
 res.setHeader('Location', req.url + '/');
 res.end('Redirecting to ' + req.url + '/');
 }

 // transfer arbitrary files from within
 // /www/example.com/public/*
 send(req, url.parse(req.url).pathname, {root: '/www/example.com/public'})
 .on('error', error)
 .on('directory', redirect)
 .on('headers', headers)
 .pipe(res);
}).listen(3000);

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/node_modules/deep-eql/node_modules/type-detect/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.1.1 / 2013-10-10

		Merge pull request #2 from strongloop/fix-browserify

		index,test: support browserify

0.1.0 / 2013-08-14

		readme: document all methods

		readme: add badges

		library: [test] ensure test runs

		travis: change script to run coveralls reportwq

		tests: add tests

		lib: add type detect lib

		pkg: prepare for coverage based tests

		“Initial commit”

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.8.2 / 2014-09-15

		Use crc instead of buffer-crc32 for speed

		deps: depd@0.4.5

1.8.1 / 2014-09-08

		Keep req.session.save non-enumerable

		Prevent session prototype methods from being overwritten

1.8.0 / 2014-09-07

		Do not resave already-saved session at end of request

		deps: cookie-signature@1.0.5

		deps: debug@~2.0.0

1.7.6 / 2014-08-18

		Fix exception on res.end(null) calls

1.7.5 / 2014-08-10

		Fix parsing original URL

		deps: on-headers@~1.0.0

		deps: parseurl@~1.3.0

1.7.4 / 2014-08-05

		Fix response end delay for non-chunked responses

1.7.3 / 2014-08-05

		Fix res.end patch to call correct upstream res.write

1.7.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

1.7.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

1.7.0 / 2014-07-22

		Improve session-ending error handling
		Errors are passed to next(err) instead of console.error

		deps: debug@1.0.4

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

1.6.5 / 2014-07-11

		Do not require req.originalUrl

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

1.6.4 / 2014-07-07

		Fix blank responses for stores with synchronous operations

1.6.3 / 2014-07-04

		Fix resave deprecation message

1.6.2 / 2014-07-04

		Fix confusing option deprecation messages

1.6.1 / 2014-06-28

		Fix saveUninitialized deprecation message

1.6.0 / 2014-06-28

		Add deprecation message to undefined resave option

		Add deprecation message to undefined saveUninitialized option

		Fix res.end patch to return correct value

		Fix res.end patch to handle multiple res.end calls

		Reject cookies with missing signatures

1.5.2 / 2014-06-26

		deps: cookie-signature@1.0.4
		fix for timing attacks

1.5.1 / 2014-06-21

		Move hard-to-track-down req.secret deprecation message

1.5.0 / 2014-06-19

		Debug name is now “express-session”

		Deprecate integration with cookie-parser middleware

		Deprecate looking for secret in req.secret

		Directly read cookies; cookie-parser no longer required

		Directly set cookies; res.cookie no longer required

		Generate session IDs with uid-safe, faster and even less collisions

1.4.0 / 2014-06-17

		Add genid option to generate custom session IDs

		Add saveUninitialized option to control saving uninitialized sessions

		Add unset option to control unsetting req.session

		Generate session IDs with rand-token by default; reduce collisions

		deps: buffer-crc32@0.2.3

1.3.1 / 2014-06-14

		Add description in package for npmjs.org listing

1.3.0 / 2014-06-14

		Integrate with express “trust proxy” by default

		deps: debug@1.0.2

1.2.1 / 2014-05-27

		Fix resave such that resave: true works

1.2.0 / 2014-05-19

		Add resave option to control saving unmodified sessions

1.1.0 / 2014-05-12

		Add name option; replacement for key option

		Use setImmediate in MemoryStore for node.js >= 0.10

1.0.4 / 2014-04-27

		deps: debug@0.8.1

1.0.3 / 2014-04-19

		Use res.cookie() instead of res.setHeader()

		deps: cookie@0.1.2

1.0.2 / 2014-02-23

		Add missing dependency to package.json

1.0.1 / 2014-02-15

		Add missing dependencies to package.json

1.0.0 / 2014-02-15

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/qs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

qs

A querystring parsing and stringifying library with some added security.

[image: Build Status] [http://travis-ci.org/hapijs/qs]

Lead Maintainer: Nathan LaFreniere [https://github.com/nlf]

The qs module was originally created and maintained by TJ Holowaychuk [https://github.com/visionmedia/node-querystring].

Usage

var Qs = require('qs');

var obj = Qs.parse('a=c'); // { a: 'c' }
var str = Qs.stringify(obj); // 'a=c'

Parsing Objects

Qs.parse(string, [options]);

qs allows you to create nested objects within your query strings, by surrounding the name of sub-keys with square brackets [].
For example, the string 'foo[bar]=baz' converts to:

{
 foo: {
 bar: 'baz'
 }
}

URI encoded strings work too:

Qs.parse('a%5Bb%5D=c');
// { a: { b: 'c' } }

You can also nest your objects, like 'foo[bar][baz]=foobarbaz':

{
 foo: {
 bar: {
 baz: 'foobarbaz'
 }
 }
}

By default, when nesting objects qs will only parse up to 5 children deep. This means if you attempt to parse a string like
'a[b][c][d][e][f][g][h][i]=j' your resulting object will be:

{
 a: {
 b: {
 c: {
 d: {
 e: {
 f: {
 '[g][h][i]': 'j'
 }
 }
 }
 }
 }
 }
}

This depth can be overridden by passing a depth option to Qs.parse(string, [options]):

Qs.parse('a[b][c][d][e][f][g][h][i]=j', { depth: 1 });
// { a: { b: { '[c][d][e][f][g][h][i]': 'j' } } }

The depth limit helps mitigate abuse when qs is used to parse user input, and it is recommended to keep it a reasonably small number.

For similar reasons, by default qs will only parse up to 1000 parameters. This can be overridden by passing a parameterLimit option:

Qs.parse('a=b&c=d', { parameterLimit: 1 });
// { a: 'b' }

An optional delimiter can also be passed:

Qs.parse('a=b;c=d', { delimiter: ';' });
// { a: 'b', c: 'd' }

Delimiters can be a regular expression too:

Qs.parse('a=b;c=d,e=f', { delimiter: /[;,]/ });
// { a: 'b', c: 'd', e: 'f' }

Parsing Arrays

qs can also parse arrays using a similar [] notation:

Qs.parse('a[]=b&a[]=c');
// { a: ['b', 'c'] }

You may specify an index as well:

Qs.parse('a[1]=c&a[0]=b');
// { a: ['b', 'c'] }

Note that the only difference between an index in an array and a key in an object is that the value between the brackets must be a number
to create an array. When creating arrays with specific indices, qs will compact a sparse array to only the existing values preserving
their order:

Qs.parse('a[1]=b&a[15]=c');
// { a: ['b', 'c'] }

Note that an empty string is also a value, and will be preserved:

Qs.parse('a[]=&a[]=b');
// { a: ['', 'b'] }
Qs.parse('a[0]=b&a[1]=&a[2]=c');
// { a: ['b', '', 'c'] }

qs will also limit specifying indices in an array to a maximum index of 20. Any array members with an index of greater than 20 will
instead be converted to an object with the index as the key:

Qs.parse('a[100]=b');
// { a: { '100': 'b' } }

This limit can be overridden by passing an arrayLimit option:

Qs.parse('a[1]=b', { arrayLimit: 0 });
// { a: { '1': 'b' } }

If you mix notations, qs will merge the two items into an object:

Qs.parse('a[0]=b&a[b]=c');
// { a: { '0': 'b', b: 'c' } }

You can also create arrays of objects:

Qs.parse('a[][b]=c');
// { a: [{ b: 'c' }] }

Stringifying

Qs.stringify(object, [options]);

When stringifying, qs always URI encodes output. Objects are stringified as you would expect:

Qs.stringify({ a: 'b' });
// 'a=b'
Qs.stringify({ a: { b: 'c' } });
// 'a%5Bb%5D=c'

Examples beyond this point will be shown as though the output is not URI encoded for clarity. Please note that the return values in these cases will be URI encoded during real usage.

When arrays are stringified, by default they are given explicit indices:

Qs.stringify({ a: ['b', 'c', 'd'] });
// 'a[0]=b&a[1]=c&a[2]=d'

You may override this by setting the indices option to false:

Qs.stringify({ a: ['b', 'c', 'd'] }, { indices: false });
// 'a=b&a=c&a=d'

Empty strings and null values will omit the value, but the equals sign (=) remains in place:

Qs.stringify({ a: '' });
// 'a='

Properties that are set to undefined will be omitted entirely:

Qs.stringify({ a: null, b: undefined });
// 'a='

The delimiter may be overridden with stringify as well:

Qs.stringify({ a: 'b', c: 'd' }, { delimiter: ';' });
// 'a=b;c=d'

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/node_modules/deep-eql/node_modules/type-detect/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

type-detect [image: Build Status] [https://travis-ci.org/chaijs/type-detect] [image: Coverage Status] [https://coveralls.io/r/chaijs/type-detect?branch=master]

Improved typeof detection for node.js and the browser.

Installation

Node.js

type-detect is available on npm [http://npmjs.org].

$ npm install type-detect

Component

type-detect is available as a component [https://github.com/component/component].

$ component install chaijs/type-detect

Usage

Primary

The primary export of type-detect is function that can server as a replacement for
typeof. The results of this function will be more specific than that of native typeof.

var type = require('type-detect');

array

assert('array' === type([]));
assert('array' === type(new Array()));

regexp

assert('regexp' === type(/a-z/gi));
assert('regexp' === type(new RegExp('a-z')));

function

assert('function' === type(function () {}));

arguments

(function () {
 assert('arguments' === type(arguments));
})();

date

assert('date' === type(new Date));

number

assert('number' === type(1));
assert('number' === type(1.234));
assert('number' === type(-1));
assert('number' === type(-1.234));
assert('number' === type(Infinity));
assert('number' === type(NaN));

string

assert('string' === type('hello world'));

null

assert('null' === type(null));
assert('null' !== type(undefined));

undefined

assert('undefined' === type(undefined));
assert('undefined' !== type(null));

object

var Noop = function () {};
assert('object' === type({}));
assert('object' !== type(Noop));
assert('object' === type(new Noop));
assert('object' === type(new Object));
assert('object' === type(new String('hello')));

Library

A Library is a small constructed repository for custom type detections.

var lib = new type.Library;

.of (obj)

		@param {Mixed} object to test

		@return {String} type

Expose replacement typeof detection to the library.

if ('string' === lib.of('hello world')) {
 // ...
}

.define (type, test)

		@param {String} type

		@param {RegExp|Function} test

Add a test to for the .test() assertion.

Can be defined as a regular expression:

lib.define('int', /^[0-9]+$/);

... or as a function:

lib.define('bln', function (obj) {
 if ('boolean' === lib.of(obj)) return true;
 var blns = ['yes', 'no', 'true', 'false', 1, 0];
 if ('string' === lib.of(obj)) obj = obj.toLowerCase();
 return !! ~blns.indexOf(obj);
});

.test (obj, test)

		@param {Mixed} object

		@param {String} type

		@return {Boolean} result

Assert that an object is of type. Will first
check natives, and if that does not pass it will
use the user defined custom tests.

assert(lib.test('1', 'int'));
assert(lib.test('yes', 'bln'));

License

(The MIT License)

Copyright (c) 2013 Jake Luer jake@alogicalparadox.com (http://alogicalparadox.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/node_modules/uid-safe/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

UID Safe

Create cryptographically secure UIDs safe for both cookie and URL usage.
This is in contrast to modules such as rand-token [https://github.com/sehrope/node-rand-token]
and uid2 [https://github.com/coreh/uid2] whose UIDs are actually skewed
due to the use of % and unnecessarily truncate the UID.
Use this if you could still use UIDs with - and _ in them.

API

var uid = require('uid-safe')

uid(byteLength, [cb])

Asynchronously create a UID with a specific byte length.
Because base64 encoding is used underneath, this is not the string length!
For example, to create a UID of length 24, you want a byte length of 18!

If cb is not defined, a promise is returned.
However, to use promises, you must either install bluebird [https://github.com/petkaantonov/bluebird]
or use a version of node.js that has native promises,
otherwise your process will crash and die.

uid(18).then(function (string) {
 // do something with the string
})

uid(18, function (err, string) {
 if (err) throw err
 // do something with the string
})

uid.sync(byteLength)

A synchronous version of above.

var string = uid.sync(18)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/send/node_modules/destroy/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Destroy

![NPM version][npm-image] [https://npmjs.org/package/destroy]
![Build status][travis-image] [https://travis-ci.org/stream-utils/destroy]
![Test coverage][coveralls-image] [https://coveralls.io/r/stream-utils/destroy?branch=master]
![Dependency Status][david-image] [https://david-dm.org/stream-utils/destroy]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/destroy]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Destroy a stream.

API

var destroy = require('destroy')

var fs = require('fs')
var stream = fs.createReadStream('package.json')
destroy(stream)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/countrycodes/node_modules/assert/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

assert

[image: Build Status] [https://travis-ci.org/defunctzombie/commonjs-assert]

This module is used for writing unit tests for your applications, you can access it with require(‘assert’).

The API is derived from the commonjs 1.0 unit testing [http://wiki.commonjs.org/wiki/Unit_Testing/1.0] spec and the node.js assert module [http://nodejs.org/api/assert.html]

assert.fail(actual, expected, message, operator)

Throws an exception that displays the values for actual and expected separated by the provided operator.

assert(value, message), assert.ok(value, [message])

Tests if value is truthy, it is equivalent to assert.equal(true, !!value, message);

assert.equal(actual, expected, [message])

Tests shallow, coercive equality with the equal comparison operator (==).

assert.notEqual(actual, expected, [message])

Tests shallow, coercive non-equality with the not equal comparison operator (!=).

assert.deepEqual(actual, expected, [message])

Tests for deep equality.

assert.notDeepEqual(actual, expected, [message])

Tests for any deep inequality.

assert.strictEqual(actual, expected, [message])

Tests strict equality, as determined by the strict equality operator (===)

assert.notStrictEqual(actual, expected, [message])

Tests strict non-equality, as determined by the strict not equal operator (!==)

assert.throws(block, [error], [message])

Expects block to throw an error. error can be constructor, regexp or validation function.

Validate instanceof using constructor:

assert.throws(function() { throw new Error("Wrong value"); }, Error);

Validate error message using RegExp:

assert.throws(function() { throw new Error("Wrong value"); }, /value/);

Custom error validation:

assert.throws(function() {
 throw new Error("Wrong value");
}, function(err) {
 if ((err instanceof Error) && /value/.test(err)) {
 return true;
 }
}, "unexpected error");

assert.doesNotThrow(block, [message])

Expects block not to throw an error, see assert.throws for details.

assert.ifError(value)

Tests if value is not a false value, throws if it is a true value. Useful when testing the first argument, error in callbacks.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/express-session/node_modules/crc/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

crc

[image: GitTip] [https://www.gittip.com/alexgorbatchev/]
[image: Dependency status] [https://david-dm.org/alexgorbatchev/node-crc]
[image: devDependency Status] [https://david-dm.org/alexgorbatchev/node-crc#info=devDependencies]
[image: Build Status] [https://travis-ci.org/alexgorbatchev/node-crc]

[image: NPM] [https://npmjs.org/package/node-crc]

Module for calculating Cyclic Redundancy Check (CRC).

Features

		Version 3 is 3-4 times faster than version 2.

		Pure JavaScript implementation, no dependencies.

		Provides CRC Tables for optimized calculations.

		Provides support for the following CRC algorithms:
		CRC1 crc.crc1(…)

		CRC8 crc.crc8(…)

		CRC8 1-Wire crc.crc81wire(…)

		CRC16 crc.crc16(…)

		CRC16 CCITT crc.crc16ccitt(…)

		CRC16 Modbus crc.crc16modbus(…)

		CRC24 crc.crc24(…)

		CRC32 crc.crc32(…)

Installation

npm install crc

Running tests

$ npm install
$ npm test

Usage Example

Calculate a CRC32:

var crc = require('crc');

crc.crc32('hello').toString(16);
=> "3610a686"

Calculate a CRC32 of a file:

crc.crc32(fs.readFileSync('README.md', 'utf8')).toString(16);
=> "127ad531"

Or using a Buffer:

crc.crc32(fs.readFileSync('README.md')).toString(16);
=> "127ad531"

Incrementally calculate a CRC32:

value = crc32('one');
value = crc32('two', value);
value = crc32('three', value);
value.toString(16);
=> "09e1c092"

Thanks!

pycrc [http://www.tty1.net/pycrc/] library is which the source of all of the CRC tables.

License

The MIT License (MIT)

Copyright (c) 2014 Alex Gorbatchev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/send/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.10.1 / 2014-10-22

		deps: on-finished@~2.1.1
		Fix handling of pipelined requests

0.10.0 / 2014-10-15

		deps: debug@~2.1.0
		Implement DEBUG_FD env variable support

		deps: depd@~1.0.0

		deps: etag@~1.5.0
		Improve string performance

		Slightly improve speed for weak ETags over 1KB

0.9.3 / 2014-09-24

		deps: etag@~1.4.0
		Support “fake” stats objects

0.9.2 / 2014-09-15

		deps: depd@0.4.5

		deps: etag@~1.3.1

		deps: range-parser@~1.0.2

0.9.1 / 2014-09-07

		deps: fresh@0.2.4

0.9.0 / 2014-09-07

		Add lastModified option

		Use etag to generate ETag header

		deps: debug@~2.0.0

0.8.5 / 2014-09-04

		Fix malicious path detection for empty string path

0.8.4 / 2014-09-04

		Fix a path traversal issue when using root

0.8.3 / 2014-08-16

		deps: destroy@1.0.3
		renamed from dethroy

		deps: on-finished@2.1.0

0.8.2 / 2014-08-14

		Work around fd leak in Node.js 0.10 for fs.ReadStream

		deps: dethroy@1.0.2

0.8.1 / 2014-08-05

		Fix extensions behavior when file already has extension

0.8.0 / 2014-08-05

		Add extensions option

0.7.4 / 2014-08-04

		Fix serving index files without root dir

0.7.3 / 2014-07-29

		Fix incorrect 403 on Windows and Node.js 0.11

0.7.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

0.7.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

0.7.0 / 2014-07-20

		Deprecate hidden option; use dotfiles option

		Add dotfiles option

		deps: debug@1.0.4

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

0.6.0 / 2014-07-11

		Deprecate from option; use root option

		Deprecate send.etag() – use etag in options

		Deprecate send.hidden() – use hidden in options

		Deprecate send.index() – use index in options

		Deprecate send.maxage() – use maxAge in options

		Deprecate send.root() – use root in options

		Cap maxAge value to 1 year

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

0.5.0 / 2014-06-28

		Accept string for maxAge (converted by ms)

		Add headers event

		Include link in default redirect response

		Use EventEmitter.listenerCount to count listeners

0.4.3 / 2014-06-11

		Do not throw un-catchable error on file open race condition

		Use escape-html for HTML escaping

		deps: debug@1.0.2
		fix some debugging output colors on node.js 0.8

		deps: finished@1.2.2

		deps: fresh@0.2.2

0.4.2 / 2014-06-09

		fix “event emitter leak” warnings

		deps: debug@1.0.1

		deps: finished@1.2.1

0.4.1 / 2014-06-02

		Send max-age in Cache-Control in correct format

0.4.0 / 2014-05-27

		Calculate ETag with md5 for reduced collisions

		Fix wrong behavior when index file matches directory

		Ignore stream errors after request ends
		Goodbye EBADF, read

		Skip directories in index file search

		deps: debug@0.8.1

0.3.0 / 2014-04-24

		Fix sending files with dots without root set

		Coerce option types

		Accept API options in options object

		Set etags to “weak”

		Include file path in etag

		Make “Can’t set headers after they are sent.” catchable

		Send full entity-body for multi range requests

		Default directory access to 403 when index disabled

		Support multiple index paths

		Support “If-Range” header

		Control whether to generate etags

		deps: mime@1.2.11

0.2.0 / 2014-01-29

		update range-parser and fresh

0.1.4 / 2013-08-11

		update fresh

0.1.3 / 2013-07-08

		Revert “Fix fd leak”

0.1.2 / 2013-07-03

		Fix fd leak

0.1.0 / 2012-08-25

		add options parameter to send() that is passed to fs.createReadStream() [kanongil]

0.0.4 / 2012-08-16

		allow custom “Accept-Ranges” definition

0.0.3 / 2012-07-16

		fix normalization of the root directory. Closes #3

0.0.2 / 2012-07-09

		add passing of req explicitly for now (YUCK)

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/countrycodes/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Country Codes

Utility to fetch country codes viz ISO2, ISO3 and Phone code of all the countries listed in http://countrycode.org/.

Exposes the below APIs:

		Pass in any of the PhoneCode,ISO2/ISO3 country code to get other details of the country.

		Get ISO2 country code.

		Get ISO3 country code.

		Get Phone code of country.

Version

0.0.5

Installation

npm install countrycodes

Examples

CountryCodes.getAll() > Returns an array of 237 country information
CountryCodes.getCountry('India') > {"countryName":"India","iso2":"IN","iso3":"IND","phoneCode":"91"}
CountryCodes.getISO2('India') > IN
CountryCodes.getISO2('IND') > IN
CountryCodes.getISO2('91') > IN
CountryCodes.getISO3('India') > IND
CountryCodes.getISO3('In') > IND
CountryCodes.getISO3('91') > IND
CountryCodes.getPhoneCode('India') > 91
CountryCodes.getPhoneCode('IND') > 91

License

BSD

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/qs/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Please view our hapijs contributing guide [https://github.com/hapijs/hapi/blob/master/CONTRIBUTING.md].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/accepts/node_modules/negotiator/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

negotiator

![NPM Version][npm-image] [https://npmjs.org/package/negotiator]
![NPM Downloads][downloads-image] [https://npmjs.org/package/negotiator]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/negotiator]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/negotiator?branch=master]

An HTTP content negotiator for Node.js

Installation

$ npm install negotiator

API

var Negotiator = require('negotiator')

Accept Negotiation

availableMediaTypes = ['text/html', 'text/plain', 'application/json']

// The negotiator constructor receives a request object
negotiator = new Negotiator(request)

// Let's say Accept header is 'text/html, application/*;q=0.2, image/jpeg;q=0.8'

negotiator.mediaTypes()
// -> ['text/html', 'image/jpeg', 'application/*']

negotiator.mediaTypes(availableMediaTypes)
// -> ['text/html', 'application/json']

negotiator.mediaType(availableMediaTypes)
// -> 'text/html'

You can check a working example at examples/accept.js.

Methods

mediaTypes(availableMediaTypes):

Returns an array of preferred media types ordered by priority from a list of available media types.

mediaType(availableMediaType):

Returns the top preferred media type from a list of available media types.

Accept-Language Negotiation

negotiator = new Negotiator(request)

availableLanguages = 'en', 'es', 'fr'

// Let's say Accept-Language header is 'en;q=0.8, es, pt'

negotiator.languages()
// -> ['es', 'pt', 'en']

negotiator.languages(availableLanguages)
// -> ['es', 'en']

language = negotiator.language(availableLanguages)
// -> 'es'

You can check a working example at examples/language.js.

Methods

languages(availableLanguages):

Returns an array of preferred languages ordered by priority from a list of available languages.

language(availableLanguages):

Returns the top preferred language from a list of available languages.

Accept-Charset Negotiation

availableCharsets = ['utf-8', 'iso-8859-1', 'iso-8859-5']

negotiator = new Negotiator(request)

// Let's say Accept-Charset header is 'utf-8, iso-8859-1;q=0.8, utf-7;q=0.2'

negotiator.charsets()
// -> ['utf-8', 'iso-8859-1', 'utf-7']

negotiator.charsets(availableCharsets)
// -> ['utf-8', 'iso-8859-1']

negotiator.charset(availableCharsets)
// -> 'utf-8'

You can check a working example at examples/charset.js.

Methods

charsets(availableCharsets):

Returns an array of preferred charsets ordered by priority from a list of available charsets.

charset(availableCharsets):

Returns the top preferred charset from a list of available charsets.

Accept-Encoding Negotiation

availableEncodings = ['identity', 'gzip']

negotiator = new Negotiator(request)

// Let's say Accept-Encoding header is 'gzip, compress;q=0.2, identity;q=0.5'

negotiator.encodings()
// -> ['gzip', 'identity', 'compress']

negotiator.encodings(availableEncodings)
// -> ['gzip', 'identity']

negotiator.encoding(availableEncodings)
// -> 'gzip'

You can check a working example at examples/encoding.js.

Methods

encodings(availableEncodings):

Returns an array of preferred encodings ordered by priority from a list of available encodings.

encoding(availableEncodings):

Returns the top preferred encoding from a list of available encodings.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Chai Documentation] [http://chaijs.com]

Chai is a BDD / TDD assertion library for node [http://nodejs.org] and the browser that
can be delightfully paired with any javascript testing framework.

For more information or to download plugins, view the documentation [http://chaijs.com].

[image: Build Status] [https://travis-ci.org/chaijs/chai]

[image: Selenium Test Status] [https://saucelabs.com/u/chaijs]

Plugins

Chai offers a robust Plugin architecture for extending Chai’s assertions and interfaces.

		Need a plugin? View the official plugin list [http://chaijs.com/plugins].

		Have a plugin and want it listed? Open a Pull Request at chaijs/chai-docs:plugin.js [https://github.com/chaijs/chai-docs/blob/master/plugins.js#L1-L12].

		Want to build a plugin? Read the plugin api documentation [http://chaijs.com/guide/plugins/].

Related Projects

		chaijs / assertion-error [https://github.com/chaijs/assertion-error]: Custom Error constructor thrown upon an assertion failing.

		chaijs / deep-eql [https://github.com/chaijs/deep-eql]: Improved deep equality testing for Node.js and the browser.

Contributors

 project : chai
 repo age : 2 years, 3 months ago
 commits : 756
 active : 170 days
 files : 57
 authors :
 540 Jake Luer 71.4%
 79 Veselin Todorov 10.4%
 43 Domenic Denicola 5.7%
 6 Ruben Verborgh 0.8%
 5 George Kats 0.7%
 5 Jo Liss 0.7%
 5 Juliusz Gonera 0.7%
 5 Scott Nonnenberg 0.7%
 5 leider 0.7%
 4 John Firebaugh 0.5%
 4 Max Edmands 0.5%
 4 Nick Heiner 0.5%
 4 josher19 0.5%
 3 Andrei Neculau 0.4%
 3 Duncan Beevers 0.4%
 3 Jake Rosoman 0.4%
 3 Jeff Barczewski 0.4%
 3 Ryunosuke SATO 0.4%
 3 Veselin 0.4%
 2 Bartvds 0.3%
 2 Edwin Shao 0.3%
 2 Jakub Nešetřil 0.3%
 2 Roman Masek 0.3%
 2 Teddy Cross 0.3%
 1 Anand Patil 0.1%
 1 Benjamin Horsleben 0.1%
 1 Brandon Payton 0.1%
 1 Chris Connelly 0.1%
 1 Chun-Yi 0.1%
 1 DD 0.1%
 1 Dido Arellano 0.1%
 1 Jeff Welch 0.1%
 1 Kilian Ciuffolo 0.1%
 1 Luís Cardoso 0.1%
 1 Niklas Närhinen 0.1%
 1 Paul Miller 0.1%
 1 Refael Ackermann 0.1%
 1 Sasha Koss 0.1%
 1 Victor Costan 0.1%
 1 Vinay Pulim 0.1%
 1 Virginie BARDALES 0.1%
 1 laconbass 0.1%
 1 piecioshka 0.1%

License

(The MIT License)

Copyright (c) 2011-2014 Jake Luer jake@alogicalparadox.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/pause/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/accepts/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

accepts

![NPM Version][npm-image] [https://npmjs.org/package/accepts]
![NPM Downloads][downloads-image] [https://npmjs.org/package/accepts]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/accepts]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/accepts]

Higher level content negotation based on negotiator [https://github.com/federomero/negotiator]. Extracted from koa [https://github.com/koajs/koa] for general use.

In addition to negotatior, it allows:

		Allows types as an array or arguments list, ie (['text/html', 'application/json']) as well as ('text/html', 'application/json').

		Allows type shorthands such as json.

		Returns false when no types match

		Treats non-existent headers as *

API

var accept = new Accepts(req)

var accepts = require('accepts')

http.createServer(function (req, res) {
 var accept = accepts(req)
})

accept[property]()

Returns all the explicitly accepted content property as an array in descending priority.

		accept.types()

		accept.encodings()

		accept.charsets()

		accept.languages()

They are also aliased in singular form such as accept.type(). accept.languages() is also aliased as accept.langs(), etc.

Note: you should almost never do this in a real app as it defeats the purpose of content negotiation.

Example:

// in Google Chrome
var encodings = accept.encodings() // -> ['sdch', 'gzip', 'deflate']

Since you probably don’t support sdch, you should just supply the encodings you support:

var encoding = accept.encodings('gzip', 'deflate') // -> 'gzip', probably

accept[property](values, ...)

You can either have values be an array or have an argument list of values.

If the client does not accept any values, false will be returned.
If the client accepts any values, the preferred value will be return.

For accept.types(), shorthand mime types are allowed.

Example:

// req.headers.accept = 'application/json'

accept.types('json') // -> 'json'
accept.types('html', 'json') // -> 'json'
accept.types('html') // -> false

// req.headers.accept = ''
// which is equivalent to `*`

accept.types() // -> [], no explicit types
accept.types('text/html', 'text/json') // -> 'text/html', since it was first

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/ReleaseNotes.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Release Notes

1.9.2 / 2014-09-29

The following changes are required if you are upgrading from the previous version:

		Users:
		No changes required

		Plugin Developers:
		No changes required

		Core Contributors:
		Refresh node_modules folder for updated dependencies.

Community Contributions

		#264 [https://github.com/chaijs/chai/pull/264] Show diff for keys assertions @cjthompson [https://github.com/cjthompson]

		#267 [https://github.com/chaijs/chai/pull/267] Use SVG badges @shinnn [https://github.com/shinnn]

		#268 [https://github.com/chaijs/chai/pull/268] Allow messages to be functions (sinon-compat) @charlierudolph [https://github.com/charlierudolph]

		#269 [https://github.com/chaijs/chai/pull/269] Remove unused argument for #lengthOf @charlierudolph [https://github.com/charlierudolph]

		#275 [https://github.com/chaijs/chai/pull/275] Rewrite pretty-printing HTML elements to prevent throwing internal errors @DrRataplan [https://github.com/DrRataplan]

		#277 [https://github.com/chaijs/chai/pull/277] Fix assert documentation for #sameMembers @charlierudolph [https://github.com/charlierudolph]

		#279 [https://github.com/chaijs/chai/pull/279] closeTo should check value’s type before assertion @mohayonao [https://github.com/mohayonao]

		#289 [https://github.com/chaijs/chai/pull/289] satisfy is called twice @charlierudolph [https://github.com/charlierudolph]

		#292 [https://github.com/chaijs/chai/pull/292] resolve conflicts with node-webkit and global usage @boneskull [https://github.com/boneskull]

Thank you to all who took time to contribute!

1.9.1 / 2014-03-19

The following changes are required if you are upgrading from the previous version:

		Users:
		Migrate configuration options to new interface. (see notes)

		Plugin Developers:
		No changes required

		Core Contributors:
		Refresh node_modules folder for updated dependencies.

Configuration

There have been requests for changes and additions to the configuration mechanisms
and their impact in the Chai architecture. As such, we have decoupled the
configuration from the Assertion constructor. This not only allows for centralized
configuration, but will allow us to shift the responsibility from the Assertion
constructor to the assert interface in future releases.

These changes have been implemented in a non-breaking way, but a depretiation
warning will be presented to users until they migrate. The old config method will
be removed in either v1.11.0 or v2.0.0, whichever comes first.

Quick Migration

// change this:
chai.Assertion.includeStack = true;
chai.Assertion.showDiff = false;

// ... to this:
chai.config.includeStack = true;
chai.config.showDiff = false;

All Config Options

config.includeStack

		@param {Boolean}

		@default false

User configurable property, influences whether stack trace is included in
Assertion error message. Default of false suppresses stack trace in the error
message.

config.showDiff

		@param {Boolean}

		@default true

User configurable property, influences whether or not the showDiff flag
should be included in the thrown AssertionErrors. false will always be false;
true will be true when the assertion has requested a diff be shown.

config.truncateThreshold (NEW)

		@param {Number}

		@default 40

User configurable property, sets length threshold for actual and expected values
in assertion errors. If this threshold is exceeded, the value is truncated.

Set it to zero if you want to disable truncating altogether.

chai.config.truncateThreshold = 0; // disable truncating

Community Contributions

		#228 [https://github.com/chaijs/chai/pull/228] Deep equality check for memebers. @duncanbeevers [https://github.com/duncanbeevers]

		#247 [https://github.com/chaijs/chai/pull/247] Proofreading. @didorellano [https://github.com/didoarellano]

		#244 [https://github.com/chaijs/chai/pull/244] Fix contain/include 1.9.0 regression. @leider [https://github.com/leider]

		#233 [https://github.com/chaijs/chai/pull/233] Improvements to ssfi for assert interface. @refack [https://github.com/refack]

		#251 [https://github.com/chaijs/chai/pull/251] New config option: object display threshold. @romario333 [https://github.com/romario333]

Thank you to all who took time to contribute!

Other Bug Fixes

		#183 [https://github.com/chaijs/chai/issues/183] Allow undefined for actual. (internal api)

		Update Karam(+plugins)/Istanbul to most recent versions.

1.9.0 / 2014-01-29

The following changes are required if you are upgrading from the previous version:

		Users:
		No changes required

		Plugin Developers:
		Review #219 [https://github.com/chaijs/chai/pull/219].

		Core Contributors:
		Refresh node_modules folder for updated dependencies.

Community Contributions

		#202 [https://github.com/chaijs/chai/pull/201] Improve error message for .throw(). @andreineculau [https://github.com/andreineculau]

		#217 [https://github.com/chaijs/chai/pull/217] Chai tests can be run with --watch. @demands [https://github.com/demands]

		#219 [https://github.com/chaijs/chai/pull/219] Add overwriteChainableMethod utility. @demands [https://github.com/demands]

		#224 [https://github.com/chaijs/chai/pull/224] Return error on throw method to chain on error properties. @vbardales [https://github.com/vbardales]

		#226 [https://github.com/chaijs/chai/pull/226] Add has to language chains. @duncanbeevers [https://github.com/duncanbeevers]

		#230 [https://github.com/chaijs/chai/pull/230] Support {a:1,b:2}.should.include({a:1}) @jkroso [https://github.com/jkroso]

		#231 [https://github.com/chaijs/chai/pull/231] Update Copyright notices to 2014 @duncanbeevers [https://github.com/duncanbeevers]

		#232 [https://github.com/chaijs/chai/pull/232] Avoid error instantiation if possible on assert.throws. @laconbass [https://github.com/laconbass]

Thank you to all who took time to contribute!

Other Bug Fixes

		#225 [https://github.com/chaijs/chai/pull/225] Improved AMD wrapper provided by upstream component(1).

		#185 [https://github.com/chaijs/chai/issues/185] assert.throws() returns thrown error for further assertions.

		#237 [https://github.com/chaijs/chai/pull/237] Remove coveralls/jscoverage, include istanbul coverage report in travis test.

		Update Karma and Sauce runner versions for consistent CI results. No more karma@canary.

1.8.1 / 2013-10-10

The following changes are required if you are upgrading from the previous version:

		Users:
		Refresh node_modules folder for updated dependencies.

		Plugin Developers:
		No changes required

		Core Contributors:
		Refresh node_modules folder for updated dependencies.

Browserify

This is a small patch that updates the dependency tree so browserify users can install
chai. (Remove conditional requires)

1.8.0 / 2013-09-18

The following changes are required if you are upgrading from the previous version:

		Users:
		See deep.equal notes.

		Plugin Developers:
		No changes required

		Core Contributors:
		Refresh node_modules folder for updated dependencies.

Deep Equals

This version of Chai focused on a overhaul to the deep equal utility. The code for this
tool has been removed from the core lib and can now be found at:
chai / deep-eql [https://github.com/chaijs/deep-eql]. As stated in previous releases,
this is part of a larger initiative to provide transparency, independent testing, and coverage for
some of the more complicated internal tools.

For the most part .deep.equal will behave the same as it has. However, in order to provide a
consistent ruleset across all types being tested, the following changes have been made and might
require changes to your tests.

1. Strict equality for non-traversable nodes according to egal [http://wiki.ecmascript.org/doku.php?id=harmony:egal].

Previously: Non-traversable equal via ===.

expect(NaN).to.deep.equal(NaN);
expect(-0).to.not.deep.equal(+0);

2. Arguments are not Arrays (and all types must be equal):

Previously: Some crazy nonsense that led to empty arrays deep equaling empty objects deep equaling dates.

expect(arguments).to.not.deep.equal([]);
expect(Array.prototype.slice.call(arguments)).to.deep.equal([]);

		#156 [https://github.com/chaijs/chai/issues/156] Empty object is eql to empty array

		#192 [https://github.com/chaijs/chai/issues/192] empty object is eql to a Date object

		#194 [https://github.com/chaijs/chai/issues/194] refactor deep-equal utility

CI and Browser Testing

Chai now runs the browser CI suite using Karma [http://karma-runner.github.io/] directed at
SauceLabs [https://saucelabs.com/]. This means we get to know where our browser support stands...
and we get a cool badge:

[image: Selenium Test Status] [https://saucelabs.com/u/logicalparadox]

Look for the list of browsers/versions to expand over the coming releases.

		#195 [https://github.com/chaijs/chai/issues/195] karma test framework

1.7.2 / 2013-06-27

The following changes are required if you are upgrading from the previous version:

		Users:
		No changes required.

		Plugin Developers:
		No changes required

		Core Contributors:
		Refresh node_modules folder for updated dependencies.

Coverage Reporting

Coverage reporting has always been available for core-developers but the data has never been published
for our end users. In our ongoing effort to improve accountability this data will now be published via
the coveralls.io [https://coveralls.io/] service. A badge has been added to the README and the full report
can be viewed online at the chai coveralls project [https://coveralls.io/r/chaijs/chai]. Furthermore, PRs
will receive automated messages indicating how their PR impacts test coverage. This service is tied to TravisCI.

Other Fixes

		#175 [https://github.com/chaijs/chai/issues/175] Add bower.json. (Fix ignore all)

1.7.1 / 2013-06-24

The following changes are required if you are upgrading from the previous version:

		Users:
		No changes required.

		Plugin Developers:
		No changes required

		Core Contributors:
		Refresh node_modules folder for updated dependencies.

Official Bower Support

Support has been added for the Bower Package Manager ([bower.io])(http://bower.io/). Though
Chai could be installed via Bower in the past, this update adds official support via the bower.json
specification file.

		#175 [https://github.com/chaijs/chai/issues/175] Add bower.json.

1.7.0 / 2013-06-17

The following changes are required if you are upgrading from the previous version:

		Users:
		No changes required.

		Plugin Developers:
		Review AssertionError update notice.

		Core Contributors:
		Refresh node_modules folder for updated dependencies.

AssertionError Update Notice

Chai now uses chaijs/assertion-error [https://github.com/chaijs/assertion-error] instead an internal
constructor. This will allow for further iteration/experimentation of the AssertionError constructor
independant of Chai. Future plans include stack parsing for callsite support.

This update constructor has a different constructor param signature that conforms more with the standard
Error object. If your plugin throws and AssertionError directly you will need to update your plugin
with the new signature.

var AssertionError = require('chai').AssertionError;

/**
 * previous
 *
 * @param {Object} options
 */

throw new AssertionError({
 message: 'An assertion error occurred'
 , actual: actual
 , expect: expect
 , startStackFunction: arguments.callee
 , showStack: true
});

/**
 * new
 *
 * @param {String} message
 * @param {Object} options
 * @param {Function} start stack function
 */

throw new AssertionError('An assertion error occurred', {
 actual: actual
 , expect: expect
 , showStack: true
}, arguments.callee);

// other signatures
throw new AssertionError('An assertion error occurred');
throw new AssertionError('An assertion error occurred', null, arguments.callee);

External Dependencies

This is the first non-developement dependency for Chai. As Chai continues to evolve we will begin adding
more; the next will likely be improved type detection and deep equality. With Chai’s userbase continually growing
there is an higher need for accountability and documentation. External dependencies will allow us to iterate and
test on features independent from our interfaces.

Note: The browser packaged version chai.js will ALWAYS contain all dependencies needed to run Chai.

Community Contributions

		#169 [https://github.com/chaijs/chai/pull/169] Fix deep equal comparison for Date/Regexp types. @katsgeorgeek [https://github.com/katsgeorgeek]

		#171 [https://github.com/chaijs/chai/pull/171] Add assert.notOk(). @Bartvds [https://github.com/Bartvds]

		#173 [https://github.com/chaijs/chai/pull/173] Fix inspect utility. @domenic [https://github.com/domenic]

Thank you to all who took the time to contribute!

1.6.1 / 2013-06-05

The following changes are required if you are upgrading from the previous version:

		Users:
		No changes required.

		Plugin Developers:
		No changes required.

		Core Contributors:
		Refresh node_modules folder for updated developement dependencies.

Deep Equality

Regular Expressions are now tested as part of all deep equality assertions. In previous versions
they silently passed for all scenarios. Thanks to @katsgeorgeek [https://github.com/katsgeorgeek] for the contribution.

Community Contributions

		#161 [https://github.com/chaijs/chai/pull/161] Fix documented name for assert interface’s isDefined method. @brandonpayton [https://github.com/brandonpayton]

		#168 [https://github.com/chaijs/chai/pull/168] Fix comparison equality of two regexps for when using deep equality. @katsgeorgeek [https://github.com/katsgeorgeek]

Thank you to all who took the time to contribute!

Additional Notes

		Mocha has been locked at version 1.8.x to ensure mocha-phantomjs compatibility.

1.6.0 / 2013-04-29

The following changes are required if you are upgrading from the previous version:

		Users:
		No changes required.

		Plugin Developers:
		No changes required.

		Core Contributors:
		Refresh node_modules folder for updated developement dependencies.

New Assertions

Array Members Inclusion

Asserts that the target is a superset of set, or that the target and set have the same members.
Order is not taken into account. Thanks to @NickHeiner [https://github.com/NickHeiner] for the contribution.

// (expect/should) full set
expect([4, 2]).to.have.members([2, 4]);
expect([5, 2]).to.not.have.members([5, 2, 1]);

// (expect/should) inclusion
expect([1, 2, 3]).to.include.members([3, 2]);
expect([1, 2, 3]).to.not.include.members([3, 2, 8]);

// (assert) full set
assert.sameMembers([1, 2, 3], [2, 1, 3], 'same members');

// (assert) inclusion
assert.includeMembers([1, 2, 3], [2, 1], 'include members');

Non-inclusion for Assert Interface

Most assert functions have a negative version, like instanceOf() has a corresponding notInstaceOf().
However include() did not have a corresponding notInclude(). This has been added.

assert.notInclude([1, 2, 3], 8);
assert.notInclude('foobar', 'baz');

Community Contributions

		#140 [https://github.com/chaijs/chai/pull/140] Restore call/apply methods for plugin interface. @RubenVerborgh [https://github.com/RubenVerborgh]

		#148 [https://github.com/chaijs/chai/issues/148]/#153 [https://github.com/chaijs/chai/pull/153] Add members and include.members assertions. #NickHeiner [https://github.com/NickHeiner]

Thank you to all who took time to contribute!

Other Bug Fixes

		#142 [https://github.com/chaijs/chai/issues/142] assert#include will no longer silently pass on wrong-type haystack.

		#158 [https://github.com/chaijs/chai/issues/158] assert#notInclude has been added.

		Travis-CI now tests Node.js v0.10.x. Support for v0.6.x has been removed. v0.8.x is still tested as before.

1.5.0 / 2013-02-03

Migration Requirements

The following changes are required if you are upgrading from the previous version:

		Users:
		Update [2013-02-04]: Some users may notice a small subset of deep equality assertions will no longer pass. This is the result of
#120 [https://github.com/chaijs/chai/issues/120], an improvement to our deep equality algorithm. Users will need to revise their assertions
to be more granular should this occur. Further information: #139 [https://github.com/chaijs/chai/issues/139].

		Plugin Developers:
		No changes required.

		Core Contributors:
		Refresh node_modules folder for updated developement dependencies.

Community Contributions

		#126 [https://github.com/chaijs/chai/pull/126]: Add eqls alias for eql. @RubenVerborgh [https://github.com/RubenVerborgh]

		#127 [https://github.com/chaijs/chai/issues/127]: Performance refactor for chainable methods. @RubenVerborgh [https://github.com/RubenVerborgh]

		#133 [https://github.com/chaijs/chai/pull/133]: Assertion .throw support for primitives. @RubenVerborgh [https://github.com/RubenVerborgh]

		#137 [https://github.com/chaijs/chai/issues/137]: Assertion .throw support for empty messages. @timnew [https://github.com/timnew]

		#136 [https://github.com/chaijs/chai/pull/136]: Fix backward negation messages when using .above() and .below(). @whatthejeff [https://github.com/whatthejeff]

Thank you to all who took time to contribute!

Other Bug Fixes

		Improve type detection of .a()/.an() to work in cross-browser scenarios.

		#116 [https://github.com/chaijs/chai/issues/116]: .throw() has cleaner display of errors when WebKit browsers.

		#120 [https://github.com/chaijs/chai/issues/120]: .eql() now works to compare dom nodes in browsers.

Usage Updates

For Users

1. Component Support: Chai now included the proper configuration to be installed as a
component [https://github.com/component/component]. Component users are encouraged to consult
chaijs.com [http://chaijs.com] for the latest version number as using the master branch
does not gaurantee stability.

// relevant component.json
 devDependencies: {
 "chaijs/chai": "1.5.0"
 }

Alternatively, bleeding-edge is available:

$ component install chaijs/chai

2. Configurable showDiff: Some test runners (such as mocha [http://visionmedia.github.com/mocha/])
include support for showing the diff of strings and objects when an equality error occurs. Chai has
already included support for this, however some users may not prefer this display behavior. To revert to
no diff display, the following configuration is available:

chai.Assertion.showDiff = false; // diff output disabled
chai.Assertion.showDiff = true; // default, diff output enabled

For Plugin Developers

1. New Utility - type: The new utility .type() is available as a better implementation of typeof
that can be used cross-browser. It handles the inconsistencies of Array, null, and undefined detection.

		@param {Mixed} object to detect type of

		@return {String} object type

chai.use(function (c, utils) {
 // some examples
 utils.type({}); // 'object'
 utils.type(null); // `null'
 utils.type(undefined); // `undefined`
 utils.type([]); // `array`
});

For Core Contributors

1. Browser Testing: Browser testing of the ./chai.js file is now available in the command line
via PhantomJS. make test and Travis-CI will now also rebuild and test ./chai.js. Consequently, all
pull requests will now be browser tested in this way.

Note: Contributors opening pull requests should still NOT include the browser build.

2. SauceLabs Testing: Early SauceLab support has been enabled with the file ./support/mocha-cloud.js.
Those interested in trying it out should create a free Open Sauce [https://saucelabs.com/signup/plan] account
and include their credentials in ./test/auth/sauce.json.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/qs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

qs

A querystring parsing and stringifying library with some added security.

[image: Build Status] [http://travis-ci.org/hapijs/qs]

Lead Maintainer: Nathan LaFreniere [https://github.com/nlf]

The qs module was originally created and maintained by TJ Holowaychuk [https://github.com/visionmedia/node-querystring].

Usage

var Qs = require('qs');

var obj = Qs.parse('a=c'); // { a: 'c' }
var str = Qs.stringify(obj); // 'a=c'

Parsing Objects

Qs.parse(string, [options]);

qs allows you to create nested objects within your query strings, by surrounding the name of sub-keys with square brackets [].
For example, the string 'foo[bar]=baz' converts to:

{
 foo: {
 bar: 'baz'
 }
}

URI encoded strings work too:

Qs.parse('a%5Bb%5D=c');
// { a: { b: 'c' } }

You can also nest your objects, like 'foo[bar][baz]=foobarbaz':

{
 foo: {
 bar: {
 baz: 'foobarbaz'
 }
 }
}

By default, when nesting objects qs will only parse up to 5 children deep. This means if you attempt to parse a string like
'a[b][c][d][e][f][g][h][i]=j' your resulting object will be:

{
 a: {
 b: {
 c: {
 d: {
 e: {
 f: {
 '[g][h][i]': 'j'
 }
 }
 }
 }
 }
 }
}

This depth can be overridden by passing a depth option to Qs.parse(string, [options]):

Qs.parse('a[b][c][d][e][f][g][h][i]=j', { depth: 1 });
// { a: { b: { '[c][d][e][f][g][h][i]': 'j' } } }

The depth limit helps mitigate abuse when qs is used to parse user input, and it is recommended to keep it a reasonably small number.

For similar reasons, by default qs will only parse up to 1000 parameters. This can be overridden by passing a parameterLimit option:

Qs.parse('a=b&c=d', { parameterLimit: 1 });
// { a: 'b' }

An optional delimiter can also be passed:

Qs.parse('a=b;c=d', { delimiter: ';' });
// { a: 'b', c: 'd' }

Delimiters can be a regular expression too:

Qs.parse('a=b;c=d,e=f', { delimiter: /[;,]/ });
// { a: 'b', c: 'd', e: 'f' }

Parsing Arrays

qs can also parse arrays using a similar [] notation:

Qs.parse('a[]=b&a[]=c');
// { a: ['b', 'c'] }

You may specify an index as well:

Qs.parse('a[1]=c&a[0]=b');
// { a: ['b', 'c'] }

Note that the only difference between an index in an array and a key in an object is that the value between the brackets must be a number
to create an array. When creating arrays with specific indices, qs will compact a sparse array to only the existing values preserving
their order:

Qs.parse('a[1]=b&a[15]=c');
// { a: ['b', 'c'] }

Note that an empty string is also a value, and will be preserved:

Qs.parse('a[]=&a[]=b');
// { a: ['', 'b'] }
Qs.parse('a[0]=b&a[1]=&a[2]=c');
// { a: ['b', '', 'c'] }

qs will also limit specifying indices in an array to a maximum index of 20. Any array members with an index of greater than 20 will
instead be converted to an object with the index as the key:

Qs.parse('a[100]=b');
// { a: { '100': 'b' } }

This limit can be overridden by passing an arrayLimit option:

Qs.parse('a[1]=b', { arrayLimit: 0 });
// { a: { '1': 'b' } }

If you mix notations, qs will merge the two items into an object:

Qs.parse('a[0]=b&a[b]=c');
// { a: { '0': 'b', b: 'c' } }

You can also create arrays of objects:

Qs.parse('a[][b]=c');
// { a: [{ b: 'c' }] }

Stringifying

Qs.stringify(object, [options]);

When stringifying, qs always URI encodes output. Objects are stringified as you would expect:

Qs.stringify({ a: 'b' });
// 'a=b'
Qs.stringify({ a: { b: 'c' } });
// 'a%5Bb%5D=c'

Examples beyond this point will be shown as though the output is not URI encoded for clarity. Please note that the return values in these cases will be URI encoded during real usage.

When arrays are stringified, they are always given explicit indices:

Qs.stringify({ a: ['b', 'c', 'd'] });
// 'a[0]=b&a[1]=c&a[2]=d'

Empty strings and null values will omit the value, but the equals sign (=) remains in place:

Qs.stringify({ a: '' });
// 'a='

Properties that are set to undefined will be omitted entirely:

Qs.stringify({ a: null, b: undefined });
// 'a='

The delimiter may be overridden with stringify as well:

Qs.stringify({ a: 'b', c: 'd' }, { delimiter: ';' });
// 'a=b;c=d'

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/accepts/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

![NPM Version][npm-image] [https://npmjs.org/package/mime-types]
![NPM Downloads][downloads-image] [https://npmjs.org/package/mime-types]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-types]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/mime-types]

The ultimate javascript content-type utility.

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false,
so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus via mime-db [https://github.com/jshttp/mime-db]

		No .define() functionality

Otherwise, the API is compatible.

Install

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://github.com/jshttp/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions...] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/qs/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.2.3 [https://github.com/hapijs/qs/issues?milestone=12&state=closed]

		#37 [https://github.com/hapijs/qs/issues/37] parser discards first empty value in array

		#36 [https://github.com/hapijs/qs/issues/36] Update to lab 4.x

2.2.2 [https://github.com/hapijs/qs/issues?milestone=11&state=closed]

		#33 [https://github.com/hapijs/qs/issues/33] Error when plain object in a value

		#34 [https://github.com/hapijs/qs/issues/34] use Object.prototype.hasOwnProperty.call instead of obj.hasOwnProperty

		#24 [https://github.com/hapijs/qs/issues/24] Changelog? Semver?

2.2.1 [https://github.com/hapijs/qs/issues?milestone=10&state=closed]

		#32 [https://github.com/hapijs/qs/issues/32] account for circular references properly, closes #31

		#31 [https://github.com/hapijs/qs/issues/31] qs.parse stackoverflow on circular objects

2.2.0 [https://github.com/hapijs/qs/issues?milestone=9&state=closed]

		#26 [https://github.com/hapijs/qs/issues/26] Don‘

t use Buffer global if it‘

s not present

		#30 [https://github.com/hapijs/qs/issues/30] Bug when merging non-object values into arrays

		#29 [https://github.com/hapijs/qs/issues/29] Don‘

t call Utils.clone at the top of Utils.merge

		#23 [https://github.com/hapijs/qs/issues/23] Ability to not limit parameters?

2.1.0 [https://github.com/hapijs/qs/issues?milestone=8&state=closed]

		#22 [https://github.com/hapijs/qs/issues/22] Enable using a RegExp as delimiter

2.0.0 [https://github.com/hapijs/qs/issues?milestone=7&state=closed]

		#18 [https://github.com/hapijs/qs/issues/18] Why is there arrayLimit?

		#20 [https://github.com/hapijs/qs/issues/20] Configurable parametersLimit

		#21 [https://github.com/hapijs/qs/issues/21] make all limits optional, for #18, for #20

1.2.2 [https://github.com/hapijs/qs/issues?milestone=6&state=closed]

		#19 [https://github.com/hapijs/qs/issues/19] Don‘

t overwrite null values

1.2.1 [https://github.com/hapijs/qs/issues?milestone=5&state=closed]

		#16 [https://github.com/hapijs/qs/issues/16] ignore non-string delimiters

		#15 [https://github.com/hapijs/qs/issues/15] Close code block

1.2.0 [https://github.com/hapijs/qs/issues?milestone=4&state=closed]

		#12 [https://github.com/hapijs/qs/issues/12] Add optional delim argument

		#13 [https://github.com/hapijs/qs/issues/13] fix #11: flattened keys in array are now correctly parsed

1.1.0 [https://github.com/hapijs/qs/issues?milestone=3&state=closed]

		#7 [https://github.com/hapijs/qs/issues/7] Empty values of a POST array disappear after being submitted

		#9 [https://github.com/hapijs/qs/issues/9] Should not omit equals signs (=) when value is null

		#6 [https://github.com/hapijs/qs/issues/6] Minor grammar fix in README

1.0.2 [https://github.com/hapijs/qs/issues?milestone=2&state=closed]

		#5 [https://github.com/hapijs/qs/issues/5] array holes incorrectly copied into object on large index

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/accepts/node_modules/mime-types/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.3 / 2014-11-09

		deps: mime-db@~1.2.0
		Add new mime types

2.0.2 / 2014-09-28

		deps: mime-db@~1.1.0
		Add new mime types

		Add additional compressible

		Update charsets

2.0.1 / 2014-09-07

		Support Node.js 0.6

2.0.0 / 2014-09-02

		Use mime-db

		Remove .define()

1.0.2 / 2014-08-04

		Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

		Add text/jsx type

1.0.0 / 2014-05-12

		Return false for unknown types

		Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.9.2 / 2014-09-29

		Merge pull request #268 from charlierudolph/cr-lazyMessages

		Merge pull request #269 from charlierudolph/cr-codeCleanup

		Merge pull request #277 from charlierudolph/fix-doc

		Merge pull request #279 from mohayonao/fix-closeTo

		Merge pull request #292 from boneskull/mocha

		resolves #255: upgrade mocha

		Merge pull request #289 from charlierudolph/cr-dryUpCode

		Dry up code

		Merge pull request #275 from DrRataplan/master

		assert: .closeTo() verify value’s type before assertion

		Rewrite pretty-printing HTML elements to prevent throwing internal errors Fixes errors occuring when using a non-native DOM implementation

		Fix assert documentation

		Remove unused argument

		Allow messages to be functions

		Merge pull request #267 from shinnn/master

		Use SVG badge

		Merge pull request #264 from cjthompson/keys_diff

		Show diff for keys assertion

1.9.1 / 2014-03-19

		deps update

		util: [getActual] select actual logic now allows undefined for actual. Closes #183

		docs: [config] make public, express param type

		Merge pull request #251 from romario333/threshold3

		Fix issue #166 - configurable threshold in objDisplay.

		Move configuration options to config.js.

		Merge pull request #233 from Empeeric/master

		Merge pull request #244 from leider/fix_for_contains

		Merge pull request #247 from didoarellano/typo-fixes

		Fix typos

		Merge pull request #245 from lfac-pt/patch-1

		Update exports.version to 1.9.0

		aborting loop on finding

		declaring variable only once

		additional test finds incomplete implementation

		simplified code

		fixing #239 (without changing chai.js)

		ssfi as it should be

		Merge pull request #228 from duncanbeevers/deep_members

		Deep equality check for collection membership

1.9.0 / 2014-01-29

		docs: add contributing.md #238

		assert: .throws() returns thrown error. Closes #185

		Merge pull request #232 from laconbass/assert-throws

		assert: .fail() parameter mismatch. Closes #206

		Merge branch ‘karma-fixes’

		Add karma phantomjs launcher

		Use latest karma and sauce launcher

		Karma tweaks

		Merge pull request #230 from jkroso/include

		Merge pull request #237 from chaijs/coverage

		Add coverage to npmignore

		Remove lib-cov from test-travisci dependents

		Remove the not longer needed lcov reporter

		Test coverage with istanbul

		Remove jscoverage

		Remove coveralls

		Merge pull request #226 from duncanbeevers/add_has

		Avoid error instantiation if possible on assert.throws

		Merge pull request #231 from duncanbeevers/update_copyright_year

		Update Copyright notices to 2014

		handle negation correctly

		add failing test case

		support {a:1,b:2}.should.include({a:1})

		Merge pull request #224 from vbardales/master

		Add has to language chains

		Merge pull request #219 from demands/overwrite_chainable

		return error on throw method to chain on error properties, possibly different from message

		util: store chainable behavior in a __methods object on ctx

		util: code style fix

		util: add overwriteChainableMethod utility (for #215)

		Merge pull request #217 from demands/test_cleanup

		test: make it possible to run utilities tests with –watch

		makefile: change location of karma-runner bin script

		Merge pull request #202 from andreineculau/patch-2

		test: add tests for throwing custom errors

		Merge pull request #201 from andreineculau/patch-1

		test: updated for the new assertion errors

		core: improve message for assertion errors (throw assertion)

1.8.1 / 2013-10-10

		pkg: update deep-eql version

1.8.0 / 2013-09-18

		test: [sauce] add a few more browsers

		Merge branch ‘refactor/deep-equal’

		util: remove embedded deep equal utility

		util: replace embedded deep equal with external module

		Merge branch ‘feature/karma’

		docs: add sauce badge to readme [ci skip]

		test: [sauce] use karma@canary to prevent timeouts

		travis: only run on node 0.10

		test: [karma] use karma phantomjs runner

		Merge pull request #181 from tricknotes/fix-highlight

		Fix highlight for example code

1.7.2 / 2013-06-27

		coverage: add coveralls badge

		test: [coveralls] add coveralls api integration. testing travis-ci integration

		Merge branch ‘master’ of github.com:chaijs/chai

		Merge branch ‘feature/bower’

		Merge pull request #180 from tricknotes/modify-method-title

		Merge pull request #179 from tricknotes/highlight-code-example

		Modify method title to include argument name

		Fix to highlight code example

		bower: granular ignores

1.7.1 / 2013-06-24

		Merge branch ‘feature/bower’. #175

		bower: add json file

		build: browser

1.7.0 / 2013-06-17

		error: remove internal assertion error constructor

		core: [assertion-error] replace internal assertion error with dep

		deps: add chaijs/assertion-error@1.0.0

		docs: fix typo in source file. #174

		Merge pull request #174 from piecioshka/master

		typo

		Merge branch ‘master’ of github.com:chaijs/chai

		pkg: lock mocha/mocha-phantomjs versions (for now)

		Merge pull request #173 from chaijs/inspect-fix

		Fix utils.inspect with custom object-returning inspect()s.

		Merge pull request #171 from Bartvds/master

		replaced tabs with 2 spaces

		added assert.notOk()

		Merge pull request #169 from katsgeorgeek/topics/master

		Fix comparison objects.

1.6.1 / 2013-06-05

		Merge pull request #168 from katsgeorgeek/topics/master

		Add test for different RegExp flags.

		Add test for regexp comparison.

		Downgrade mocha version for fix running Phantom tests.

		Fix comparison equality of two regexps.

		Merge pull request #161 from brandonpayton/master

		Fix documented name for assert interfaces isDefined method

1.6.0 / 2013-04-29

		build: browser

		assert: [(not)include] throw on incompatible haystack. Closes #142

		assert: [notInclude] add assert.notInclude. Closes #158

		browser build

		makefile: force browser build on browser-test

		makefile: use component for browser build

		core: [assertions] remove extraneous comments

		Merge branch ‘master’ of github.com:chaijs/chai

		test: [assert] deep equal ordering

		Merge pull request #153 from NickHeiner/array-assertions

		giving members a no-flag assertion

		Code review comments - changing syntax

		Code review comments

		Adding members and memberEquals assertions for checking for subsets and set equality. Implements chaijs/chai#148.

		Merge pull request #140 from RubenVerborgh/function-prototype

		Restore the call and apply methods of Function when adding a chainable method.

		readme: 2013

		notes: migration notes for deep equal changes

		test: for ever err() there must be a passing version

1.5.0 / 2013-02-03

		docs: add Release Notes for non-gitlog summary of changes.

		lib: update copyright to 2013

		Merge branch ‘refactor/travis’

		makefile: remove test-component for full test run

		pkg: script test now runs make test so travis will test browser

		browser: build

		tests: refactor some tests to support new objDisplay output

		test: [bootstrap] normalize boostrap across all test scenarios

		assertions: refactor some assertions to use objDisplay instead of inspect

		util: [objDisplay] normalize output of functions

		makefile: refactor for full build scenarios

		component: fix build bug where missing util:type file

		assertions: [throw] code cleanup

		Merge branch ‘refactor/typeDetection’

		browser: build

		makefile: chai.js is .PHONY so it builds every time

		test: [expect] add arguments type detection test

		core/assertions: [type] (a/an) refactor to use type detection utility

		util: add cross-browser type detection utility

		Merge branch ‘feature/component’

		browser: build

		component: add component.json file

		makefile: refactor for fine grain control of testing scenarios

		test: add mochaPhantomJS support and component test file

		deps: add component and mocha-phantomjs for browser testing

		ignore: update ignore files for component support

		travis: run for all branches

		Merge branch ‘feature/showDiff’

		test: [Assertion] configruable showDiff flag. Closes #132

		lib: [Assertion] add configurable showDiff flag. #132

		Merge branch ‘feature/saucelabs’

		Merge branch ‘master’ into feature/saucelabs

		browser: build

		support: add mocha cloud runner, client, and html test page

		test: [saucelabs] add auth placeholder

		deps: add mocha-cloud

		Merge pull request #136 from whatthejeff/message_fix

		Merge pull request #138 from timnew/master

		Fix issue #137, test message existence by using message!=null rather than using message

		Fixed backwards negation messages.

		Merge pull request #133 from RubenVerborgh/throw

		Functions throwing strings can reliably be tested.

		Merge pull request #131 from RubenVerborgh/proto

		Cache whether proto is supported.

		Use proto if available.

		Determine the property names to exclude beforehand.

		Merge pull request #126 from RubenVerborgh/eqls

		Add alias eqls for eql.

		Use inherited enumerable properties in deep equality comparison.

		Show inherited properties when inspecting an object.

		Add new getProperties and getEnumerableProperties utils.

		showDiff: force true for equal and eql

1.4.2 / 2012-12-21

		browser build: (object diff support when used with mocha) #106

		test: [display] array test for mocha object diff

		browser: no longer need different AssertionError constructor

1.4.1 / 2012-12-21

		showDiff: force diff for equal and eql. #106

		test: [expect] type null. #122

		Merge pull request #115 from eshao/fix-assert-Throw

		FIX: assert.Throw checks error type/message

		TST: assert.Throw should check error type/message

1.4.0 / 2012-11-29

		pre-release browser build

		clean up index.js to not check for cov, revert package.json to use index.js

		convert tests to use new bootstrap

		refactor testing bootstrap

		use spaces (not tabs). Clean up #114

		Merge pull request #114 from trantorLiu/master

		Add most() (alias: lte) and least() (alias: gte) to the API with new chainers “at” and “of”.

		Change main to ./lib/chai. Fixes #28.

		Merge pull request #104 from connec/deep_equals_circular_references_

		Merge pull request #109 from nnarhinen/patch-1

		Check for ‘actual’ type

		Added support for circular references when checking deep (in)equality.

1.3.0 / 2012-10-01

		browser build w/ folio >= 0.3.4. Closes #99

		add back buffer test for deep equal

		do not write flags to assertion.prototype

		remove buffer test from expect

		browser build

		improve documentation of custom error messages

		Merge branch ‘master’ of git://github.com/Liffft/chai into Liffft-master

		browser build

		improved buffer deep equal checking

		mocha is npm test command

		Cleaning up the js style…

		expect tests now include message pass-through

		packaging up browser-side changes…

		Increasing Throws error message verbosity

		Should syntax: piping message through

		Make globalShould test work in browser too.

		Add a setter for Object.prototype.should. Closes #86.

1.2.0 / 2012-08-07

		Merge branch ‘feature/errmsg’

		browser build

		comment updates for utilities

		tweak objDislay to only kick in if object inspection is too long

		Merge branch ‘master’ into feature/errmsg

		add display sample for error message refactor

		first draft of error message refactor. #93

		add closeTo assertion to assert interface. Closes #89.

		update folio build for better require.js handling. Closes #85

		Merge pull request #92 from paulmillr/topics/add-dom-checks

		Add check for DOM objects.

		browser build

		Merge branch ‘master’ of github.com:chaijs/chai

		bug - getActual not defaulting to assertion subject

		Merge pull request #88 from pwnall/master

		Don’t inspect() assertion arguments if the assertion passes.

1.1.1 / 2012-07-09

		improve commonjs support on browser build

		Merge pull request #83 from tkazec/equals

		Document .equals

		Add .equals as an alias of .equal

		remove unused browser prefix/suffix

		Merge branch ‘feature/folio-build’

		browser build

		using folio to compile

		clean up makefile

		early folio 0.3.x support

1.1.0 / 2012-06-26

		browser build

		Disable “Assertion.includeStack is false” test in IE.

		Use utils.getName for all function inspections.

		Merge pull request #80 from kilianc/closeTo

		fixes #79

		browser build

		expand docs to indicate change of subject for chaining. Closes #78

		add that chain noop

		Merge branch ‘bug/74’

		comments on how to property use length as chain. Closes #74

		tests for length as chainable property. #74

		add support for length as chainable prop/method.

		Merge branch ‘bug/77’

		tests for getPathValue when working with nested arrays. Closes #77

		add getPathValue support for nested arrays

		browser build

		fix bug for missing browser utils

		compile tool aware of new folder layout

		Merge branch ‘refactor/1dot1’

		move core assertions to own file and refactor all using utils

		rearrange folder structure

1.0.4 / 2012-06-03

		Merge pull request #68 from fizker/itself

		Added itself chain.

		simplify error inspections for cross browser compatibility

		fix safari addChainableMethod errors. Closes #69

1.0.3 / 2012-05-27

		Point Travis badge to the right place.

		Make error message for eql/deep.equal more clear.

		Fix .not.deep.equal.

		contributors list

1.0.2 / 2012-05-26

		Merge pull request #67 from chaijs/chaining-and-flags

		Browser build.

		Use addChainableMethod to get away from __proto__ manipulation.

		New addChainableMethod utility.

		Replace getAllFlags with transferFlags utility.

		browser build

		test - get all flags

		utility - get all flags

		Add .mailmap to .npmignore.

		Add a .mailmap file to fix my name in shortlogs.

1.0.1 / 2012-05-18

		browser build

		Fixing “an” vs. “a” grammar in type assertions.

		Uniformize assert interface inline docs.

		Don’t use instanceof for assert.isArray.

		Add deep flag for equality and property value.

		Merge pull request #64 from chaijs/assertion-docs

		Uniformize assertion inline docs.

		Add npm-debug.log to .gitignore.

		no reserved words as actuals. #62

1.0.0 / 2012-05-15

		readme cleanup

		browser build

		utility comments

		removed docs

		update to package.json

		docs build

		comments / docs updates

		plugins app cleanup

		Merge pull request #61 from joliss/doc

		Fix and improve documentation of assert.equal and friends

		browser build

		doc checkpoint - texture

		Update chai-jquery link

		Use defined return value of Assertion extension functions

		Update utility docs

1.0.0-rc3 / 2012-05-09

		Merge branch ‘feature/rc3’

		docs update

		browser build

		assert test conformity for minor refactor api

		assert minor refactor

		update util tests for new add/overwrite prop/method format

		added chai.Assertion.add/overwrite prop/method for plugin toolbox

		add/overwrite prop/method don’t make assumptions about context

		doc test suite

		docs don’t need coverage

		refactor all simple chains into one forEach loop, for clean documentation

		updated npm ignore

		remove old docs

		docs checkpoint - guide styled

		Merge pull request #59 from joliss/doc

		Document how to run the test suite

		don’t need to rebuild docs to view

		dep update

		docs checkpoint - api section

		comment updates for docs

		new doc site checkpoint - plugin directory!

		Merge pull request #57 from kossnocorp/patch-1

		Fix typo: devDependancies → devDependencies

		Using message flag in getMessage util instead of old msg property.

		Adding self to package.json contributors.

		getMessage shouldn’t choke on null/omitted messages.

		return this not necessary in example.

		return this not necessary in example.

		Sinon–Chai has a dash

		updated plugins list for docs

1.0.0-rc2 / 2012-05-06

		Merge branch ‘feature/test-cov’

		browser build

		missing assert tests for ownProperty

		appropriate assert equivalent for expect.to.have.property(key, val)

		reset AssertionError to include full stack

		test for plugin utilities

		overwrite Property and Method now ensure chain

		version notes in readme

1.0.0-rc1 / 2012-05-04

		browser build (rc1)

		assert match/notMatch tests

		assert interface - notMatch, ownProperty, notOwnProperty, ownPropertyVal, ownPropertyNotVal

		cleaner should interface export.

		added chai.Assertion.prototype._obj (getter) for quick access to object flag

		moved almostEqual / almostDeepEqual to stats plugin

		added mocha.opts

		Add test for utils.addMethod

		Fix a typo

		Add test for utils.overwriteMethod

		Fix a typo

		Browser build

		Add undefined assertion

		Add null assertion

		Fix an issue with mocha --watch

		travis no longer tests on node 0.4.x

		removing unnecissary carbon dep

		Merge branch ‘feature/plugins-app’

		docs build

		templates for docs express app for plugin directory

		express app for plugin and static serving

		added web server deps

		Merge pull request #54 from josher19/master

		Remove old test.assert code

		Use util.inspect instead of inspect for deepAlmostEqual and almostEqual

		browser build

		Added almostEqual and deepAlmostEqual to assert test suite.

		bug - context determinants for utils

		dec=0 means rounding, so assert.deepAlmostEqual({pi: 3.1416}, {pi: 3}, 0) is true

		wrong travis link

		readme updates for version information

		travis tests 0.5.x branch as well

		[bug] util addProperty not correctly exporting

		read me version notes

		browser build 1.0.0alpha1

		not using reserved words in internal assertions. #52

		version tick

		clean up redundant tests

		Merge branch ‘refs/heads/0.6.x’

		update version tag in package 1.0.0alpha1

		browser build

		added utility tests to browser specs

		beginning utility testing

		updated utility comments

		utility - overwriteMethod

		utility - overwriteProperty

		utility - addMethod

		utility - addProperty

		missing ;

		contributors list update

		Merge branch ‘refs/heads/0.6.x-docs’ into 0.6.x

		Added guide link to docs. WIP

		Include/contain are now both properties and methods

		Add an alias annotation

		Remove usless function wrapper

		Fix a typo

		A/an are now both properties and methods

		[docs] new site homepage layout / color checkpoint

		Ignore IE-specific error properties.

		Fixing order of error message test.

		New cross-browser getName util.

		Fixing up AssertionError inheritance.

		backup docs

		Add doctypes

		[bug] was still using constructor.name in throw assertion

		[bug] flag Object.create(null) instead of new Object

		[test] browser build

		[refactor] all usage of Assertion.prototype.assert now uses template tags and flags

		[refactor] remove Assertion.prototype.inspect for testable object inspection

		[refactor] object to test is now stored in flag, with ssfi and custom message

		[bug] flag util - don’t return on set

		[docs] comments for getMessage utility

		[feature] getMessage

		[feature] testing utilities

		[refactor] flag doesn’t require call

		Make order of source files well-defined

		Added support for throw(errorInstance).

		Use a foolproof method of grabbing an error’s name.

		Removed constructor.name check from throw.

		disabled stackTrack configuration tests until api is stable again

		first version of line displayed error for node js (unstable)

		refactor core Assertion to use flag utility for negation

		added flag utility

		tests for assert interface negatives. Closed #42

		added assertion negatives that were missing. #42

		Support for expected and actual parameters in assert-style error object

		chai as promised - readme

		Added assert.fail. Closes #40

		better error message for assert.operator. Closes #39

		[refactor] Assertion#property to use getPathValue property

		added getPathValue utility helper

		removed todo about browser build

		version notes

		version bumb 0.6.0

		browser build

		[refactor] browser compile function to replace with `require(‘./error’)’ with ‘require(‘./browser/error’)’

		[feature] browser uses different error.js

		[refactor] error without chai.fail

		Assertion & interfaces use new utils helper export

		[refactor] primary export for new plugin util usage

		added util index.js helper

		added 2012 to copyright headers

		Added DeepEqual assertions

0.5.3 / 2012-04-21

		Merge branch ‘refs/heads/jgonera-oldbrowsers’

		browser build

		fixed reserved names for old browsers in interface/assert

		fixed reserved names for old browsers in interface/should

		fixed: chai.js no longer contains fail()

		fixed reserved names for old browsers in Assertion

		Merge pull request #49 from joliss/build-order

		Make order of source files well-defined

		Merge pull request #43 from zzen/patch-1

		Support for expected and actual parameters in assert-style error object

		chai as promised - readme

0.5.2 / 2012-03-21

		browser build

		Merge branch ‘feature/assert-fail’

		Added assert.fail. Closes #40

		Merge branch ‘bug/operator-msg’

		better error message for assert.operator. Closes #39

		version notes

0.5.1 / 2012-03-14

		chai.fail no longer exists

		Merge branch ‘feature/assertdefined’

		Added asset#isDefined. Closes #37.

		dev docs update for Assertion#assert

0.5.0 / 2012-03-07

		[bug] on inspect of reg on n 0.4.12

		Merge branch ‘bug/33-throws’

		Merge pull request #35 from logicalparadox/empty-object

		browser build

		updated #throw docs

		Assertion#throw should tests updated

		Assertion#throw expect tests

		Should interface supports multiple throw parameters

		Update Assertion#throw to support strings and type checks.

		Add more tests for empty in should.

		Add more tests for empty in expect.

		Merge branch ‘master’ into empty-object

		don’t switch act/exp

		Merge pull request #34 from logicalparadox/assert-operator

		Update the compiled verison.

		Add assert.operator.

		Notes on messages. #22

		browser build

		have been test

		below tests

		Merge branch ‘feature/actexp’

		browser build

		remove unnecessary fail export

		full support for actual/expected where relevant

		Assertion.assert support expected value

		clean up error

		Update the compiled version.

		Add object & sane arguments support to Assertion#empty.

0.4.2 / 2012-02-28

		fix for process not available in browser when used via browserify. Closes #28

		Merge pull request #31 from joliss/doc

		Document that “should” works in browsers other than IE

		Merge pull request #30 from logicalparadox/assert-tests

		Update the browser version of chai.

		Update assert.doesNotThrow test in order to check the use case when type is a string.

		Add test for assert.ifError.

		Falsey -> falsy.

		Full coverage for assert.throws and assert.doesNotThrow.

		Add test for assert.doesNotThrow.

		Add test for assert.throws.

		Add test for assert.length.

		Add test for assert.include.

		Add test for assert.isBoolean.

		Fix the implementation of assert.isNumber.

		Add test for assert.isNumber.

		Add test for assert.isString.

		Add test for assert.isArray.

		Add test for assert.isUndefined.

		Add test for assert.isNotNull.

		Fix assert.isNotNull implementation.

		Fix assert.isNull implementation.

		Add test for assert.isNull.

		Add test for assert.notDeepEqual.

		Add test for assert.deepEqual.

		Add test for assert.notStrictEqual.

		Add test for assert.strictEqual.

		Add test for assert.notEqual.

0.4.1 / 2012-02-26

		Merge pull request #27 from logicalparadox/type-fix

		Update the browser version.

		Add should tests for type checks.

		Add function type check test.

		Add more type checks tests.

		Add test for new Number type check.

		Fix type of actual checks.

0.4.0 / 2012-02-25

		docs and readme for upcoming 0.4.0

		docs generated

		putting coverage and tests for docs in docs/out/support

		make docs

		makefile copy necessary resources for tests in docs

		rename configuration test

		Merge pull request #21 from logicalparadox/close-to

		Update the browser version.

		Update closeTo() docs.

		Add Assertion.closeTo() method.

		Add .closeTo() should test.

		Add .closeTo() expect test.

		Merge pull request #20 from logicalparadox/satisfy

		Update the browser version.

		.. -> () in .satisfy() should test.

		Update example for .satisfy().

		Update the compiled browser version.

		Add Assertion.satisfy() method.

		Add .satisfy() should test.

		Add .satisfy() expect test.

		Merge pull request #19 from logicalparadox/respond-to

		Update the compiled browser version.

		Add respondTo Assertion.

		Add respondTo should test.

		Add respondTo expect test.

		Merge branch ‘feature/coverage’

		mocha coverage support

		doc contributors

		README contributors

0.3.4 / 2012-02-23

		inline comment typos for #15

		Merge branch ‘refs/heads/jeffbski-configErrorStackCompat’

		includeStack documentation for all interfaces

		suite name more generic

		Update test to be compatible with browsers that do not support err.stack

		udpated compiled chai.js and added to browser tests

		Allow inclusion of stack trace for Assert error messages to be configurable

		docs sharing buttons

		sinon-chai link

		doc updates

		read me updates include plugins

0.3.3 / 2012-02-12

		Merge pull request #14 from jfirebaugh/configurable_properties

		Make Assertion.prototype properties configurable

0.3.2 / 2012-02-10

		codex version

		docs

		docs cleanup

0.3.1 / 2012-02-07

		node 0.4.x compat

0.3.0 / 2012-02-07

		Merge branch ‘feature/03x’

		browser build

		remove html/json/headers testign

		regex error.message testing

		tests for using plugins

		Merge pull request #11 from domenic/master

		Make chai.use a no-op if the function has already been used.

0.2.4 / 2012-02-02

		added in past tense switch for been

0.2.3 / 2012-02-01

		try that again

0.2.2 / 2012-02-01

		added been (past of be) alias

0.2.1 / 2012-01-29

		added Throw, with a capital T, as an alias to throw (#7)

0.2.0 / 2012-01-26

		update gitignore for vim *.swp

		Merge branch ‘feature/plugins’

		browser build

		interfaces now work with use

		simple .use function. See #9.

		readme notice on browser compat

0.1.7 / 2012-01-25

		added assert tests to browser test runner

		browser update

		should interface patch for primitives support in FF

		fix isObject() Thanks @milewise

		travis only on branch master

		add instanceof alias instanceOf. #6

		some tests for assert module

0.1.6 / 2012-01-02

		commenting for assert interface

		updated codex dep

0.1.5 / 2012-01-02

		browser tests pass

		type in should.not.equal

		test for should (not) exist

		added should.exist and should.not.exist

		browser uses tdd

		convert tests to tdd

0.1.4 / 2011-12-26

		browser lib update for new assert interface compatiblitiy

		inspect typos

		added strict equal + negatives and ifError

		interface assert had doesNotThrow

		added should tests to browser

		new expect empty tests

		should test browser compat

		Fix typo for instanceof docs. Closes #3 [ci skip]

0.1.3 / 2011-12-18

		much cleaner reporting string on error.

0.1.2 / 2011-12-18

		[docs] for upcoming 0.1.2

		browser version built with pre/suffix … all tests passing

		make / compile now use prefix/suffix correctly

		code clean

		prefix/suffix to wrap browser output to prevent conflicts with other require methods.

		Merge branch ‘feature/should4xcompatibility’

		compile for browser tests.. all pass

		added header/status/html/json

		throw tests

		should.throw & should.not.throw shortcuts

		improved throw type detection and messaging

		contain is now include … keys modifier is now contain

		removed object() test

		removed #respondTo

		Merge branch ‘bug/2’

		replaced defineGetter with defineProperty for all uses

		[docs] change mp tracking code

		docs site updated with assert (TDD) interface

		updated doc comments for assert interface

0.1.1 / 2011-12-16

		docs ready for upcoming 0.1.1

		readme image fixed [ci skip]

		more readme tweaks [ci skip]

		réadmet image fixed [ci skip]

		documentation

		codex locked in version 0.0.5

		more comments to assertions for docs

		assertions fully commented, browser library updated

		adding codex as doc dependancy

		prepping for docs

		assertion component completely commented for documentation

		added exist test

		var expect outside of browser if check

		added keywords to package.json

0.1.0 / 2011-12-15

		failing on purpose successful .. back to normal

		testing travis failure

		assert#arguments getter

		readme typo

		updated README

		added travis and npmignore

		copyright notices … think i got them all

		moved expect interface to own file for consistency

		assert ui deepEqual

		browser tests expect (all working)

		browser version built

		chai.fail (should ui)

		expect tests browser compatible

		tests for should and expect (all pass)

		moved fail to primary export

		should compatibility testing

		within, greaterThan, object, keys,

		Aliases

		Assertion#property now correctly works with negate and undefined values

		error message language matches should

		Assertion#respondTo

		Assertion now uses inspect util

		git ignore node modules

		should is exported

		AssertionError proto from Error.prototype

		add should interface for should.js compatibility

		moved eql to until folder and added inspect from (joyent/node)

		added mocha for testing

		browser build for current api

		multiple .property assertions

		added deep equal from node

0.0.2 / 2011-12-07

		cleaner output on error

		improved exists detection

		package remnant artifact

		empty deep equal

		test browser build

		assertion cleanup

		client compile script

		makefile

		most of the basic assertions

		allow no parameters to assertion error

		name change

		assertion error instance

		main exports: assert() & expect()

		initialize

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/connect-timeout/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

connect-timeout

![NPM Version][npm-image] [https://npmjs.org/package/connect-timeout]
![NPM Downloads][downloads-image] [https://npmjs.org/package/connect-timeout]
![Build Status][travis-image] [https://travis-ci.org/expressjs/timeout]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/timeout?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Times out the request in ms, defaulting to 5000.

Install

$ npm install connect-timeout

API

NOTE This module is not recommend as a “top-level” middleware (i.e. app.use(timeout('5s'))) unless
you take precautions to halt your own middleware processing. See as top-level middleware
for how to use as a top-level middleware.

timeout(time, options)

Returns middleware that times out in time milliseconds. time can also be a string accepted by the ms [https://www.npmjs.org/package/ms#readme] module. On timeout, req will emit "timeout".

options

		respond - If true, the timeout error is passed to next() so that you may customize the response behavior. This error has a .timeout property as well as .status == 503. This defaults to true.

req.clearTimeout()

Clears the timeout on the request.

req.timedout

true if timeout fired; false otherwise.

Examples

as top-level middleware

Because of the way middleware processing works, this once this module passes the request
to the next middleware (which it has to do in order for you to do work), it can no longer
stop the flow, so you must take care to check if the request has timedout before you
continue to act on the request.

var express = require('express');
var timeout = require('connect-timeout');

// example of using this top-level; note the use of haltOnTimedout
// after every middleware; it will stop the request flow on a timeout
var app = express();
app.use(timeout('5s'));
app.use(bodyParser());
app.use(haltOnTimedout);
app.use(cookieParser());
app.use(haltOnTimedout);

// Add your routes here, etc.

function haltOnTimedout(req, res, next){
 if (!req.timedout) next();
}

app.listen(3000);

express 3.x

var express = require('express');
var bodyParser = require('body-parser');
var timeout = require('connect-timeout');

var app = express();
app.post('/save', timeout('5s'), bodyParser.json(), haltOnTimedout, function(req, res, next){
 savePost(req.body, function(err, id){
 if (err) return next(err);
 if (req.timedout) return;
 res.send('saved as id ' + id);
 });
});

function haltOnTimedout(req, res, next){
 if (!req.timedout) next();
}

function savePost(post, cb){
 setTimeout(function(){
 cb(null, ((Math.random()* 40000) >>> 0));
 }, (Math.random()* 7000) >>> 0));
}

app.listen(3000);

connect

var bodyParser = require('body-parser');
var connect = require('connect');
var timeout = require('connect-timeout');

var app = require('connect');
app.use('/save', timeout('5s'), bodyParser.json(), haltOnTimedout, function(req, res, next){
 savePost(req.body, function(err, id){
 if (err) return next(err);
 if (req.timedout) return;
 res.send('saved as id ' + id);
 });
});

function haltOnTimedout(req, res, next){
 if (!req.timedout) next();
}

function savePost(post, cb){
 setTimeout(function(){
 cb(null, ((Math.random()* 40000) >>> 0));
 }, (Math.random()* 7000) >>> 0));
}

app.listen(3000);

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/connect-timeout/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.3.0 / 2014-09-03

		deps: debug@~2.0.0

1.2.2 / 2014-08-10

		deps: on-headers@~1.0.0

1.2.1 / 2014-07-22

		deps: debug@1.0.4

1.2.0 / 2014-07-11

		Accept string for time (converted by ms)

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

1.1.1 / 2014-06-16

		deps: debug@1.0.2

1.1.0 / 2014-04-29

		Add req.timedout property

		Add respond option to constructor

1.0.1 / 2014-04-28

		Clear timer on socket destroy

		Compatible with node.js 0.8

		deps: debug@0.8.1

1.0.0 / 2014-03-05

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/accepts/node_modules/mime-types/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/connect-timeout/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/chalk/node_modules/has-ansi/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

has-ansi [image: Build Status] [https://travis-ci.org/sindresorhus/has-ansi]

Check if a string has ANSI escape codes [http://en.wikipedia.org/wiki/ANSI_escape_code]

Install

$ npm install --save has-ansi

Usage

var hasAnsi = require('has-ansi');

hasAnsi('\u001b[4mcake\u001b[0m');
//=> true

hasAnsi('cake');
//=> false

CLI

$ npm install --global has-ansi

$ has-ansi --help

Usage
 $ has-ansi <string>
 $ echo <string> | has-ansi

Exits with code 0 if input has ANSI escape codes and 1 if not

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/chalk/node_modules/has-ansi/node_modules/ansi-regex/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ansi-regex [image: Build Status] [https://travis-ci.org/sindresorhus/ansi-regex]

Regular expression for matching ANSI escape codes [http://en.wikipedia.org/wiki/ANSI_escape_code]

Install

$ npm install --save ansi-regex

Usage

var ansiRegex = require('ansi-regex');

ansiRegex().test('\u001b[4mcake\u001b[0m');
//=> true

ansiRegex().test('cake');
//=> false

'\u001b[4mcake\u001b[0m'.match(ansiRegex());
//=> ['\u001b[4m', '\u001b[0m']

It’s a function so you can create multiple instances. Regexes with the global flag will have the .lastIndex property changed for each call to methods on the instance. Therefore reusing the instance with multiple calls will not work as expected for .test().

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/chalk/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

[image: chalk]

Terminal string styling done right

[image: Build Status] [https://travis-ci.org/sindresorhus/chalk]
[image:]

colors.js [https://github.com/Marak/colors.js] is currently the most popular string styling module, but it has serious deficiencies like extending String.prototype which causes all kinds of problems [https://github.com/yeoman/yo/issues/68]. Although there are other ones, they either do too much or not enough.

Chalk is a clean and focused alternative.

[image: screenshot]

Why

		Highly performant

		Doesn’t extend String.prototype

		Expressive API

		Ability to nest styles

		Clean and focused

		Auto-detects color support

		Actively maintained

		Used by 1000+ modules [https://npmjs.org/browse/depended/chalk]

Install

$ npm install --save chalk

Usage

Chalk comes with an easy to use composable API where you just chain and nest the styles you want.

var chalk = require('chalk');

// style a string
console.log(chalk.blue('Hello world!'));

// combine styled and normal strings
console.log(chalk.blue('Hello'), 'World' + chalk.red('!'));

// compose multiple styles using the chainable API
console.log(chalk.blue.bgRed.bold('Hello world!'));

// pass in multiple arguments
console.log(chalk.blue('Hello', 'World!', 'Foo', 'bar', 'biz', 'baz'));

// nest styles
console.log(chalk.red('Hello', chalk.underline.bgBlue('world') + '!'));

// nest styles of the same type even (color, underline, background)
console.log(chalk.green('I am a green line ' + chalk.blue('with a blue substring') + ' that becomes green again!'));

Easily define your own themes.

var chalk = require('chalk');
var error = chalk.bold.red;
console.log(error('Error!'));

Take advantage of console.log string substitution [http://nodejs.org/docs/latest/api/console.html#console_console_log_data].

var name = 'Sindre';
console.log(chalk.green('Hello %s'), name);
//=> Hello Sindre

API

chalk.<style>[.<style>...](string, [string...])

Example: chalk.red.bold.underline('Hello', 'world');

Chain styles and call the last one as a method with a string argument. Order doesn’t matter.

Multiple arguments will be separated by space.

chalk.enabled

Color support is automatically detected, but you can override it.

chalk.supportsColor

Detect whether the terminal supports color [https://github.com/sindresorhus/supports-color].

Can be overridden by the user with the flags --color and --no-color.

Used internally and handled for you, but exposed for convenience.

chalk.styles

Exposes the styles as ANSI escape codes [https://github.com/sindresorhus/ansi-styles].

Generally not useful, but you might need just the .open or .close escape code if you’re mixing externally styled strings with yours.

var chalk = require('chalk');

console.log(chalk.styles.red);
//=> {open: '\u001b[31m', close: '\u001b[39m'}

console.log(chalk.styles.red.open + 'Hello' + chalk.styles.red.close);

chalk.hasColor(string)

Check whether a string has color [https://github.com/sindresorhus/has-ansi].

chalk.stripColor(string)

Strip color [https://github.com/sindresorhus/strip-ansi] from a string.

Can be useful in combination with .supportsColor to strip color on externally styled text when it’s not supported.

Example:

var chalk = require('chalk');
var styledString = getText();

if (!chalk.supportsColor) {
 styledString = chalk.stripColor(styledString);
}

Styles

General

		reset

		bold

		dim

		italic (not widely supported)

		underline

		inverse

		hidden

		strikethrough (not widely supported)

Text colors

		black

		red

		green

		yellow

		blue

		magenta

		cyan

		white

		gray

Background colors

		bgBlack

		bgRed

		bgGreen

		bgYellow

		bgBlue

		bgMagenta

		bgCyan

		bgWhite

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/chalk/node_modules/strip-ansi/node_modules/ansi-regex/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ansi-regex [image: Build Status] [https://travis-ci.org/sindresorhus/ansi-regex]

Regular expression for matching ANSI escape codes [http://en.wikipedia.org/wiki/ANSI_escape_code]

Install

$ npm install --save ansi-regex

Usage

var ansiRegex = require('ansi-regex');

ansiRegex().test('\u001b[4mcake\u001b[0m');
//=> true

ansiRegex().test('cake');
//=> false

'\u001b[4mcake\u001b[0m'.match(ansiRegex());
//=> ['\u001b[4m', '\u001b[0m']

It’s a function so you can create multiple instances. Regexes with the global flag will have the .lastIndex property changed for each call to methods on the instance. Therefore reusing the instance with multiple calls will not work as expected for .test().

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/chalk/node_modules/supports-color/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

supports-color [image: Build Status] [https://travis-ci.org/sindresorhus/supports-color]

Detect whether a terminal supports color

Install

$ npm install --save supports-color

Usage

var supportsColor = require('supports-color');

if (supportsColor) {
 console.log('Terminal supports color');
}

It obeys the --color and --no-color CLI flags.

CLI

$ npm install --global supports-color

$ supports-color --help

Usage
 $ supports-color

Exits with code 0 if color is supported and 1 if not

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/chalk/node_modules/ansi-styles/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ansi-styles [image: Build Status] [https://travis-ci.org/sindresorhus/ansi-styles]

ANSI escape codes [http://en.wikipedia.org/wiki/ANSI_escape_code#Colors_and_Styles] for styling strings in the terminal

You probably want the higher-level chalk [https://github.com/sindresorhus/chalk] module for styling your strings.

[image: screenshot]

Install

$ npm install --save ansi-styles

Usage

var ansi = require('ansi-styles');

console.log(ansi.green.open + 'Hello world!' + ansi.green.close);

API

Each style has an open and close property.

Styles

General

		reset

		bold

		dim

		italic (not widely supported)

		underline

		inverse

		hidden

		strikethrough (not widely supported)

Text colors

		black

		red

		green

		yellow

		blue

		magenta

		cyan

		white

		gray

Background colors

		bgBlack

		bgRed

		bgGreen

		bgYellow

		bgBlue

		bgMagenta

		bgCyan

		bgWhite

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/chalk/node_modules/strip-ansi/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

strip-ansi [image: Build Status] [https://travis-ci.org/sindresorhus/strip-ansi]

Strip ANSI escape codes [http://en.wikipedia.org/wiki/ANSI_escape_code]

Install

$ npm install --save strip-ansi

Usage

var stripAnsi = require('strip-ansi');

stripAnsi('\x1b[4mcake\x1b[0m');
//=> 'cake'

CLI

$ npm install --global strip-ansi

$ strip-ansi --help

Usage
 $ strip-ansi <input-file> > <output-file>
 $ cat <input-file> | strip-ansi > <output-file>

Example
 $ strip-ansi unicorn.txt > unicorn-stripped.txt

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/uri-path/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

uri-path

[image: NPM version] [https://npmjs.org/package/uri-path]
[image: Build Status] [https://travis-ci.org/UltCombo/uri-path]
[image: devDependency Status] [https://david-dm.org/UltCombo/uri-path#info=devDependencies]

Convert relative file system paths into safe URI paths

Install

npm install --save uri-path

Usage

var URIpath = require('uri-path');

// Properly encode URI path segments
URIpath('../abc/@#$%¨&()[]{}-_=+ß/môòñ 月 قمر');
// -> '../abc/%40%23%24%25%C2%A8%26()%5B%5D%7B%7D-_%3D%2B%C3%9F/m%C3%B4%C3%B2%C3%B1%20%E6%9C%88%20%D9%82%D9%85%D8%B1'

// Also supports Windows backslash paths
URIpath('a\\b\\c');
// -> 'a/b/c'

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/sinon/node_modules/util/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

util

[image: Build Status] [https://travis-ci.org/defunctzombie/node-util]

node.js util [http://nodejs.org/api/util.html] module as a module

install via npm

npm install util

browser support

This module also works in modern browsers. If you need legacy browser support you will need to polyfill ES5 features.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/chalk/node_modules/escape-string-regexp/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

escape-string-regexp [image: Build Status] [https://travis-ci.org/sindresorhus/escape-string-regexp]

Escape RegExp special characters

Install

$ npm install --save escape-string-regexp

Usage

var escapeStringRegexp = require('escape-string-regexp');

var escapedString = escapeStringRegexp('how much $ for a unicorn?');
//=> how much \$ for a unicorn\?

new RegExp(escapedString);

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/vary/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

vary

[image: NPM Version] [https://www.npmjs.org/package/vary]
[image: Node.js Version] [http://nodejs.org/download/]
[image: Build Status] [https://travis-ci.org/jshttp/vary]
[image: Coverage Status] [https://coveralls.io/r/jshttp/vary]
[image: Gittip] [https://www.gittip.com/dougwilson/]

Manipulate the HTTP Vary header

Install

$ npm install vary

API

var vary = require('vary')

vary(res, field)

Adds the given header field to the Vary response header of res.
This can be a string of a single field, a string of a valid Vary
header, or an array of multiple fields.

This will append the header if not already listed, otherwise leaves
it listed in the current location.

// Append "Origin" to the Vary header of the response
vary(res, 'Origin')

vary.append(header, field)

Adds the given header field to the Vary response header string header.
This can be a string of a single field, a string of a valid Vary header,
or an array of multiple fields.

This will append the header if not already listed, otherwise leaves
it listed in the current location. The new header string is returned.

// Get header string appending "Origin" to "Accept, User-Agent"
vary.append('Accept, User-Agent', 'Origin')

Testing

$ npm test

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/sinon/node_modules/formatio/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

formatio

The cheesy object formatter

 [image:]
Pretty formatting of arbitrary JavaScript values. Currently only supports ascii
formatting, suitable for command-line utilities. Like JSON.stringify, it
formats objects recursively, but unlike JSON.stringify, it can handle
regular expressions, functions, circular objects and more.

formatio is a general-purpose library. It works in browsers (including old
and rowdy ones, like IE6) and Node. It will define itself as an AMD module if
you want it to (i.e. if there’s a define function available).

Running tests

npm test

Or use Buster.JS manually:

node_modules/buster/bin/buster-test --help

formatio.ascii API

formatio.ascii can take any JavaScript object and format it nicely as plain
text. It uses the helper functions described below to format different types of
objects.

formatio.ascii(object)

object can be any kind of object, including DOM elements.

Simple object

var formatio = require("formatio");

var object = { name: "Christian" };
console.log(formatio.ascii(object));

// Outputs:
// { name: "Christian" }

Complex object

var formatio = require("formatio");

var developer = {
 name: "Christian",
 interests: ["Programming", "Guitar", "TV"],

 location: {
 language: "Norway",
 city: "Oslo",

 getLatLon: function getLatLon(callback) {
 // ...
 },

 distanceTo: function distanceTo(location) {
 }
 },

 speak: function () {
 return "Oh hi!";
 }
};

console.log(formatio.ascii(developer));

// Outputs:
// {
// interests: ["Programming", "Guitar", "TV"],
// location: {
// city: "Oslo",
// distanceTo: function distanceTo() {},
// getLatLon: function getLatLon() {},
// language: "Norway"
// },
// name: "Christian",
// speak: function () {}
// }

Custom constructor

If the object to format is not a generic Object object, formatio
displays the type of object (i.e. name of constructor). Set the
excludeConstructors (see below) property to control what constructors to
include in formatted output.

var formatio = require("formatio");

function Person(name) { this.name = name; }

var dude = new Person("Dude");
console.log(format.ascii(dude));

// Outputs:
// [Person] { name: "Dude" }

DOM elements

DOM elements are formatted as abbreviated HTML source. 20 characters of
innerHTML is included, and if the content is longer, it is truncated with
"[...]". Future editions will add the possibility to format nested markup
structures.

var p = document.createElement("p");
p.id = "sample";
p.className = "notice";
p.setAttribute("data-custom", "42");
p.innerHTML = "Hey there, here's some text for ya there buddy";

console.log(formatio.ascii(p));

// Outputs
// <p id="sample" class="notice" data-custom="42">Hey there, here's so[...]</p></code></pre>

formatio.ascii.func(func)

Formats a function like "function [name]() {}". The name is retrieved from
formatio.functionName.

formatio.ascii.array(array)

Formats an array as "[item1, item2, item3]" where each item is formatted
with formatio.ascii. Circular references are represented in the resulting
string as "[Circular]".

formatio.ascii.object(object)

Formats all properties of the object with formatio.ascii. If the object can
be fully represented in 80 characters, it’s formatted in one line. Otherwise,
it’s nicely indented over as many lines as necessary. Circular references are
represented by "[Circular]".

Objects created with custom constructors will be formatted as
"[ConstructorName] { ... }". Set the excludeConstructors property to
control what constructors are included in the output like this.

formatio.ascii.element(element)

Formats a DOM element as HTML source. The tag name is represented in lower-case
and all attributes and their values are included. The element’s content is
included, up to 20 characters. If the length exceeds 20 characters, it’s
truncated with a "[...]".

formatio.functionName(func)

Guesses a function’s name. If the function defines the displayName property
(used by some debugging tools [http://trac.webkit.org/changeset/42478]) it is
preferred. If it is not found, the name property is tried. If no name can be
found this way, an attempt is made to find the function name by looking at the
function’s toString() representation.

formatio.constructorName(object)

Attempts to guess the name of the constructor that created the object. It does
so by getting the name of object.constructor using functionName. If a
name is found, excludeConstructors is consulted. If the constructor name
matches any of these elements, an empty string is returned, otherwise the name
is returned.

formatio.ascii properties

quoteStrings (true)

Whether or not to quote simple strings. When set to false, simple strings
are not quoted. Strings in arrays and objects will still be quoted, but
ascii("Some string") will not gain additional quotes.

excludeConstructors (["Object", /^.$/])

An array of strings and/or regular expressions naming constructors that should
be stripped from the formatted output. The default value skips objects created
by Object and constructors that have one character names (which are
typically used in Object.create shims).

While you can set this property directly on formatio.ascii, it is
recommended to create an instance of formatio.ascii and override the
property on that object.

Strings represent constructor names that should not be represented in the
formatted output. Regular expressions are tested against constructor names
when formatting. If the expression is a match, the constructor name is not
included in the formatted output.

function Person(name) {
 this.name = name;
}

var person = new Person("Chris");
console.log(formatio.ascii(person));

// Outputs
// [Person] { name: "Chris" }

var formatter = Object.create(formatio);
formatter.excludeConstructors = ["Object", /^.$/, "Person"];
console.log(formatter.ascii(person));

// Outputs
// { name: "Chris" }

// Global overwrite, generally not recommended
formatio.excludeConstructors = ["Object", /^.$/, "Person"];
console.log(formatio.ascii(person));

// Outputs
// { name: "Chris" }

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/uri-path/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 See Ult Foundation Contributor’s Guide [https://github.com/UltFoundation/UltStyle.js/blob/master/CONTRIBUTING.md].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/sinon/node_modules/util/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/finalhandler/node_modules/escape-html/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

escape-html

Escape HTML entities

Example

var escape = require('escape-html');
escape(str);

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/finalhandler/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.3.2 / 2014-10-22

		deps: on-finished@~2.1.1
		Fix handling of pipelined requests

0.3.1 / 2014-10-16

		deps: debug@~2.1.0
		Implement DEBUG_FD env variable support

0.3.0 / 2014-09-17

		Terminate in progress response only on error

		Use on-finished to determine request status

0.2.0 / 2014-09-03

		Set X-Content-Type-Options: nosniff header

		deps: debug@~2.0.0

0.1.0 / 2014-07-16

		Respond after request fully read
		prevents hung responses and socket hang ups

		deps: debug@1.0.4

0.0.3 / 2014-07-11

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

0.0.2 / 2014-06-19

		Handle invalid status codes

0.0.1 / 2014-06-05

		deps: debug@1.0.2

0.0.0 / 2014-06-05

		Extracted from connect/express

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/sinon-chai/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Sinon.JS Assertions for Chai

Sinon–Chai provides a set of custom assertions for using the Sinon.JS [http://sinonjs.org/] spy, stub, and mocking framework with the
Chai [http://chaijs.com/] assertion library. You get all the benefits of Chai with all the powerful tools of Sinon.JS.

Instead of using Sinon.JS’s assertions:

sinon.assertCalledWith(mySpy, "foo");

or awkwardly trying to use Chai’s should or expect interfaces on spy properties:

mySpy.calledWith("foo").should.be.ok;
expect(mySpy.calledWith("foo")).to.be.ok;

you can say

mySpy.should.have.been.calledWith("foo");

Assertions

All of your favorite Sinon.JS assertions made their way into Sinon–Chai. We show the should syntax here; the expect
equivalent is also available.

 		Sinon.JS property/method
 		Sinon–Chai assertion

 		called
 		spy.should.have.been.called

 		callCount
 		spy.should.have.callCount(n)

 		calledOnce
 		spy.should.have.been.calledOnce

 		calledTwice
 		spy.should.have.been.calledTwice

 		calledThrice
 		spy.should.have.been.calledThrice

 		calledBefore
 		spy1.should.have.been.calledBefore(spy2)

 		calledAfter
 		spy1.should.have.been.calledAfter(spy2)

 		calledWithNew
 		spy.should.have.been.calledWithNew

 		alwaysCalledWithNew
 		spy.should.always.have.been.calledWithNew

 		calledOn
 		spy.should.have.been.calledOn(context)

 		alwaysCalledOn
 		spy.should.always.have.been.calledOn(context)

 		calledWith
 		spy.should.have.been.calledWith(...args)

 		alwaysCalledWith
 		spy.should.always.have.been.calledWith(...args)

 		calledWithExactly
 		spy.should.have.been.calledWithExactly(...args)

 		alwaysCalledWithExactly
 		spy.should.always.have.been.calledWithExactly(...args)

 		calledWithMatch
 		spy.should.have.been.calledWithMatch(...args)

 		alwaysCalledWithMatch
 		spy.should.always.have.been.calledWithMatch(...args)

 		returned
 		spy.should.have.returned(returnVal)

 		alwaysReturned
 		spy.should.have.always.returned(returnVal)

 		threw
 		spy.should.have.thrown(errorObjOrErrorTypeStringOrNothing)

 		alwaysThrew
 		spy.should.have.always.thrown(errorObjOrErrorTypeStringOrNothing)

For more information on the behavior of each assertion, see
the documentation for the corresponding spy methods [http://sinonjs.org/docs/#spies-api]. These of course work on not only spies, but
individual spy calls, stubs, and mocks as well.

Installation and Usage

Node

Do an npm install sinon-chai to get up and running. Then:

var chai = require("chai");
var sinonChai = require("sinon-chai");

chai.use(sinonChai);

You can of course put this code in a common test fixture file; for an example using Mocha [http://visionmedia.github.com/mocha/], see
the Sinon–Chai tests themselves [https://github.com/domenic/sinon-chai/tree/master/test/].

AMD

Sinon–Chai supports being used as an AMD [https://github.com/amdjs/amdjs-api/wiki/AMD] module, registering itself anonymously (just like Chai). So, assuming you
have configured your loader to map the Chai and Sinon–Chai files to the respective module IDs "chai" and
"sinon-chai", you can use them as follows:

define(function (require, exports, module) {
 var chai = require("chai");
 var sinonChai = require("sinon-chai");

 chai.use(sinonChai);
});

<script> tag

If you include Sinon–Chai directly with a <script> tag, after the one for Chai itself, then it will automatically plug
in to Chai and be ready for use. Note that you’ll want to get the latest browser build of Sinon.JS as well:

<script src="chai.js"></script>
<script src="sinon-chai.js"></script>
<script src="sinon.js"></script>

Ruby on Rails

Thanks to Cymen Vig [https://github.com/cymen], there’s now a Ruby gem [https://github.com/cymen/sinon-chai-rails] of Sinon–Chai that integrates it with the Rails asset pipeline!

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/vary/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-08-10

		Accept valid Vary header string as field

		Add vary.append for low-level string manipulation

		Move to jshttp orgainzation

0.1.0 / 2014-06-05

		Support array of fields to set

0.0.0 / 2014-06-04

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/sinon/node_modules/formatio/node_modules/samsam/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

samsam

[image: Build status] [http://travis-ci.org/busterjs/samsam]

Same same, but different

samsam is a collection of predicate and comparison functions useful for
identifiying the type of values and to compare values with varying degrees of
strictness.

samsam is a general-purpose library with no dependencies. It works in browsers
(including old and rowdy ones, like IE6) and Node. It will define itself as an
AMD module if you want it to (i.e. if there’s a define function available).

samsam was originally extracted from the
referee <http://github.com/busterjs/referee/>_ assertion library, which
ships with the Buster.JS testing framework.

Predicate functions

isArguments(object)

Returns true if object is an arguments object, false otherwise.

isNegZero(value)

Returns true if value is -0.

isElement(object)

Returns true if object is a DOM element node. Unlike
Underscore.js/lodash, this function will return false if object is an
element-like object, i.e. a regular object with a nodeType property that
holds the value 1.

###isDate(object)

Returns true if the object is a Date, or date-like. Duck typing of date
objects work by checking that the object has a getTime function whose return
value equals the return value from the object’s valueOf.

Comparison functions

###identical(x, y)

Strict equality check according to EcmaScript Harmony'segal`.

From the Harmony wiki:

An egal function simply makes available the internal SameValue function
from section 9.12 of the ES5 spec. If two values are egal, then they are not
observably distinguishable.

identical returns true when === is true, except for -0 and
+0, where it returns false. Additionally, it returns true when
NaN is compared to itself.

deepEqual(obj1, obj2)

Deep equal comparison. Two values are “deep equal” if:

		They are identical

		They are both date objects representing the same time

		They are both arrays containing elements that are all deepEqual

		They are objects with the same set of properties, and each property
in obj1 is deepEqual to the corresponding property in obj2

match(object, matcher)

Partial equality check. Compares object with matcher according a wide set of
rules:

String matcher

In its simplest form, match performs a case insensitive substring match.
When the matcher is a string, object is converted to a string, and the
function returns true if the matcher is a case-insensitive substring of
object as a string.

samsam.match("Give me something", "Give"); //true
samsam.match("Give me something", "sumptn"); // false
samsam.match({ toString: function () { return "yeah"; } }, "Yeah!"); // true

The last example is not symmetric. When the matcher is a string, the object
is coerced to a string - in this case using toString. Changing the order of
the arguments would cause the matcher to be an object, in which case different
rules apply (see below).

Boolean matcher

Performs a strict (i.e. ===) match with the object. So, only true
matches true, and only false matches false.

Regular expression matcher

When the matcher is a regular expression, the function will pass if
object.test(matcher) is true. match is written in a generic way, so
any object with a test method will be used as a matcher this way.

samsam.match("Give me something", /^[a-z\s]$/i); // true
samsam.match("Give me something", /[0-9]/); // false
samsam.match({ toString: function () { return "yeah!"; } }, /yeah/); // true
samsam.match(234, /[a-z]/); // false

Number matcher

When the matcher is a number, the assertion will pass if object == matcher.

samsam.match("123", 123); // true
samsam.match("Give me something", 425); // false
samsam.match({ toString: function () { return "42"; } }, 42); // true
samsam.match(234, 1234); // false

Function matcher

When the matcher is a function, it is called with object as its only
argument. match returns true if the function returns true. A strict
match is performed against the return value, so a boolean true is required,
truthy is not enough.

// true
samsam.match("123", function (exp) {
 return exp == "123";
});

// false
samsam.match("Give me something", function () {
 return "ok";
});

// true
samsam.match({
 toString: function () {
 return "42";
 }
}, function () { return true; });

// false
samsam.match(234, function () {});

Object matcher

As mentioned above, if an object matcher defines a test method, match
will return true if matcher.test(object) returns truthy.

If the matcher does not have a test method, a recursive match is performed. If
all properties of matcher matches corresponding properties in object,
match returns true. Note that the object matcher does not care if the
number of properties in the two objects are the same - only if all properties in
the matcher recursively matches ones in object.

// true
samsam.match("123", {
 test: function (arg) {
 return arg == 123;
 }
});

// false
samsam.match({}, { prop: 42 });

// true
samsam.match({
 name: "Chris",
 profession: "Programmer"
}, {
 name: "Chris"
});

// false
samsam.match(234, { name: "Chris" });

DOM elements

match can be very helpful when comparing DOM elements, because it allows
you to compare several properties with one call:

var el = document.getElementById("myEl");

samsam.match(el, {
 tagName: "h2",
 className: "item",
 innerHTML: "Howdy"
});

Changelog

1.1.1 (26.03.2014)

		Make isArguments work with arguments from "strict mode" functions [https://github.com/busterjs/samsam/commit/72903613af90f39474f8388ed8957eaea4cf46ae]

		Fix type error for nested object in function match [https://github.com/busterjs/samsam/commit/9d3420a11e9b3c65559945e60ca56980820db20f]

		Fix for issue #366, Assertion match fails with data attribute [https://github.com/busterjs/buster/issues/366]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/pause/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

pause

Pause streams...

License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/accepts/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.1.3 / 2014-11-09

		deps: mime-types@~2.0.3
		deps: mime-db@~1.2.0

1.1.2 / 2014-10-14

		deps: negotiator@0.4.9
		Fix error when media type has invalid parameter

1.1.1 / 2014-09-28

		deps: mime-types@~2.0.2
		deps: mime-db@~1.1.0

		deps: negotiator@0.4.8
		Fix all negotiations to be case-insensitive

		Stable sort preferences of same quality according to client order

1.1.0 / 2014-09-02

		update mime-types

1.0.7 / 2014-07-04

		Fix wrong type returned from type when match after unknown extension

1.0.6 / 2014-06-24

		deps: negotiator@0.4.7

1.0.5 / 2014-06-20

		fix crash when unknown extension given

1.0.4 / 2014-06-19

		use mime-types

1.0.3 / 2014-06-11

		deps: negotiator@0.4.6
		Order by specificity when quality is the same

1.0.2 / 2014-05-29

		Fix interpretation when header not in request

		deps: pin negotiator@0.4.5

1.0.1 / 2014-01-18

		Identity encoding isn’t always acceptable

		deps: negotiator@~0.4.0

1.0.0 / 2013-12-27

		Genesis

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Chai Contribution Guidelines

We like to encourage you to contribute to the Chai.js repository. This should be as easy as possible for you but there are a few things to consider when contributing. The following guidelines for contribution should be followed if you want to submit a pull request or open an issue.

Following these guidelines helps to communicate that you respect the time of the developers managing and developing this open source project. In return, they should reciprocate that respect in addressing your issue or assessing patches and features.

Table of Contents

		TLDR;

		Contributing
		Bug Reports

		Feature Requests

		Pull Requests

		Support
		Resources

		Core Contributors

[bookmark: tldr]

TLDR;

		Creating an Issue or Pull Request requires a GitHub [http://github.com] account.

		Issue reports should be clear, concise and reproducible. Check to see if your issue has already been resolved in the master branch or already reported in Chai’s GitHub Issue Tracker [https://github.com/chaijs/chai/issues].

		Pull Requests must adhere to strict coding style guidelines [https://github.com/chaijs/chai/wiki/Chai-Coding-Style-Guide].

		In general, avoid submitting PRs for new Assertions without asking core contributors first. More than likely it would be better implemented as a plugin.

		Additional support is available via the Google Group [http://groups.google.com/group/chaijs] or on irc.freenode.net#chaijs.

		IMPORTANT: By submitting a patch, you agree to allow the project owner to license your work under the same license as that used by the project.

[bookmark: contributing]

Contributing

The issue tracker is the preferred channel for bug reports,
feature requests and submitting pull
requests, but please respect the following restrictions:

		Please do not use the issue tracker for personal support requests (use
Google Group [https://groups.google.com/forum/#!forum/chaijs] or IRC).

		Please do not derail or troll issues. Keep the discussion on topic and
respect the opinions of others

[bookmark: bugs]

Bug Reports

A bug is a demonstrable problem that is caused by the code in the repository.

Guidelines for bug reports:

		Use the GitHub issue search —

 check if the issue has already been reported.

		Check if the issue has been fixed —

 try to reproduce it using the latest master or development branch in the repository.

		Isolate the problem —

 create a test case to demonstrate your issue. Provide either a repo, gist, or code sample to demonstrate you problem.

A good bug report shouldn’t leave others needing to chase you up for more information. Please try to be as detailed as possible in your report. What is your environment? What steps will reproduce the issue? What browser(s) and/or Node.js versions experience the problem? What would you expect to be the outcome? All these details will help people to fix any potential bugs.

Example:

Short and descriptive example bug report title

A summary of the issue and the browser/OS environment in which it occurs. If suitable, include the steps required to reproduce the bug.

		This is the first step

		This is the second step

		Further steps, etc.

<url> - a link to the reduced test case OR

expect(a).to.equal('a');
// code sample

Any other information you want to share that is relevant to the issue being reported. This might include the lines of code that you have identified as causing the bug, and potential solutions (and your opinions on their merits).

[bookmark: features]

Feature Requests

Feature requests are welcome. But take a moment to find out whether your idea fits with the scope and aims of the project. It’s up to you to make a strong case to convince the project’s developers of the merits of this feature. Please provide as much detail and context as possible.

Furthermore, since Chai.js has a robust plugin API [http://chaijs.com/guide/plugins/], we encourage you to publish new Assertions as plugins. If your feature is an enhancement to an existing Assertion, please propose your changes as an issue prior to opening a pull request. If the core Chai.js contributors feel your plugin would be better suited as a core assertion, they will invite you to open a PR in chaijs/chai [https://github.com/chaijs/chai].

[bookmark: pull-requests]

Pull Requests

		PRs for new core-assertions are advised against.

		PRs for core-assertion bug fixes are always welcome.

		PRs for enhancing the interfaces are always welcome.

		PRs that increase test coverage are always welcome.

		PRs are scrutinized for coding-style.

Good pull requests - patches, improvements, new features - are a fantastic help. They should remain focused in scope and avoid containing unrelated commits.

Please ask first before embarking on any significant pull request (e.g. implementing features, refactoring code), otherwise you risk spending a lot of time working on something that the project’s developers might not want to merge into the project.

Please adhere to the coding conventions used throughout a project (indentation, accurate comments, etc.) and any other requirements (such as test coverage). Please review the Chai.js Coding Style Guide [https://github.com/chaijs/chai/wiki/Chai-Coding-Style-Guide].

Follow this process if you’d like your work considered for inclusion in the project:

		Fork [http://help.github.com/fork-a-repo/] the project, clone your fork, and configure the remotes:

Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/<repo-name>
Navigate to the newly cloned directory
cd <repo-name>
Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/<upstream-owner>/<repo-name>

		If you cloned a while ago, get the latest changes from upstream:

git checkout <dev-branch>
git pull upstream <dev-branch>

		Create a new topic branch (off the main project development branch) to contain your feature, change, or fix:

git checkout -b <topic-branch-name>

		Commit your changes in logical chunks. Use Git’s interactive rebase [https://help.github.com/articles/interactive-rebase] feature to tidy up your commits before making them public.

		Locally merge (or rebase) the upstream development branch into your topic branch:

git pull [--rebase] upstream <dev-branch>

		Push your topic branch up to your fork:

git push origin <topic-branch-name>

		Open a Pull Request [https://help.github.com/articles/using-pull-requests/] with a clear title and description.

IMPORTANT: By submitting a patch, you agree to allow the project owner to license your work under the same license as that used by the project.

[bookmark: support]

Support

[bookmark: resources]

Resources

For most of the documentation you are going to want to visit ChaiJS.com [http://chaijs.com].

		Getting Started Guide [http://chaijs.com/guide/]

		API Reference [http://chaijs.com/api/]

		Plugins [http://chaijs.com/plugins/]

Alternatively, the wiki [https://github.com/chaijs/chai/wiki] might be what you are looking for.

		Chai Coding Style Guide [https://github.com/chaijs/chai/wiki/Chai-Coding-Style-Guide]

		Third-party Resources [https://github.com/chaijs/chai/wiki/Third-Party-Resources]

Or finally, you may find a core-contributor or like-minded developer in any of our support channels.

		IRC: irc.freenode.org #chaijs

		Mailing List / Google Group [https://groups.google.com/forum/#!forum/chaijs]

[bookmark: contributors]

Core Contributors

Feel free to reach out to any of the core-contributors with you questions or concerns. We will do our best to respond in a timely manner.

		Jake Luer
		GH: @logicalparadox [https://github.com/logicalparadox]

		TW: @jakeluer [http://twitter.com/jakeluer]

		IRC: logicalparadox

		Veselin Todorov
		GH: @vesln [https://github.com/vesln/]

		TW: @vesln [http://twitter.com/vesln]

		IRC: vesln

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/basic-auth-connect/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

simgr - Simple Image Resizer [image: Build Status] [https://travis-ci.org/expressjs/basic-auth-connect]

Connect’s Basic Auth middleware in its own module. This module is considered deprecated. You should instead create your own middleware with basic-auth [https://github.com/visionmedia/node-basic-auth].

API

var basicAuth = require('basic-auth-connect');

Sorry, couldn’t think of a more clever name.

Simple username and password

connect()
.use(basicAuth('username', 'password'));

Callback verification

connect()
.use(basicAuth(function(user, pass){
 return 'tj' == user && 'wahoo' == pass;
}))

Async callback verification, accepting fn(err, user).

connect()
.use(basicAuth(function(user, pass, fn){
 User.authenticate({ user: user, pass: pass }, fn);
}))

License

The MIT License (MIT)

Copyright (c) 2013 Jonathan Ong me@jongleberry.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/finalhandler/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

finalhandler

![NPM Version][npm-image] [https://npmjs.org/package/finalhandler]
![NPM Downloads][downloads-image] [https://npmjs.org/package/finalhandler]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/pillarjs/finalhandler]
![Test Coverage][coveralls-image] [https://coveralls.io/r/pillarjs/finalhandler?branch=master]

Node.js function to invoke as the final step to respond to HTTP request.

Installation

$ npm install finalhandler

API

var finalhandler = require('finalhandler')

finalhandler(req, res, [options])

Returns function to be invoked as the final step for the given req and res.
This function is to be invoked as fn(err). If err is falsy, the handler will
write out a 404 response to the res. If it is truthy, an error response will
be written out to the res, and res.statusCode is set from err.status.

The final handler will also unpipe anything from req when it is invoked.

options.env

By default, the environment is determined by NODE_ENV variable, but it can be
overridden by this option.

options.onerror

Provide a function to be called with the err when it exists. Can be used for
writing errors to a central location without excessive function generation. Called
as onerror(err, req, res).

Examples

always 404

var finalhandler = require('finalhandler')
var http = require('http')

var server = http.createServer(function (req, res) {
 var done = finalhandler(req, res)
 done()
})

server.listen(3000)

perform simple action

var finalhandler = require('finalhandler')
var fs = require('fs')
var http = require('http')

var server = http.createServer(function (req, res) {
 var done = finalhandler(req, res)

 fs.readFile('index.html', function (err, buf) {
 if (err) return done(err)
 res.setHeader('Content-Type', 'text/html')
 res.end(buf)
 })
})

server.listen(3000)

use with middleware-style functions

var finalhandler = require('finalhandler')
var http = require('http')
var serveStatic = require('serve-static')

var serve = serveStatic('public')

var server = http.createServer(function (req, res) {
 var done = finalhandler(req, res)
 serve(req, res, done)
})

server.listen(3000)

keep log of all errors

var finalhandler = require('finalhandler')
var fs = require('fs')
var http = require('http')

var server = http.createServer(function (req, res) {
 var done = finalhandler(req, res, {onerror: logerror})

 fs.readFile('index.html', function (err, buf) {
 if (err) return done(err)
 res.setHeader('Content-Type', 'text/html')
 res.end(buf)
 })
})

server.listen(3000)

function logerror(err) {
 console.error(err.stack || err.toString())
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai-as-promised/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

[image: Promises/A+ logo]

Chai Assertions for Promises

Chai as Promised extends Chai [http://chaijs.com/] with a fluent language for asserting facts about promises [http://www.slideshare.net/domenicdenicola/callbacks-promises-and-coroutines-oh-my-the-evolution-of-asynchronicity-in-javascript].

Instead of manually wiring up your expectations to a promise’s fulfilled and rejected handlers:

doSomethingAsync().then(
 function (result) {
 result.should.equal("foo");
 done();
 },
 function (err) {
 done(err);
 }
);

you can write code that expresses what you really mean:

doSomethingAsync().should.eventually.equal("foo").notify(done);

or if you have a testing framework that follows the UncommonJS specification [http://kriskowal.github.com/uncommonjs/tests/specification] for handling promises,
simply

return doSomethingAsync().should.eventually.equal("foo");

How to Use

should/expect Interface

The most powerful extension provided by Chai as Promised is the eventually property. With it, you can transform any
existing Chai assertion into one that acts on a promise:

(2 + 2).should.equal(4);

// becomes
return promiseFor(2 + 2).should.eventually.equal(4);

expect({ foo: "bar" }).to.have.property("foo");

// becomes
return expect(promiseFor({ foo: "bar" })).to.eventually.have.property("foo");

There are also a few promise-specific extensions (with the usual expect equivalents also available):

return promise.should.be.fulfilled;
return promise.should.eventually.deep.equal("foo");
return promise.should.become("foo"); // same as `.eventually.deep.equal`
return promise.should.be.rejected;
return promise.should.be.rejectedWith(Error); // other variants of Chai's `throw` assertion work too.

assert Interface

As with the should/expect interface, Chai as Promised provides an eventually extender to chai.assert, allowing
any existing Chai assertion to be used on a promise:

assert.equal(2 + 2, 4, "This had better be true");

// becomes
return assert.eventually.equal(promiseFor(2 + 2), 4, "This had better be true, eventually");

And there are, of course, promise-specific extensions:

return assert.isFulfilled(promise, "optional message");

return assert.becomes(promise, "foo", "optional message");
return assert.doesNotBecome(promise, "foo", "optional message");

return assert.isRejected(promise, "optional message");
return assert.isRejected(promise, Error, "optional message");
return assert.isRejected(promise, /error message matcher/, "optional message");

Progress Callbacks

Chai as Promised does not have any intrinsic support for testing promise progress callbacks. The properties you would
want to test are probably much better suited to a library like Sinon.JS [http://sinonjs.org/], perhaps in conjunction with
Sinon–Chai [https://github.com/domenic/sinon-chai]:

var progressSpy = sinon.spy();

return promise.then(null, null, progressSpy).then(function () {
 progressSpy.should.have.been.calledWith("33%");
 progressSpy.should.have.been.calledWith("67%");
 progressSpy.should.have.been.calledThrice;
});

Working with Non-Promise–Friendly Test Runners

As mentioned, many test runners (*cough* Mocha [https://github.com/visionmedia/mocha/pull/329] *cough* … but see Mocha as Promised [https://github.com/domenic/mocha-as-promised]!)
don’t support the nice return style shown above. Instead, they take a callback indicating when the asynchronous test
run is over. Chai as Promised adapts to this situation with the notify method, like so:

it("should be fulfilled", function (done) {
 promise.should.be.fulfilled.and.notify(done);
});

it("should be rejected", function (done) {
 otherPromise.should.be.rejected.and.notify(done);
});

In these examples, if the conditions are not met, the test runner will receive an error of the form "expected promise to be fulfilled but it was rejected with [Error: error message]", or "expected promise to be rejected but it was fulfilled."

There’s another form of notify which is useful in certain situations, like doing assertions after a promise is
complete. For example:

it("should change the state", function (done) {
 otherState.should.equal("before");
 promise.should.be.fulfilled.then(function () {
 otherState.should.equal("after");
 }).should.notify(done);
});

Notice how .notify(done) is hanging directly off of .should, instead of appearing after a promise assertion. This
indicates to Chai as Promised that it should pass fulfillment or rejection directly through to the testing framework.
Thus, the above code will fail with a Chai as Promised error ("expected promise to be fulfilled…") if promise is
rejected, but will fail with a simple Chai error (expected "before" to equal "after") if otherState does not change.

Another example of where this can be useful is when performing assertions on multiple promises:

it("should all be well", function (done) {
 Q.all([
 promiseA.should.become("happy"),
 promiseB.should.eventually.have.property("fun times"),
 promiseC.should.be.rejectedWith(TypeError, "only joyful types are allowed")
]).should.notify(done);
});

This will pass any failures of the individual promise assertions up to the test framework, instead of wrapping them in
an "expected promise to be fulfilled…" message as would happen if you did
Q.all([…]).should.be.fulfilled.and.notify(done).

Customizing Output Promises

By default, the promises returned by Chai as Promised’s assertions are regular Chai assertion objects, extended with
a single then method derived from the input promise. To change this behavior, for instance to output a promise with
more useful sugar methods such as are found in most promise libraries, you can override
chaiAsPromised.transferPromiseness. Here’s an example that transfer’s Q’s finally and done methods:

chaiAsPromised.transferPromiseness = function (assertion, promise) {
 assertion.then = promise.then.bind(promise); // this is all you get by default
 assertion.finally = promise.finally.bind(promise);
 assertion.done = promise.done.bind(promise);
};

Compatibility

Chai as Promised is compatible with all promises following the Promises/A+ specification [http://promises-aplus.github.com/promises-spec/]. Notably, jQuery’s
so-called “promises” are not up to spec, and Chai as Promised will not work with them. In particular, Chai as Promised
makes extensive use of the standard transformation behavior [https://gist.github.com/3889970#that-second-paragraph] of then, which jQuery does not support.

Installation and Setup

Node

Do an npm install chai-as-promised to get up and running. Then:

var chai = require("chai");
var chaiAsPromised = require("chai-as-promised");

chai.use(chaiAsPromised);

You can of course put this code in a common test fixture file; for an example using Mocha [http://visionmedia.github.com/mocha/], see
the Chai as Promised tests themselves [https://github.com/domenic/chai-as-promised/tree/master/test/].

AMD

Chai as Promised supports being used as an AMD [https://github.com/amdjs/amdjs-api/wiki/AMD] module, registering itself anonymously (just like Chai). So,
assuming you have configured your loader to map the Chai and Chai as Promised files to the respective module IDs
"chai" and "chai-as-promised", you can use them as follows:

define(function (require, exports, module) {
 var chai = require("chai");
 var chaiAsPromised = require("chai-as-promised");

 chai.use(chaiAsPromised);
});

<script> tag

If you include Chai as Promised directly with a <script> tag, after the one for Chai itself, then it will
automatically plug in to Chai and be ready for use:

<script src="chai.js"></script>
<script src="chai-as-promised.js"></script>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/fresh/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

fresh

![NPM Version][npm-image] [https://npmjs.org/package/fresh]
![NPM Downloads][downloads-image] [https://npmjs.org/package/fresh]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/fresh]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/fresh?branch=master]

HTTP response freshness testing

Installation

$ npm install fresh

API

var fresh = require('fresh')

fresh(req, res)

Check freshness of req and res headers.

When the cache is “fresh” true is returned,
otherwise false is returned to indicate that
the cache is now stale.

Example

var req = { 'if-none-match': 'tobi' };
var res = { 'etag': 'luna' };
fresh(req, res);
// => false

var req = { 'if-none-match': 'tobi' };
var res = { 'etag': 'tobi' };
fresh(req, res);
// => true

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai-things/LICENSE.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Licensed under the MIT License

Copyright (c) 2013 Ruben Verborgh

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/fresh/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.2.4 / 2014-09-07

		Support Node.js 0.6

0.2.3 / 2014-09-07

		Move repository to jshttp

0.2.2 / 2014-02-19

		Revert “Fix for blank page on Safari reload”

0.2.1 / 2014-01-29

		fix: support max-age=0 for end-to-end revalidation

0.2.0 / 2013-08-11

		fix: return false for no-cache

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai-jquery/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

master

1.2.3

		Don’t silently ignore incorrect be usage (#39)

1.2.2

		Improve failure messages for html, text, and value assertions

1.2.1

		Fix chainability of contain

1.2.0

		Add enabled assertion

		Add prop assertion

1.1.2

		Support for IE and other implementations without proto.

1.1.1

		Support inspect with 0 depth

		Set jQuery as an AMD dependency

1.1.0

		Fix override of ‘have’ so it only returns the have function when called on a
non-jQuery object.

		Fix data assertion chaining

		Added css and empty assertions

1.0.0

		Compatibility with chai 1.0.0

		Breaking change: the contains assertion now uses jQuery’s :contains
selector. The previous behavior of the contains assertion is now handled by
the have assertion, corresponding to jQuery’s .has() function.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/parseurl/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

parseurl

[image: NPM version] [http://badge.fury.io/js/parseurl]
[image: Build Status] [https://travis-ci.org/expressjs/parseurl]
[image: Coverage Status] [https://coveralls.io/r/expressjs/parseurl]

Parse a URL with memoization.

Install

$ npm install parseurl

API

var parseurl = require('parseurl')

parseurl(req)

Parse the URL of the given request object (looks at the req.url property)
and return the result. The result is the same as url.parse in Node.js core.
Calling this function multiple times on the same req where req.url does
not change will return a cached parsed object, rather than parsing again.

parseurl.original(req)

Parse the original URL of the given request object and return the result.
This works by trying to parse req.originalUrl if it is a string, otherwise
parses req.url. The result is the same as url.parse in Node.js core.
Calling this function multiple times on the same req where req.originalUrl
does not change will return a cached parsed object, rather than parsing again.

Benchmark

$ npm run-script bench

> parseurl@1.3.0 bench nodejs-parseurl
> node benchmark/index.js

> node benchmark/fullurl.js

 Parsing URL "http://localhost:8888/foo/bar?user=tj&pet=fluffy"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 1,290,780 ops/sec ±0.46% (195 runs sampled)
 nativeurl x 56,401 ops/sec ±0.22% (196 runs sampled)
 parseurl x 55,231 ops/sec ±0.22% (194 runs sampled)

> node benchmark/pathquery.js

 Parsing URL "/foo/bar?user=tj&pet=fluffy"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 1,986,668 ops/sec ±0.27% (190 runs sampled)
 nativeurl x 98,740 ops/sec ±0.21% (195 runs sampled)
 parseurl x 2,628,171 ops/sec ±0.36% (195 runs sampled)

> node benchmark/samerequest.js

 Parsing URL "/foo/bar?user=tj&pet=fluffy" on same request object

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 2,184,468 ops/sec ±0.40% (194 runs sampled)
 nativeurl x 99,437 ops/sec ±0.71% (194 runs sampled)
 parseurl x 10,498,005 ops/sec ±0.61% (186 runs sampled)

> node benchmark/simplepath.js

 Parsing URL "/foo/bar"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 4,535,825 ops/sec ±0.27% (191 runs sampled)
 nativeurl x 98,769 ops/sec ±0.54% (191 runs sampled)
 parseurl x 4,164,865 ops/sec ±0.34% (192 runs sampled)

> node benchmark/slash.js

 Parsing URL "/"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 4,908,405 ops/sec ±0.42% (191 runs sampled)
 nativeurl x 100,945 ops/sec ±0.59% (188 runs sampled)
 parseurl x 4,333,208 ops/sec ±0.27% (194 runs sampled)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/sinon/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Sinon.JS

[image: Build status] [http://travis-ci.org/cjohansen/Sinon.JS]

Standalone and test framework agnostic JavaScript test spies, stubs and mocks.

Installation

via npm (node package manager) [http://github.com/isaacs/npm]

$ npm install sinon

via NuGet (package manager for Microsoft development platform) [https://www.nuget.org/packages/SinonJS]

Install-Package SinonJS

or install via git by cloning the repository and including sinon.js
in your project, as you would any other third party library.

Don’t forget to include the parts of Sinon.JS that you want to use as well
(i.e. spy.js).

Usage

See the sinon project homepage [http://sinonjs.org/]

Goals

		No global pollution

		Easy to use

		Require minimal “integration”

		Easy to embed seamlessly with any testing framework

		Easily fake any interface

		Ship with ready-to-use fakes for XMLHttpRequest, timers and more

Contribute?

Pick an issue [http://github.com/cjohansen/Sinon.JS/issues] to fix, or pitch
new features. To avoid wasting your time, please ask for feedback on feature
suggestions either with an issue [http://github.com/cjohansen/Sinon.JS/issues/new]
or on the mailing list [http://groups.google.com/group/sinonjs].

Run the tests

The Sinon.JS developer environment requires Node/NPM. Please make sure you have
Node installed, and install Sinon’s dependencies:

$ npm install

On Node

$ npm test

In the browser

Open test/sinon.html in a browser. To test against a built distribution, first
make sure you have a build (requires Ruby [https://www.ruby-lang.org/en/] and Juicer [http://rubygems.org/gems/juicer]):

$./build

Then open test/sinon-dist.html in a browser.

If the build script is unable to find Juicer, try

$ ruby -rubygems build

Some tests needs working XHR to pass. To run the tests over an HTTP server, run

$ node_modules/http-server/bin/http-server

Then open localhost:8080/test/sinon.html [http://localhost:8080/test/sinon.html]
in a browser.

On Rhino

The Rhino tests are currently out of commission (pending update after switch to
Buster.JS for tests).

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/parseurl/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.3.0 / 2014-08-09

		Add parseurl.original for parsing req.originalUrl with fallback

		Return undefined if req.url is undefined

1.2.0 / 2014-07-21

		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

1.1.3 / 2014-07-08

		Fix typo

1.1.2 / 2014-07-08

		Seriously fix Node.js 0.8 compatibility

1.1.1 / 2014-07-08

		Fix Node.js 0.8 compatibility

1.1.0 / 2014-07-08

		Incorporate URL href-only parse fast-path

1.0.1 / 2014-03-08

		Add missing require

1.0.0 / 2014-03-08

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-chai-plugins/node_modules/chai-things/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Chai Things

Chai Things adds support to Chai [http://chaijs.com/] for assertions on array elements.

Examples

Something

Use the something property on an array to test whether the assertion holds for one of its elements.

// Although they are equal, two different { a: 'cat' } objects are not the same
[{ a: 'cat' }, { a: 'dog' }].should.not.include({ a: 'cat' })
// Chai Things allows us to test deep equality on one of the elements
[{ a: 'cat' }, { a: 'dog' }].should.include.something.that.deep.equals({ a: 'cat' })
// If the test fails, we get a descriptive message
[{ a: 'cat' }, { a: 'dog' }].should.include.something.that.deep.equals({ a: 'cow' })
/* expected an element of [{ a: 'cat' }, { a: 'dog' }] to deeply equal { a: 'cow' } */

You are free to choose the syntactic variant you like most:

[4, 11, 15].should.include.one.below(10)
[4, 11, 15].should.contain.some.above(10)
[4, 11, 15].should.not.contain.any.above(20)
[{ a: 'cat' }, { a: 'dog' }].should.contain.a.thing.with.property('a', 'cat')
[{ a: 'cat' }, { a: 'dog' }].should.contain.an.item.with.property('a', 'dog')

All

Use the all property on an array to test whether the assertion holds for all its elements.

// All items are below 20
[4, 11, 15].should.all.be.below(20)
// All items have a property 'a'
[{ a: 'cat' }, { a: 'dog' }].should.all.have.property('a')
// If the test fails, we get a descriptive message
[4, 11, 15].should.all.be.above(20)
/* expected all elements of [4, 11, 15] to be above 20 */
[{ a: 'cat' }, { a: 'dog' }].should.all.have.property('a', 'cat')
/* expected all elements of [{ a: 'cat' }, { a: 'dog' }] to have a property 'a' of 'cat', but got 'dog' */

There are currently no syntactic variants for all. Let me know if you need them.

Installation and usage

$ npm install chai-things

var chai = require("chai");
chai.should();
chai.use(require('chai-things'));

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/depd/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-09-17

		No changes

0.4.5 / 2014-09-09

		Improve call speed to functions using the function wrapper

		Support Node.js 0.6

0.4.4 / 2014-07-27

		Work-around v8 generating empty stack traces

0.4.3 / 2014-07-26

		Fix exception when global Error.stackTraceLimit is too low

0.4.2 / 2014-07-19

		Correct call site for wrapped functions and properties

0.4.1 / 2014-07-19

		Improve automatic message generation for function properties

0.4.0 / 2014-07-19

		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		Support deprecate.property(fn, prop, message)

0.3.0 / 2014-06-16

		Add NO_DEPRECATION environment variable

0.2.0 / 2014-06-15

		Add deprecate.property(obj, prop, message)

		Remove supports-color dependency for node.js 0.8

0.1.0 / 2014-06-15

		Add deprecate.function(fn, message)

		Add process.on('deprecation', fn) emitter

		Automatically generate message when omitted from deprecate()

0.0.1 / 2014-06-15

		Fix warning for dynamic calls at singe call site

0.0.0 / 2014-06-15

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express/node_modules/depd/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

depd

![NPM Version][npm-version-image] [https://npmjs.org/package/depd]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/depd]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/dougwilson/nodejs-depd]
![Coverage Status][coveralls-image] [https://coveralls.io/r/dougwilson/nodejs-depd?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Deprecate all the things

With great modules comes great responsibility; mark things deprecated!

Install

$ npm install depd

API

var deprecate = require('depd')('my-module')

This library allows you to display deprecation messages to your users.
This library goes above and beyond with deprecation warnings by
introspection of the call stack (but only the bits that it is interested
in).

Instead of just warning on the first invocation of a deprecated
function and never again, this module will warn on the first invocation
of a deprecated function per unique call site, making it ideal to alert
users of all deprecated uses across the code base, rather than just
whatever happens to execute first.

The deprecation warnings from this module also include the file and line
information for the call into the module that the deprecated function was
in.

NOTE this library has a similar interface to the debug module, and
this module uses the calling file to get the boundary for the call stacks,
so you should always create a new deprecate object in each file and not
within some central file.

depd(namespace)

Create a new deprecate function that uses the given namespace name in the
messages and will display the call site prior to the stack entering the
file this function was called from. It is highly suggested you use the
name of your module as the namespace.

deprecate(message)

Call this function from deprecated code to display a deprecation message.
This message will appear once per unique caller site. Caller site is the
first call site in the stack in a different file from the caller of this
function.

If the message is omitted, a message is generated for you based on the site
of the deprecate() call and will display the name of the function called,
similar to the name displayed in a stack trace.

deprecate.function(fn, message)

Call this function to wrap a given function in a deprecation message on any
call to the function. An optional message can be supplied to provide a custom
message.

deprecate.property(obj, prop, message)

Call this function to wrap a given property on object in a deprecation message
on any accessing or setting of the property. An optional message can be supplied
to provide a custom message.

The method must be called on the object where the property belongs (not
inherited from the prototype).

If the property is a data descriptor, it will be converted to an accessor
descriptor in order to display the deprecation message.

process.on(‘deprecation’, fn)

This module will allow easy capturing of deprecation errors by emitting the
errors as the type “deprecation” on the global process. If there are no
listeners for this type, the errors are written to STDERR as normal, but if
there are any listeners, nothing will be written to STDERR and instead only
emitted. From there, you can write the errors in a different format or to a
logging source.

The error represents the deprecation and is emitted only once with the same
rules as writing to STDERR. The error has the following properties:

		message - This is the message given by the library

		name - This is always 'DeprecationError'

		namespace - This is the namespace the deprecation came from

		stack - This is the stack of the call to the deprecated thing

Example error.stack output:

DeprecationError: my-cool-module deprecated oldfunction
 at Object.<anonymous> ([eval]-wrapper:6:22)
 at Module._compile (module.js:456:26)
 at evalScript (node.js:532:25)
 at startup (node.js:80:7)
 at node.js:902:3

process.env.NO_DEPRECATION

As a user of modules that are deprecated, the environment variable NO_DEPRECATION
is provided as a quick solution to silencing deprecation warnings from being
output. The format of this is similar to that of DEBUG:

$ NO_DEPRECATION=my-module,othermod node app.js

This will suppress deprecations from being output for “my-module” and “othermod”.
The value is a list of comma-separated namespaces. To suppress every warning
across all namespaces, use the value * for a namespace.

Providing the argument --no-deprecation to the node executable will suppress
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not suppress the deperecations given to any “deprecation”
event listeners, just the output to STDERR.

process.env.TRACE_DEPRECATION

As a user of modules that are deprecated, the environment variable TRACE_DEPRECATION
is provided as a solution to getting more detailed location information in deprecation
warnings by including the entire stack trace. The format of this is the same as
NO_DEPRECATION:

$ TRACE_DEPRECATION=my-module,othermod node app.js

This will include stack traces for deprecations being output for “my-module” and
“othermod”. The value is a list of comma-separated namespaces. To trace every
warning across all namespaces, use the value * for a namespace.

Providing the argument --trace-deprecation to the node executable will trace
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not trace the deperecations silenced by NO_DEPRECATION.

Display

[image: message]

When a user calls a function in your library that you mark deprecated, they
will see the following written to STDERR (in the given colors, similar colors
and layout to the debug module):

bright cyan bright yellow
| | reset cyan
| | | |
▼ ▼ ▼ ▼
my-cool-module deprecated oldfunction [eval]-wrapper:6:22
▲ ▲ ▲ ▲
| | | |
namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

If the user redirects their STDERR to a file or somewhere that does not support
colors, they see (similar layout to the debug module):

Sun, 15 Jun 2014 05:21:37 GMT my-cool-module deprecated oldfunction at [eval]-wrapper:6:22
▲ ▲ ▲ ▲ ▲
| | | | |
timestamp of message namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

Examples

Deprecating all calls to a function

This will display a deprecated message about “oldfunction” being deprecated
from “my-module” on STDERR.

var deprecate = require('depd')('my-cool-module')

// message automatically derived from function name
// Object.oldfunction
exports.oldfunction = deprecate.function(function oldfunction() {
 // all calls to function are deprecated
})

// specific message
exports.oldfunction = deprecate.function(function () {
 // all calls to function are deprecated
}, 'oldfunction')

Conditionally deprecating a function call

This will display a deprecated message about “weirdfunction” being deprecated
from “my-module” on STDERR when called with less than 2 arguments.

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 }
}

When calling deprecate as a function, the warning is counted per call site
within your own module, so you can display different deprecations depending
on different situations and the users will still get all the warnings:

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 } else if (typeof arguments[0] !== 'string') {
 // calls with non-string first argument are deprecated
 deprecate('weirdfunction non-string first arg')
 }
}

Deprecating property access

This will display a deprecated message about “oldprop” being deprecated
from “my-module” on STDERR when accessed. A deprecation will be displayed
when setting the value and when getting the value.

var deprecate = require('depd')('my-cool-module')

exports.oldprop = 'something'

// message automatically derives from property name
deprecate.property(exports, 'oldprop')

// explicit message
deprecate.property(exports, 'oldprop', 'oldprop >= 0.10')

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/node-uuid/benchmark/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-uuid Benchmarks

Results

To see the results of our benchmarks visit https://github.com/broofa/node-uuid/wiki/Benchmark

Run them yourself

node-uuid comes with some benchmarks to measure performance of generating UUIDs. These can be run using node.js. node-uuid is being benchmarked against some other uuid modules, that are available through npm namely uuid and uuid-js.

To prepare and run the benchmark issue;

npm install uuid uuid-js
node benchmark/benchmark.js

You’ll see an output like this one:

v4
nodeuuid.v4(): 854700 uuids/second
nodeuuid.v4('binary'): 788643 uuids/second
nodeuuid.v4('binary', buffer): 1336898 uuids/second
uuid(): 479386 uuids/second
uuid('binary'): 582072 uuids/second
uuidjs.create(4): 312304 uuids/second

v1
nodeuuid.v1(): 938086 uuids/second
nodeuuid.v1('binary'): 683060 uuids/second
nodeuuid.v1('binary', buffer): 1644736 uuids/second
uuidjs.create(1): 190621 uuids/second

		The uuid() entries are for Nikhil Marathe’s uuid module [https://bitbucket.org/nikhilm/uuidjs] which is a wrapper around the native libuuid library.

		The uuidjs() entries are for Patrick Negri’s uuid-js module [https://github.com/pnegri/uuid-js] which is a pure javascript implementation based on UUID.js [https://github.com/LiosK/UUID.js] by LiosK.

If you want to get more reliable results you can run the benchmark multiple times and write the output into a log file:

for i in {0..9}; do node benchmark/benchmark.js >> benchmark/bench_0.4.12.log; done;

If you’re interested in how performance varies between different node versions, you can issue the above command multiple times.

You can then use the shell script bench.sh provided in this directory to calculate the averages over all benchmark runs and draw a nice plot:

(cd benchmark/ && ./bench.sh)

This assumes you have gnuplot [http://www.gnuplot.info/] and ImageMagick [http://www.imagemagick.org/] installed. You’ll find a nice bench.png graph in the benchmark/ directory then.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/node-uuid/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-uuid

Simple, fast generation of RFC4122 [http://www.ietf.org/rfc/rfc4122.txt] UUIDS.

Features:

		Generate RFC4122 version 1 or version 4 UUIDs

		Runs in node.js and all browsers.

		Registered as a ComponentJS [https://github.com/component/component] component [https://github.com/component/component/wiki/Components] (‘broofa/node-uuid’).

		Cryptographically strong random # generation on supporting platforms

		1.1K minified and gzip’ed (Want something smaller? Check this crazy shit [https://gist.github.com/982883] out!)

		Annotated source code [http://broofa.github.com/node-uuid/docs/uuid.html]

		Comes with a Command Line Interface for generating uuids on the command line

Getting Started

Install it in your browser:

<script src="uuid.js"></script>

Or in node.js:

npm install node-uuid

var uuid = require('node-uuid');

Then create some ids ...

// Generate a v1 (time-based) id
uuid.v1(); // -> '6c84fb90-12c4-11e1-840d-7b25c5ee775a'

// Generate a v4 (random) id
uuid.v4(); // -> '110ec58a-a0f2-4ac4-8393-c866d813b8d1'

API

uuid.v1([options [, buffer [, offset]]])

Generate and return a RFC4122 v1 (timestamp-based) UUID.

		options - (Object) Optional uuid state to apply. Properties may include:
		node - (Array) Node id as Array of 6 bytes (per 4.1.6). Default: Randomly generated ID. See note 1.

		clockseq - (Number between 0 - 0x3fff) RFC clock sequence. Default: An internally maintained clockseq is used.

		msecs - (Number | Date) Time in milliseconds since unix Epoch. Default: The current time is used.

		nsecs - (Number between 0-9999) additional time, in 100-nanosecond units. Ignored if msecs is unspecified. Default: internal uuid counter is used, as per 4.2.1.2.

		buffer - (Array | Buffer) Array or buffer where UUID bytes are to be written.

		offset - (Number) Starting index in buffer at which to begin writing.

Returns buffer, if specified, otherwise the string form of the UUID

Notes:

		The randomly generated node id is only guaranteed to stay constant for the lifetime of the current JS runtime. (Future versions of this module may use persistent storage mechanisms to extend this guarantee.)

Example: Generate string UUID with fully-specified options

uuid.v1({
 node: [0x01, 0x23, 0x45, 0x67, 0x89, 0xab],
 clockseq: 0x1234,
 msecs: new Date('2011-11-01').getTime(),
 nsecs: 5678
}); // -> "710b962e-041c-11e1-9234-0123456789ab"

Example: In-place generation of two binary IDs

// Generate two ids in an array
var arr = new Array(32); // -> []
uuid.v1(null, arr, 0); // -> [02 a2 ce 90 14 32 11 e1 85 58 0b 48 8e 4f c1 15]
uuid.v1(null, arr, 16); // -> [02 a2 ce 90 14 32 11 e1 85 58 0b 48 8e 4f c1 15 02 a3 1c b0 14 32 11 e1 85 58 0b 48 8e 4f c1 15]

// Optionally use uuid.unparse() to get stringify the ids
uuid.unparse(buffer); // -> '02a2ce90-1432-11e1-8558-0b488e4fc115'
uuid.unparse(buffer, 16) // -> '02a31cb0-1432-11e1-8558-0b488e4fc115'

uuid.v4([options [, buffer [, offset]]])

Generate and return a RFC4122 v4 UUID.

		options - (Object) Optional uuid state to apply. Properties may include:
		random - (Number[16]) Array of 16 numbers (0-255) to use in place of randomly generated values

		rng - (Function) Random # generator to use. Set to one of the built-in generators - uuid.mathRNG (all platforms), uuid.nodeRNG (node.js only), uuid.whatwgRNG (WebKit only) - or a custom function that returns an array[16] of byte values.

		buffer - (Array | Buffer) Array or buffer where UUID bytes are to be written.

		offset - (Number) Starting index in buffer at which to begin writing.

Returns buffer, if specified, otherwise the string form of the UUID

Example: Generate string UUID with fully-specified options

uuid.v4({
 random: [
 0x10, 0x91, 0x56, 0xbe, 0xc4, 0xfb, 0xc1, 0xea,
 0x71, 0xb4, 0xef, 0xe1, 0x67, 0x1c, 0x58, 0x36
]
});
// -> "109156be-c4fb-41ea-b1b4-efe1671c5836"

Example: Generate two IDs in a single buffer

var buffer = new Array(32); // (or 'new Buffer' in node.js)
uuid.v4(null, buffer, 0);
uuid.v4(null, buffer, 16);

uuid.parse(id[, buffer[, offset]])

uuid.unparse(buffer[, offset])

Parse and unparse UUIDs

		id - (String) UUID(-like) string

		buffer - (Array | Buffer) Array or buffer where UUID bytes are to be written. Default: A new Array or Buffer is used

		offset - (Number) Starting index in buffer at which to begin writing. Default: 0

Example parsing and unparsing a UUID string

var bytes = uuid.parse('797ff043-11eb-11e1-80d6-510998755d10'); // -> <Buffer 79 7f f0 43 11 eb 11 e1 80 d6 51 09 98 75 5d 10>
var string = uuid.unparse(bytes); // -> '797ff043-11eb-11e1-80d6-510998755d10'

uuid.noConflict()

(Browsers only) Set uuid property back to it’s previous value.

Returns the node-uuid object.

Example:

var myUuid = uuid.noConflict();
myUuid.v1(); // -> '6c84fb90-12c4-11e1-840d-7b25c5ee775a'

Deprecated APIs

Support for the following v1.2 APIs is available in v1.3, but is deprecated and will be removed in the next major version.

uuid([format [, buffer [, offset]]])

uuid() has become uuid.v4(), and the format argument is now implicit in the buffer argument. (i.e. if you specify a buffer, the format is assumed to be binary).

uuid.BufferClass

The class of container created when generating binary uuid data if no buffer argument is specified. This is expected to go away, with no replacement API.

Command Line Interface

To use the executable, it’s probably best to install this library globally.

npm install -g node-uuid

Usage:

USAGE: uuid [version] [options]

options:

--help Display this message and exit

version must be an RFC4122 version that is supported by this library, which is currently version 1 and version 4 (denoted by “v1” and “v4”, respectively). version defaults to version 4 when not supplied.

Examples

> uuid
3a91f950-dec8-4688-ba14-5b7bbfc7a563

> uuid v1
9d0b43e0-7696-11e3-964b-250efa37a98e

> uuid v4
6790ac7c-24ac-4f98-8464-42f6d98a53ae

Testing

In node.js

npm test

In Browser

open test/test.html

Benchmarking

Requires node.js

npm install uuid uuid-js
node benchmark/benchmark.js

For a more complete discussion of node-uuid performance, please see the benchmark/README.md file, and the benchmark wiki [https://github.com/broofa/node-uuid/wiki/Benchmark]

For browser performance checkout the JSPerf tests [http://jsperf.com/node-uuid-performance].

Release notes

1.4.0

		Improved module context detection

		Removed public RNG functions

1.3.2

		Improve tests and handling of v1() options (Issue #24)

		Expose RNG option to allow for perf testing with different generators

1.3.0

		Support for version 1 ids, thanks to @ctavan [https://github.com/ctavan]!

		Support for node.js crypto API

		De-emphasizing performance in favor of a) cryptographic quality PRNGs where available and b) more manageable code

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/caseless/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Caseless – wrap an object to set and get property with caseless semantics but also preserve caseing.

This library is incredibly useful when working with HTTP headers. It allows you to get/set/check for headers in a caseless manner while also preserving the caseing of headers the first time they are set.

Usage

var headers = {}
 , c = caseless(headers)
 ;
c.set('a-Header', 'asdf')
c.get('a-header') === 'asdf'

has(key)

Has takes a name and if it finds a matching header will return that header name with the preserved caseing it was set with.

c.has('a-header') === 'a-Header'

set(key, value[, clobber=true])

Set is fairly straight forward except that if the header exists and clobber is disabled it will add ','+value to the existing header.

c.set('a-Header', 'fdas')
c.set('a-HEADER', 'more', false)
c.get('a-header') === 'fdsa,more'

swap(key)

Swaps the casing of a header with the new one that is passed in.

var headers = {}
 , c = caseless(headers)
 ;
c.set('a-Header', 'fdas')
c.swap('a-HEADER')
c.has('a-header') === 'a-HEADER'
headers === {'a-HEADER': 'fdas'}

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/qs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

qs

A querystring parsing and stringifying library with some added security.

[image: Build Status] [http://travis-ci.org/hapijs/qs]

Lead Maintainer: Nathan LaFreniere [https://github.com/nlf]

The qs module was originally created and maintained by TJ Holowaychuk [https://github.com/visionmedia/node-querystring].

Usage

var Qs = require('qs');

var obj = Qs.parse('a=c'); // { a: 'c' }
var str = Qs.stringify(obj); // 'a=c'

Parsing Objects

Qs.parse(string, [options]);

qs allows you to create nested objects within your query strings, by surrounding the name of sub-keys with square brackets [].
For example, the string 'foo[bar]=baz' converts to:

{
 foo: {
 bar: 'baz'
 }
}

URI encoded strings work too:

Qs.parse('a%5Bb%5D=c');
// { a: { b: 'c' } }

You can also nest your objects, like 'foo[bar][baz]=foobarbaz':

{
 foo: {
 bar: {
 baz: 'foobarbaz'
 }
 }
}

By default, when nesting objects qs will only parse up to 5 children deep. This means if you attempt to parse a string like
'a[b][c][d][e][f][g][h][i]=j' your resulting object will be:

{
 a: {
 b: {
 c: {
 d: {
 e: {
 f: {
 '[g][h][i]': 'j'
 }
 }
 }
 }
 }
 }
}

This depth can be overridden by passing a depth option to Qs.parse(string, [options]):

Qs.parse('a[b][c][d][e][f][g][h][i]=j', { depth: 1 });
// { a: { b: { '[c][d][e][f][g][h][i]': 'j' } } }

The depth limit helps mitigate abuse when qs is used to parse user input, and it is recommended to keep it a reasonably small number.

For similar reasons, by default qs will only parse up to 1000 parameters. This can be overridden by passing a parameterLimit option:

Qs.parse('a=b&c=d', { parameterLimit: 1 });
// { a: 'b' }

An optional delimiter can also be passed:

Qs.parse('a=b;c=d', { delimiter: ';' });
// { a: 'b', c: 'd' }

Delimiters can be a regular expression too:

Qs.parse('a=b;c=d,e=f', { delimiter: /[;,]/ });
// { a: 'b', c: 'd', e: 'f' }

Parsing Arrays

qs can also parse arrays using a similar [] notation:

Qs.parse('a[]=b&a[]=c');
// { a: ['b', 'c'] }

You may specify an index as well:

Qs.parse('a[1]=c&a[0]=b');
// { a: ['b', 'c'] }

Note that the only difference between an index in an array and a key in an object is that the value between the brackets must be a number
to create an array. When creating arrays with specific indices, qs will compact a sparse array to only the existing values preserving
their order:

Qs.parse('a[1]=b&a[15]=c');
// { a: ['b', 'c'] }

Note that an empty string is also a value, and will be preserved:

Qs.parse('a[]=&a[]=b');
// { a: ['', 'b'] }
Qs.parse('a[0]=b&a[1]=&a[2]=c');
// { a: ['b', '', 'c'] }

qs will also limit specifying indices in an array to a maximum index of 20. Any array members with an index of greater than 20 will
instead be converted to an object with the index as the key:

Qs.parse('a[100]=b');
// { a: { '100': 'b' } }

This limit can be overridden by passing an arrayLimit option:

Qs.parse('a[1]=b', { arrayLimit: 0 });
// { a: { '1': 'b' } }

To disable array parsing entirely, set arrayLimit to -1.

If you mix notations, qs will merge the two items into an object:

Qs.parse('a[0]=b&a[b]=c');
// { a: { '0': 'b', b: 'c' } }

You can also create arrays of objects:

Qs.parse('a[][b]=c');
// { a: [{ b: 'c' }] }

Stringifying

Qs.stringify(object, [options]);

When stringifying, qs always URI encodes output. Objects are stringified as you would expect:

Qs.stringify({ a: 'b' });
// 'a=b'
Qs.stringify({ a: { b: 'c' } });
// 'a%5Bb%5D=c'

Examples beyond this point will be shown as though the output is not URI encoded for clarity. Please note that the return values in these cases will be URI encoded during real usage.

When arrays are stringified, by default they are given explicit indices:

Qs.stringify({ a: ['b', 'c', 'd'] });
// 'a[0]=b&a[1]=c&a[2]=d'

You may override this by setting the indices option to false:

Qs.stringify({ a: ['b', 'c', 'd'] }, { indices: false });
// 'a=b&a=c&a=d'

Empty strings and null values will omit the value, but the equals sign (=) remains in place:

Qs.stringify({ a: '' });
// 'a='

Properties that are set to undefined will be omitted entirely:

Qs.stringify({ a: null, b: undefined });
// 'a='

The delimiter may be overridden with stringify as well:

Qs.stringify({ a: 'b', c: 'd' }, { delimiter: ';' });
// 'a=b;c=d'

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/combined-stream/node_modules/delayed-stream/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

delayed-stream

Buffers events from a stream until you are ready to handle them.

Installation

npm install delayed-stream

Usage

The following example shows how to write a http echo server that delays its
response by 1000 ms.

var DelayedStream = require('delayed-stream');
var http = require('http');

http.createServer(function(req, res) {
 var delayed = DelayedStream.create(req);

 setTimeout(function() {
 res.writeHead(200);
 delayed.pipe(res);
 }, 1000);
});

If you are not using Stream#pipe, you can also manually release the buffered
events by calling delayedStream.resume():

var delayed = DelayedStream.create(req);

setTimeout(function() {
 // Emit all buffered events and resume underlaying source
 delayed.resume();
}, 1000);

Implementation

In order to use this meta stream properly, here are a few things you should
know about the implementation.

Event Buffering / Proxying

All events of the source stream are hijacked by overwriting the source.emit
method. Until node implements a catch-all event listener, this is the only way.

However, delayed-stream still continues to emit all events it captures on the
source, regardless of whether you have released the delayed stream yet or
not.

Upon creation, delayed-stream captures all source events and stores them in
an internal event buffer. Once delayedStream.release() is called, all
buffered events are emitted on the delayedStream, and the event buffer is
cleared. After that, delayed-stream merely acts as a proxy for the underlaying
source.

Error handling

Error events on source are buffered / proxied just like any other events.
However, delayedStream.create attaches a no-op 'error' listener to the
source. This way you only have to handle errors on the delayedStream
object, rather than in two places.

Buffer limits

delayed-stream provides a maxDataSize property that can be used to limit
the amount of data being buffered. In order to protect you from bad source
streams that don’t react to source.pause(), this feature is enabled by
default.

API

DelayedStream.create(source, [options])

Returns a new delayedStream. Available options are:

		pauseStream

		maxDataSize

The description for those properties can be found below.

delayedStream.source

The source stream managed by this object. This is useful if you are
passing your delayedStream around, and you still want to access properties
on the source object.

delayedStream.pauseStream = true

Whether to pause the underlaying source when calling
DelayedStream.create(). Modifying this property afterwards has no effect.

delayedStream.maxDataSize = 1024 * 1024

The amount of data to buffer before emitting an error.

If the underlaying source is emitting Buffer objects, the maxDataSize
refers to bytes.

If the underlaying source is emitting JavaScript strings, the size refers to
characters.

If you know what you are doing, you can set this property to Infinity to
disable this feature. You can also modify this property during runtime.

delayedStream.maxDataSize = 1024 * 1024

The amount of data to buffer before emitting an error.

If the underlaying source is emitting Buffer objects, the maxDataSize
refers to bytes.

If the underlaying source is emitting JavaScript strings, the size refers to
characters.

If you know what you are doing, you can set this property to Infinity to
disable this feature.

delayedStream.dataSize = 0

The amount of data buffered so far.

delayedStream.readable

An ECMA5 getter that returns the value of source.readable.

delayedStream.resume()

If the delayedStream has not been released so far, delayedStream.release()
is called.

In either case, source.resume() is called.

delayedStream.pause()

Calls source.pause().

delayedStream.pipe(dest)

Calls delayedStream.resume() and then proxies the arguments to source.pipe.

delayedStream.release()

Emits and clears all events that have been buffered up so far. This does not
resume the underlaying source, use delayedStream.resume() instead.

License

delayed-stream is licensed under the MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/combined-stream/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

combined-stream [image: Build Status] [https://travis-ci.org/felixge/node-combined-stream]

A stream that emits multiple other streams one after another.

Installation

npm install combined-stream

Usage

Here is a simple example that shows how you can use combined-stream to combine
two files into one:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create();
combinedStream.append(fs.createReadStream('file1.txt'));
combinedStream.append(fs.createReadStream('file2.txt'));

combinedStream.pipe(fs.createWriteStream('combined.txt'));

While the example above works great, it will pause all source streams until
they are needed. If you don’t want that to happen, you can set pauseStreams
to false:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create({pauseStreams: false});
combinedStream.append(fs.createReadStream('file1.txt'));
combinedStream.append(fs.createReadStream('file2.txt'));

combinedStream.pipe(fs.createWriteStream('combined.txt'));

However, what if you don’t have all the source streams yet, or you don’t want
to allocate the resources (file descriptors, memory, etc.) for them right away?
Well, in that case you can simply provide a callback that supplies the stream
by calling a next() function:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create();
combinedStream.append(function(next) {
 next(fs.createReadStream('file1.txt'));
});
combinedStream.append(function(next) {
 next(fs.createReadStream('file2.txt'));
});

combinedStream.pipe(fs.createWriteStream('combined.txt'));

API

CombinedStream.create([options])

Returns a new combined stream object. Available options are:

		maxDataSize

		pauseStreams

The effect of those options is described below.

combinedStream.pauseStreams = true

Whether to apply back pressure to the underlaying streams. If set to false,
the underlaying streams will never be paused. If set to true, the
underlaying streams will be paused right after being appended, as well as when
delayedStream.pipe() wants to throttle.

combinedStream.maxDataSize = 2 * 1024 * 1024

The maximum amount of bytes (or characters) to buffer for all source streams.
If this value is exceeded, combinedStream emits an 'error' event.

combinedStream.dataSize = 0

The amount of bytes (or characters) currently buffered by combinedStream.

combinedStream.append(stream)

Appends the given stream to the combinedStream object. If pauseStreams is
set to `true, this stream will also be paused right away.

streams can also be a function that takes one parameter called next. next
is a function that must be invoked in order to provide the next stream, see
example above.

Regardless of how the stream is appended, combined-stream always attaches an
'error' listener to it, so you don’t have to do that manually.

Special case: stream can also be a String or Buffer.

combinedStream.write(data)

You should not call this, combinedStream takes care of piping the appended
streams into itself for you.

combinedStream.resume()

Causes combinedStream to start drain the streams it manages. The function is
idempotent, and also emits a 'resume' event each time which usually goes to
the stream that is currently being drained.

combinedStream.pause();

If combinedStream.pauseStreams is set to false, this does nothing.
Otherwise a 'pause' event is emitted, this goes to the stream that is
currently being drained, so you can use it to apply back pressure.

combinedStream.end();

Sets combinedStream.writable to false, emits an 'end' event, and removes
all streams from the queue.

combinedStream.destroy();

Same as combinedStream.end(), except it emits a 'close' event instead of
'end'.

License

combined-stream is licensed under the MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/http-signature/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-http-signature

node-http-signature is a node.js library that has client and server components
for Joyent’s HTTP Signature Scheme.

Usage

Note the example below signs a request with the same key/cert used to start an
HTTP server. This is almost certainly not what you actaully want, but is just
used to illustrate the API calls; you will need to provide your own key
management in addition to this library.

Client

var fs = require('fs');
var https = require('https');
var httpSignature = require('http-signature');

var key = fs.readFileSync('./key.pem', 'ascii');

var options = {
 host: 'localhost',
 port: 8443,
 path: '/',
 method: 'GET',
 headers: {}
};

// Adds a 'Date' header in, signs it, and adds the
// 'Authorization' header in.
var req = https.request(options, function(res) {
 console.log(res.statusCode);
});

httpSignature.sign(req, {
 key: key,
 keyId: './cert.pem'
});

req.end();

Server

var fs = require('fs');
var https = require('https');
var httpSignature = require('http-signature');

var options = {
 key: fs.readFileSync('./key.pem'),
 cert: fs.readFileSync('./cert.pem')
};

https.createServer(options, function (req, res) {
 var rc = 200;
 var parsed = httpSignature.parseRequest(req);
 var pub = fs.readFileSync(parsed.keyId, 'ascii');
 if (!httpSignature.verifySignature(parsed, pub))
 rc = 401;

 res.writeHead(rc);
 res.end();
}).listen(8443);

Installation

npm install http-signature

License

MIT.

Bugs

See https://github.com/joyent/node-http-signature/issues.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/http-signature/http_signing.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Abstract

This document describes a way to add origin authentication, message integrity,
and replay resistance to HTTP REST requests. It is intended to be used over
the HTTPS protocol.

Copyright Notice

Copyright (c) 2011 Joyent, Inc. and the persons identified as document authors.
All rights reserved.

Code Components extracted from this document must include MIT License text.

Introduction

This protocol is intended to provide a standard way for clients to sign HTTP
requests. RFC2617 (HTTP Authentication) defines Basic and Digest authentication
mechanisms, and RFC5246 (TLS 1.2) defines client-auth, both of which are widely
employed on the Internet today. However, it is common place that the burdens of
PKI prevent web service operators from deploying that methodoloy, and so many
fall back to Basic authentication, which has poor security characteristics.

Additionally, OAuth provides a fully-specified alternative for authorization
of web service requests, but is not (always) ideal for machine to machine
communication, as the key acquisition steps (generally) imply a fixed
infrastructure that may not make sense to a service provider (e.g., symmetric
keys).

Several web service providers have invented their own schemes for signing
HTTP requests, but to date, none have been placed in the public domain as a
standard. This document serves that purpose. There are no techniques in this
proposal that are novel beyond previous art, however, this aims to be a simple
mechanism for signing these requests.

Signature Authentication Scheme

The “signature” authentication scheme is based on the model that the client must
authenticate itself with a digital signature produced by either a private
asymmetric key (e.g., RSA) or a shared symmetric key (e.g., HMAC). The scheme
is parameterized enough such that it is not bound to any particular key type or
signing algorithm. However, it does explicitly assume that clients can send an
HTTP Date header.

Authorization Header

The client is expected to send an Authorization header (as defined in RFC 2617)
with the following parameterization:

credentials := "Signature" params
params := 1#(keyId | algorithm | [headers] | [ext] | signature)
digitalSignature := plain-string

keyId := "keyId" "=" <"> plain-string <">
algorithm := "algorithm" "=" <"> plain-string <">
headers := "headers" "=" <"> 1#headers-value <">
ext := "ext" "=" <"> plain-string <">
signature := "signature" "=" <"> plain-string <">

headers-value := plain-string
plain-string = 1*(%x20-21 / %x23-5B / %x5D-7E)

Signature Parameters

keyId

REQUIRED. The keyId field is an opaque string that the server can use to look
up the component they need to validate the signature. It could be an SSH key
fingerprint, an LDAP DN, etc. Management of keys and assignment of keyId is
out of scope for this document.

algorithm

REQUIRED. The algorithm parameter is used if the client and server agree on a
non-standard digital signature algorithm. The full list of supported signature
mechanisms is listed below.

headers

OPTIONAL. The headers parameter is used to specify the list of HTTP headers
used to sign the request. If specified, it should be a quoted list of HTTP
header names, separated by a single space character. By default, only one
HTTP header is signed, which is the Date header. Note that the list MUST be
specified in the order the values are concatenated together during signing. To
include the HTTP request line in the signature calculation, use the special
request-line value. While this is overloading the definition of headers in
HTTP linguism, the request-line is defined in RFC 2616, and as the outlier from
headers in useful signature calculation, it is deemed simpler to simply use
request-line than to add a separate parameter for it.

extensions

OPTIONAL. The extensions parameter is used to include additional information
which is covered by the request. The content and format of the string is out of
scope for this document, and expected to be specified by implementors.

signature

REQUIRED. The signature parameter is a Base64 encoded digital signature
generated by the client. The client uses the algorithm and headers request
parameters to form a canonicalized signing string. This signing string is
then signed with the key associated with keyId and the algorithm
corresponding to algorithm. The signature parameter is then set to the
Base64 encoding of the signature.

Signing String Composition

In order to generate the string that is signed with a key, the client MUST take
the values of each HTTP header specified by headers in the order they appear.

		If the header name is not request-line then append the lowercased header
name followed with an ASCII colon : and an ASCII space .

		If the header name is request-line then appened the HTTP request line,
otherwise append the header value.

		If value is not the last value then append an ASCII newline \n. The string
MUST NOT include a trailing ASCII newline.

Example Requests

All requests refer to the following request (body ommitted):

POST /foo HTTP/1.1
Host: example.org
Date: Tue, 07 Jun 2011 20:51:35 GMT
Content-Type: application/json
Content-MD5: h0auK8hnYJKmHTLhKtMTkQ==
Content-Length: 123

The “rsa-key-1” keyId refers to a private key known to the client and a public
key known to the server. The “hmac-key-1” keyId refers to key known to the
client and server.

Default parameterization

The authorization header and signature would be generated as:

Authorization: Signature keyId="rsa-key-1",algorithm="rsa-sha256",signature="Base64(RSA-SHA256(signing string))"

The client would compose the signing string as:

date: Tue, 07 Jun 2011 20:51:35 GMT

Header List

The authorization header and signature would be generated as:

Authorization: Signature keyId="rsa-key-1",algorithm="rsa-sha256",headers="request-line date content-type content-md5",signature="Base64(RSA-SHA256(signing string))"

The client would compose the signing string as (+ "\n" inserted for
readability):

POST /foo HTTP/1.1 + "\n"
date: Tue, 07 Jun 2011 20:51:35 GMT + "\n"
content-type: application/json + "\n"
content-md5: h0auK8hnYJKmHTLhKtMTkQ==

Algorithm

The authorization header and signature would be generated as:

Authorization: Signature keyId="hmac-key-1",algorithm="hmac-sha1",signature="Base64(HMAC-SHA1(signing string))"

The client would compose the signing string as:

date: Tue, 07 Jun 2011 20:51:35 GMT

Signing Algorithms

Currently supported algorithm names are:

		rsa-sha1

		rsa-sha256

		rsa-sha512

		dsa-sha1

		hmac-sha1

		hmac-sha256

		hmac-sha512

Security Considerations

Default Parameters

Note the default parameterization of the Signature scheme is only safe if all
requests are carried over a secure transport (i.e., TLS). Sending the default
scheme over a non-secure transport will leave the request vulnerable to
spoofing, tampering, replay/repudiaton, and integrity violations (if using the
STRIDE threat-modeling methodology).

Insecure Transports

If sending the request over plain HTTP, service providers SHOULD require clients
to sign ALL HTTP headers, and the request-line. Additionally, service
providers SHOULD require Content-MD5 calculations to be performed to ensure
against any tampering from clients.

Nonces

Nonces are out of scope for this document simply because many service providers
fail to implement them correctly, or do not adopt security specfiications
because of the infrastructure complexity. Given the header parameterization,
a service provider is fully enabled to add nonce semantics into this scheme by
using something like an x-request-nonce header, and ensuring it is signed
with the Date header.

Clock Skew

As the default scheme is to sign the Date header, service providers SHOULD
protect against logged replay attacks by enforcing a clock skew. The server
SHOULD be synchronized with NTP, and the recommendation in this specification
is to allow 300s of clock skew (in either direction).

Required Headers to Sign

It is out of scope for this document to dictate what headers a service provider
will want to enforce, but service providers SHOULD at minimum include the
Date header.

References

Normative References

		[RFC2616] Hypertext Transfer Protocol – HTTP/1.1

		[RFC2617] HTTP Authentication: Basic and Digest Access Authentication

		[RFC5246] The Transport Layer Security (TLS) Protocol Version 1.2

Informative References

Name: Mark Cavage (editor)
Company: Joyent, Inc.
Email: mark.cavage@joyent.com
URI: http://www.joyent.com

Appendix A - Test Values

The following test data uses the RSA (2048b) keys, which we will refer
to as keyId=Test in the following samples:

—–BEGIN PUBLIC KEY—–
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDCFENGw33yGihy92pDjZQhl0C3
6rPJj+CvfSC8+q28hxA161QFNUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6
Z4UMR7EOcpfdUE9Hf3m/hs+FUR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJw
oYi+1hqp1fIekaxsyQIDAQAB
—–END PUBLIC KEY—–

-----BEGIN RSA PRIVATE KEY-----
MIICXgIBAAKBgQDCFENGw33yGihy92pDjZQhl0C36rPJj+CvfSC8+q28hxA161QF
NUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6Z4UMR7EOcpfdUE9Hf3m/hs+F
UR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJwoYi+1hqp1fIekaxsyQIDAQAB
AoGBAJR8ZkCUvx5kzv+utdl7T5MnordT1TvoXXJGXK7ZZ+UuvMNUCdN2QPc4sBiA
QWvLw1cSKt5DsKZ8UETpYPy8pPYnnDEz2dDYiaew9+xEpubyeW2oH4Zx71wqBtOK
kqwrXa/pzdpiucRRjk6vE6YY7EBBs/g7uanVpGibOVAEsqH1AkEA7DkjVH28WDUg
f1nqvfn2Kj6CT7nIcE3jGJsZZ7zlZmBmHFDONMLUrXR/Zm3pR5m0tCmBqa5RK95u
412jt1dPIwJBANJT3v8pnkth48bQo/fKel6uEYyboRtA5/uHuHkZ6FQF7OUkGogc
mSJluOdc5t6hI1VsLn0QZEjQZMEOWr+wKSMCQQCC4kXJEsHAve77oP6HtG/IiEn7
kpyUXRNvFsDE0czpJJBvL/aRFUJxuRK91jhjC68sA7NsKMGg5OXb5I5Jj36xAkEA
gIT7aFOYBFwGgQAQkWNKLvySgKbAZRTeLBacpHMuQdl1DfdntvAyqpAZ0lY0RKmW
G6aFKaqQfOXKCyWoUiVknQJAXrlgySFci/2ueKlIE1QqIiLSZ8V8OlpFLRnb1pzI
7U1yQXnTAEFYM560yJlzUpOb1V4cScGd365tiSMvxLOvTA==
-----END RSA PRIVATE KEY-----

And all examples use this request:

POST /foo?param=value&pet=dog HTTP/1.1
Host: example.com
Date: Thu, 05 Jan 2012 21:31:40 GMT
Content-Type: application/json
Content-MD5: Sd/dVLAcvNLSq16eXua5uQ==
Content-Length: 18

{"hello": "world"}

Default

The string to sign would be:

date: Thu, 05 Jan 2012 21:31:40 GMT

The Authorization header would be:

Authorization: Signature keyId="Test",algorithm="rsa-sha256",signature="JldXnt8W9t643M2Sce10gqCh/+E7QIYLiI+bSjnFBGCti7s+mPPvOjVb72sbd1FjeOUwPTDpKbrQQORrm+xBYfAwCxF3LBSSzORvyJ5nRFCFxfJ3nlQD6Kdxhw8wrVZX5nSem4A/W3C8qH5uhFTRwF4ruRjh+ENHWuovPgO/HGQ="

All Headers

Parameterized to include all headers, the string to sign would be (+ "\n"
inserted for readability):

POST /foo?param=value&pet=dog HTTP/1.1 + "\n"
host: example.com + "\n"
date: Thu, 05 Jan 2012 21:31:40 GMT + "\n"
content-type: application/json + "\n"
content-md5: Sd/dVLAcvNLSq16eXua5uQ== + "\n"
content-length: 18

The Authorization header would be:

Authorization: Signature keyId="Test",algorithm="rsa-sha256",headers="request-line host date content-type content-md5 content-length",signature="Gm7W/r+e90REDpWytALMrft4MqZxCmslOTOvwJX17ViEBA5E65QqvWI0vIH3l/vSsGiaMVmuUgzYsJLYMLcm5dGrv1+a+0fCoUdVKPZWHyImQEqpLkopVwqEH67LVECFBqFTAKlQgBn676zrfXQbb+b/VebAsNUtvQMe6cTjnDY="

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/http-signature/node_modules/asn1/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 node-asn1 is a library for encoding and decoding ASN.1 datatypes in pure JS.
Currently BER encoding is supported; at some point I’ll likely have to do DER.

Usage

Mostly, if you’re actually needing to read and write ASN.1, you probably don’t
need this readme to explain what and why. If you have no idea what ASN.1 is,
see this: ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

The source is pretty much self-explanatory, and has read/write methods for the
common types out there.

Decoding

The following reads an ASN.1 sequence with a boolean.

var Ber = require('asn1').Ber;

var reader = new Ber.Reader(new Buffer([0x30, 0x03, 0x01, 0x01, 0xff]));

reader.readSequence();
console.log('Sequence len: ' + reader.length);
if (reader.peek() === Ber.Boolean)
 console.log(reader.readBoolean());

Encoding

The following generates the same payload as above.

var Ber = require('asn1').Ber;

var writer = new Ber.Writer();

writer.startSequence();
writer.writeBoolean(true);
writer.endSequence();

console.log(writer.buffer);

Installation

npm install asn1

License

MIT.

Bugs

See https://github.com/mcavage/node-asn1/issues.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/http-signature/node_modules/assert-plus/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-assert-plus

This library is a super small wrapper over node’s assert module that has two
things: (1) the ability to disable assertions with the environment variable
NODE_NDEBUG, and (2) some API wrappers for argument testing. Like
assert.string(myArg, 'myArg'). As a simple example, most of my code looks
like this:

var assert = require('assert-plus');

function fooAccount(options, callback) {
 assert.object(options, 'options');
 assert.number(options.id, 'options.id);
 assert.bool(options.isManager, 'options.isManager');
 assert.string(options.name, 'options.name');
 assert.arrayOfString(options.email, 'options.email');
 assert.func(callback, 'callback');

 // Do stuff
 callback(null, {});
}

API

All methods that aren’t part of node’s core assert API are simply assumed to
take an argument, and then a string ‘name’ that’s not a message; AssertionError
will be thrown if the assertion fails with a message like:

AssertionError: foo (string) is required
at test (/home/mark/work/foo/foo.js:3:9)
at Object.<anonymous> (/home/mark/work/foo/foo.js:15:1)
at Module._compile (module.js:446:26)
at Object..js (module.js:464:10)
at Module.load (module.js:353:31)
at Function._load (module.js:311:12)
at Array.0 (module.js:484:10)
at EventEmitter._tickCallback (node.js:190:38)

from:

function test(foo) {
 assert.string(foo, 'foo');
}

There you go. You can check that arrays are of a homogenous type with Arrayof$Type:

function test(foo) {
 assert.arrayOfString(foo, 'foo');
}

You can assert IFF an argument is not undefined (i.e., an optional arg):

assert.optionalString(foo, 'foo');

Lastly, you can opt-out of assertion checking altogether by setting the
environment variable NODE_NDEBUG=1. This is pseudo-useful if you have
lots of assertions, and don’t want to pay typeof () taxes to v8 in
production.

The complete list of APIs is:

		assert.bool

		assert.buffer

		assert.func

		assert.number

		assert.object

		assert.string

		assert.arrayOfBool

		assert.arrayOfFunc

		assert.arrayOfNumber

		assert.arrayOfObject

		assert.arrayOfString

		assert.optionalBool

		assert.optionalBuffer

		assert.optionalFunc

		assert.optionalNumber

		assert.optionalObject

		assert.optionalString

		assert.optionalArrayOfBool

		assert.optionalArrayOfFunc

		assert.optionalArrayOfNumber

		assert.optionalArrayOfObject

		assert.optionalArrayOfString

		assert.AssertionError

		assert.fail

		assert.ok

		assert.equal

		assert.notEqual

		assert.deepEqual

		assert.notDeepEqual

		assert.strictEqual

		assert.notStrictEqual

		assert.throws

		assert.doesNotThrow

		assert.ifError

Installation

npm install assert-plus

License

The MIT License (MIT)
Copyright (c) 2012 Mark Cavage

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Bugs

See https://github.com/mcavage/node-assert-plus/issues.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/node-uuid/LICENSE.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 The MIT License (MIT)

Copyright (c) 2010-2012 Robert Kieffer

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/qs/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.3.3 [https://github.com/hapijs/qs/issues?milestone=18&state=open]

		#59 [https://github.com/hapijs/qs/issues/59] make sure array indexes are >

= 0, closes #57

		#58 [https://github.com/hapijs/qs/issues/58] make qs usable for browser loader

2.3.2 [https://github.com/hapijs/qs/issues?milestone=17&state=closed]

		#55 [https://github.com/hapijs/qs/issues/55] allow merging a string into an object

2.3.1 [https://github.com/hapijs/qs/issues?milestone=16&state=closed]

		#52 [https://github.com/hapijs/qs/issues/52] Return "

undefined"

 and "

false"

 instead of throwing "

TypeError"

.

2.3.0 [https://github.com/hapijs/qs/issues?milestone=15&state=closed]

		#50 [https://github.com/hapijs/qs/issues/50] add option to omit array indices, closes #46

2.2.5 [https://github.com/hapijs/qs/issues?milestone=14&state=closed]

		#39 [https://github.com/hapijs/qs/issues/39] Is there an alternative to Buffer.isBuffer?

		#49 [https://github.com/hapijs/qs/issues/49] refactor utils.merge, fixes #45

		#41 [https://github.com/hapijs/qs/issues/41] avoid browserifying Buffer, for #39

2.2.4 [https://github.com/hapijs/qs/issues?milestone=13&state=closed]

		#38 [https://github.com/hapijs/qs/issues/38] how to handle object keys beginning with a number

2.2.3 [https://github.com/hapijs/qs/issues?milestone=12&state=closed]

		#37 [https://github.com/hapijs/qs/issues/37] parser discards first empty value in array

		#36 [https://github.com/hapijs/qs/issues/36] Update to lab 4.x

2.2.2 [https://github.com/hapijs/qs/issues?milestone=11&state=closed]

		#33 [https://github.com/hapijs/qs/issues/33] Error when plain object in a value

		#34 [https://github.com/hapijs/qs/issues/34] use Object.prototype.hasOwnProperty.call instead of obj.hasOwnProperty

		#24 [https://github.com/hapijs/qs/issues/24] Changelog? Semver?

2.2.1 [https://github.com/hapijs/qs/issues?milestone=10&state=closed]

		#32 [https://github.com/hapijs/qs/issues/32] account for circular references properly, closes #31

		#31 [https://github.com/hapijs/qs/issues/31] qs.parse stackoverflow on circular objects

2.2.0 [https://github.com/hapijs/qs/issues?milestone=9&state=closed]

		#26 [https://github.com/hapijs/qs/issues/26] Don‘

t use Buffer global if it‘

s not present

		#30 [https://github.com/hapijs/qs/issues/30] Bug when merging non-object values into arrays

		#29 [https://github.com/hapijs/qs/issues/29] Don‘

t call Utils.clone at the top of Utils.merge

		#23 [https://github.com/hapijs/qs/issues/23] Ability to not limit parameters?

2.1.0 [https://github.com/hapijs/qs/issues?milestone=8&state=closed]

		#22 [https://github.com/hapijs/qs/issues/22] Enable using a RegExp as delimiter

2.0.0 [https://github.com/hapijs/qs/issues?milestone=7&state=closed]

		#18 [https://github.com/hapijs/qs/issues/18] Why is there arrayLimit?

		#20 [https://github.com/hapijs/qs/issues/20] Configurable parametersLimit

		#21 [https://github.com/hapijs/qs/issues/21] make all limits optional, for #18, for #20

1.2.2 [https://github.com/hapijs/qs/issues?milestone=6&state=closed]

		#19 [https://github.com/hapijs/qs/issues/19] Don‘

t overwrite null values

1.2.1 [https://github.com/hapijs/qs/issues?milestone=5&state=closed]

		#16 [https://github.com/hapijs/qs/issues/16] ignore non-string delimiters

		#15 [https://github.com/hapijs/qs/issues/15] Close code block

1.2.0 [https://github.com/hapijs/qs/issues?milestone=4&state=closed]

		#12 [https://github.com/hapijs/qs/issues/12] Add optional delim argument

		#13 [https://github.com/hapijs/qs/issues/13] fix #11: flattened keys in array are now correctly parsed

1.1.0 [https://github.com/hapijs/qs/issues?milestone=3&state=closed]

		#7 [https://github.com/hapijs/qs/issues/7] Empty values of a POST array disappear after being submitted

		#9 [https://github.com/hapijs/qs/issues/9] Should not omit equals signs (=) when value is null

		#6 [https://github.com/hapijs/qs/issues/6] Minor grammar fix in README

1.0.2 [https://github.com/hapijs/qs/issues?milestone=2&state=closed]

		#5 [https://github.com/hapijs/qs/issues/5] array holes incorrectly copied into object on large index

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/hawk/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: hawk Logo]

[image:] Hawk is an HTTP authentication scheme using a message authentication code (MAC) algorithm to provide partial
HTTP request cryptographic verification. For more complex use cases such as access delegation, see Oz [https://github.com/hueniverse/oz].

Current version: 1.0

[image: Build Status] [http://travis-ci.org/hueniverse/hawk]

Table of Content

		Introduction
		Replay Protection

		Usage Example

		Protocol Example
		Payload Validation

		Response Payload Validation

		Browser Support and Considerations

- [**Single URI Authorization**](#single-uri-authorization)
 - [Usage Example](#bewit-usage-example)

- [**Security Considerations**](#security-considerations)
 - [MAC Keys Transmission](#mac-keys-transmission)
 - [Confidentiality of Requests](#confidentiality-of-requests)
 - [Spoofing by Counterfeit Servers](#spoofing-by-counterfeit-servers)
 - [Plaintext Storage of Credentials](#plaintext-storage-of-credentials)
 - [Entropy of Keys](#entropy-of-keys)
 - [Coverage Limitations](#coverage-limitations)
 - [Future Time Manipulation](#future-time-manipulation)
 - [Client Clock Poisoning](#client-clock-poisoning)
 - [Bewit Limitations](#bewit-limitations)
 - [Host Header Forgery](#host-header-forgery)

- [**Frequently Asked Questions**](#frequently-asked-questions)

- [**Acknowledgements**](#acknowledgements)

Introduction

Hawk is an HTTP authentication scheme providing mechanisms for making authenticated HTTP requests with
partial cryptographic verification of the request and response, covering the HTTP method, request URI, host,
and optionally the request payload.

Similar to the HTTP Digest access authentication schemes [http://www.ietf.org/rfc/rfc2617.txt], Hawk uses a set of
client credentials which include an identifier (e.g. username) and key (e.g. password). Likewise, just as with the Digest scheme,
the key is never included in authenticated requests. Instead, it is used to calculate a request MAC value which is
included in its place.

However, Hawk has several differences from Digest. In particular, while both use a nonce to limit the possibility of
replay attacks, in Hawk the client generates the nonce and uses it in combination with a timestamp, leading to less
“chattiness” (interaction with the server).

Also unlike Digest, this scheme is not intended to protect the key itself (the password in Digest) because
the client and server must both have access to the key material in the clear.

The primary design goals of this scheme are to:

		simplify and improve HTTP authentication for services that are unwilling or unable to deploy TLS for all resources,

		secure credentials against leakage (e.g., when the client uses some form of dynamic configuration to determine where
to send an authenticated request), and

		avoid the exposure of credentials sent to a malicious server over an unauthenticated secure channel due to client
failure to validate the server’s identity as part of its TLS handshake.

In addition, Hawk supports a method for granting third-parties temporary access to individual resources using
a query parameter called bewit (in falconry, a leather strap used to attach a tracking device to the leg of a hawk).

The Hawk scheme requires the establishment of a shared symmetric key between the client and the server,
which is beyond the scope of this module. Typically, the shared credentials are established via an initial
TLS-protected phase or derived from some other shared confidential information available to both the client
and the server.

Replay Protection

Without replay protection, an attacker can use a compromised (but otherwise valid and authenticated) request more
than once, gaining access to a protected resource. To mitigate this, clients include both a nonce and a timestamp when
making requests. This gives the server enough information to prevent replay attacks.

The nonce is generated by the client, and is a string unique across all requests with the same timestamp and
key identifier combination.

The timestamp enables the server to restrict the validity period of the credentials where requests occuring afterwards
are rejected. It also removes the need for the server to retain an unbounded number of nonce values for future checks.
By default, Hawk uses a time window of 1 minute to allow for time skew between the client and server (which in
practice translates to a maximum of 2 minutes as the skew can be positive or negative).

Using a timestamp requires the client’s clock to be in sync with the server’s clock. Hawk requires both the client
clock and the server clock to use NTP to ensure synchronization. However, given the limitations of some client types
(e.g. browsers) to deploy NTP, the server provides the client with its current time (in seconds precision) in response
to a bad timestamp.

There is no expectation that the client will adjust its system clock to match the server (in fact, this would be a
potential attack vector). Instead, the client only uses the server’s time to calculate an offset used only
for communications with that particular server. The protocol rewards clients with synchronized clocks by reducing
the number of round trips required to authenticate the first request.

Usage Example

Server code:

var Http = require('http');
var Hawk = require('hawk');

// Credentials lookup function

var credentialsFunc = function (id, callback) {

 var credentials = {
 key: 'werxhqb98rpaxn39848xrunpaw3489ruxnpa98w4rxn',
 algorithm: 'sha256',
 user: 'Steve'
 };

 return callback(null, credentials);
};

// Create HTTP server

var handler = function (req, res) {

 // Authenticate incoming request

 Hawk.server.authenticate(req, credentialsFunc, {}, function (err, credentials, artifacts) {

 // Prepare response

 var payload = (!err ? 'Hello ' + credentials.user + ' ' + artifacts.ext : 'Shoosh!');
 var headers = { 'Content-Type': 'text/plain' };

 // Generate Server-Authorization response header

 var header = Hawk.server.header(credentials, artifacts, { payload: payload, contentType: headers['Content-Type'] });
 headers['Server-Authorization'] = header;

 // Send the response back

 res.writeHead(!err ? 200 : 401, headers);
 res.end(payload);
 });
};

// Start server

Http.createServer(handler).listen(8000, 'example.com');

Client code:

var Request = require('request');
var Hawk = require('hawk');

// Client credentials

var credentials = {
 id: 'dh37fgj492je',
 key: 'werxhqb98rpaxn39848xrunpaw3489ruxnpa98w4rxn',
 algorithm: 'sha256'
}

// Request options

var requestOptions = {
 uri: 'http://example.com:8000/resource/1?b=1&a=2',
 method: 'GET',
 headers: {}
};

// Generate Authorization request header

var header = Hawk.client.header('http://example.com:8000/resource/1?b=1&a=2', 'GET', { credentials: credentials, ext: 'some-app-data' });
requestOptions.headers.Authorization = header.field;

// Send authenticated request

Request(requestOptions, function (error, response, body) {

 // Authenticate the server's response

 var isValid = Hawk.client.authenticate(response, credentials, header.artifacts, { payload: body });

 // Output results

 console.log(response.statusCode + ': ' + body + (isValid ? ' (valid)' : ' (invalid)'));
});

Hawk utilized the SNTP [https://github.com/hueniverse/sntp] module for time sync management. By default, the local
machine time is used. To automatically retrieve and synchronice the clock within the application, use the SNTP ‘start()’ method.

Hawk.sntp.start();

Protocol Example

The client attempts to access a protected resource without authentication, sending the following HTTP request to
the resource server:

GET /resource/1?b=1&a=2 HTTP/1.1
Host: example.com:8000

The resource server returns an authentication challenge.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Hawk

The client has previously obtained a set of Hawk credentials for accessing resources on the “http://example.com/”
server. The Hawk credentials issued to the client include the following attributes:

		Key identifier: dh37fgj492je

		Key: werxhqb98rpaxn39848xrunpaw3489ruxnpa98w4rxn

		Algorithm: sha256

The client generates the authentication header by calculating a timestamp (e.g. the number of seconds since January 1,
1970 00:00:00 GMT), generating a nonce, and constructing the normalized request string (each value followed by a newline
character):

hawk.1.header
1353832234
j4h3g2
GET
/resource/1?b=1&a=2
example.com
8000

some-app-ext-data

The request MAC is calculated using HMAC with the specified hash algorithm “sha256” and the key over the normalized request string.
The result is base64-encoded to produce the request MAC:

6R4rV5iE+NPoym+WwjeHzjAGXUtLNIxmo1vpMofpLAE=

The client includes the Hawk key identifier, timestamp, nonce, application specific data, and request MAC with the request using
the HTTP Authorization request header field:

GET /resource/1?b=1&a=2 HTTP/1.1
Host: example.com:8000
Authorization: Hawk id="dh37fgj492je", ts="1353832234", nonce="j4h3g2", ext="some-app-ext-data", mac="6R4rV5iE+NPoym+WwjeHzjAGXUtLNIxmo1vpMofpLAE="

The server validates the request by calculating the request MAC again based on the request received and verifies the validity
and scope of the Hawk credentials. If valid, the server responds with the requested resource.

Payload Validation

Hawk provides optional payload validation. When generating the authentication header, the client calculates a payload hash
using the specified hash algorithm. The hash is calculated over the concatenated value of (each followed by a newline character):

		hawk.1.payload

		the content-type in lowercase, without any parameters (e.g. application/json)

		the request payload prior to any content encoding (the exact representation requirements should be specified by the server for payloads other than simple single-part ascii to ensure interoperability)

For example:

		Payload: Thank you for flying Hawk

		Content Type: text/plain

		Hash (sha256): Yi9LfIIFRtBEPt74PVmbTF/xVAwPn7ub15ePICfgnuY=

Results in the following input to the payload hash function (newline terminated values):

hawk.1.payload
text/plain
Thank you for flying Hawk

Which produces the following hash value:

Yi9LfIIFRtBEPt74PVmbTF/xVAwPn7ub15ePICfgnuY=

The client constructs the normalized request string (newline terminated values):

hawk.1.header
1353832234
j4h3g2
POST
/resource/1?a=1&b=2
example.com
8000
Yi9LfIIFRtBEPt74PVmbTF/xVAwPn7ub15ePICfgnuY=
some-app-ext-data

Then calculates the request MAC and includes the Hawk key identifier, timestamp, nonce, payload hash, application specific data,
and request MAC, with the request using the HTTP Authorization request header field:

POST /resource/1?a=1&b=2 HTTP/1.1
Host: example.com:8000
Authorization: Hawk id="dh37fgj492je", ts="1353832234", nonce="j4h3g2", hash="Yi9LfIIFRtBEPt74PVmbTF/xVAwPn7ub15ePICfgnuY=", ext="some-app-ext-data", mac="aSe1DERmZuRl3pI36/9BdZmnErTw3sNzOOAUlfeKjVw="

It is up to the server if and when it validates the payload for any given request, based solely on it’s security policy
and the nature of the data included.

If the payload is available at the time of authentication, the server uses the hash value provided by the client to construct
the normalized string and validates the MAC. If the MAC is valid, the server calculates the payload hash and compares the value
with the provided payload hash in the header. In many cases, checking the MAC first is faster than calculating the payload hash.

However, if the payload is not available at authentication time (e.g. too large to fit in memory, streamed elsewhere, or processed
at a different stage in the application), the server may choose to defer payload validation for later by retaining the hash value
provided by the client after validating the MAC.

It is important to note that MAC validation does not mean the hash value provided by the client is valid, only that the value
included in the header was not modified. Without calculating the payload hash on the server and comparing it to the value provided
by the client, the payload may be modified by an attacker.

Response Payload Validation

Hawk provides partial response payload validation. The server includes the Server-Authorization response header which enables the
client to authenticate the response and ensure it is talking to the right server. Hawk defines the HTTP Server-Authorization header
as a response header using the exact same syntax as the Authorization request header field.

The header is contructed using the same process as the client’s request header. The server uses the same credentials and other
artifacts provided by the client to constructs the normalized request string. The ext and hash values are replaced with
new values based on the server response. The rest as identical to those used by the client.

The result MAC digest is included with the optional hash and ext values:

Server-Authorization: Hawk mac="XIJRsMl/4oL+nn+vKoeVZPdCHXB4yJkNnBbTbHFZUYE=", hash="f9cDF/TDm7TkYRLnGwRMfeDzT6LixQVLvrIKhh0vgmM=", ext="response-specific"

Browser Support and Considerations

A browser script is provided for including using a <script> tag in lib/browser.js.

Hawk relies on the Server-Authorization and WWW-Authenticate headers in its response to communicate with the client.
Therefore, in case of CORS requests, it is important to consider sending Access-Control-Expose-Headers with the value
“WWW-Authenticate, Server-Authorization” on each response from your server. As explained in the
specifications [http://www.w3.org/TR/cors/#access-control-expose-headers-response-header], it will indicate that these headers
can safely be accessed by the client (using getResponseHeader() on the XmlHttpRequest object). Otherwise you will be met with a
“simple response header” [http://www.w3.org/TR/cors/#simple-response-header] which excludes these fields and would prevent the
Hawk client from authenticating the requests.You can read more about the why and how in this
article [http://www.html5rocks.com/en/tutorials/cors/#toc-adding-cors-support-to-the-server]

Single URI Authorization

There are cases in which limited and short-term access to a protected resource is granted to a third party which does not
have access to the shared credentials. For example, displaying a protected image on a web page accessed by anyone. Hawk
provides limited support for such URIs in the form of a bewit - a URI query parameter appended to the request URI which contains
the necessary credentials to authenticate the request.

Because of the significant security risks involved in issuing such access, bewit usage is purposely limited only to GET requests
and for a finite period of time. Both the client and server can issue bewit credentials, however, the server should not use the same
credentials as the client to maintain clear traceability as to who issued which credentials.

In order to simplify implementation, bewit credentials do not support single-use policy and can be replayed multiple times within
the granted access timeframe.

Bewit Usage Example

Server code:

var Http = require('http');
var Hawk = require('hawk');

// Credentials lookup function

var credentialsFunc = function (id, callback) {

 var credentials = {
 key: 'werxhqb98rpaxn39848xrunpaw3489ruxnpa98w4rxn',
 algorithm: 'sha256'
 };

 return callback(null, credentials);
};

// Create HTTP server

var handler = function (req, res) {

 Hawk.uri.authenticate(req, credentialsFunc, {}, function (err, credentials, attributes) {

 res.writeHead(!err ? 200 : 401, { 'Content-Type': 'text/plain' });
 res.end(!err ? 'Access granted' : 'Shoosh!');
 });
};

Http.createServer(handler).listen(8000, 'example.com');

Bewit code generation:

var Request = require('request');
var Hawk = require('hawk');

// Client credentials

var credentials = {
 id: 'dh37fgj492je',
 key: 'werxhqb98rpaxn39848xrunpaw3489ruxnpa98w4rxn',
 algorithm: 'sha256'
}

// Generate bewit

var duration = 60 * 5; // 5 Minutes
var bewit = Hawk.uri.getBewit('http://example.com:8080/resource/1?b=1&a=2', { credentials: credentials, ttlSec: duration, ext: 'some-app-data' });
var uri = 'http://example.com:8000/resource/1?b=1&a=2' + '&bewit=' + bewit;

Security Considerations

The greatest sources of security risks are usually found not in Hawk but in the policies and procedures surrounding its use.
Implementers are strongly encouraged to assess how this module addresses their security requirements. This section includes
an incomplete list of security considerations that must be reviewed and understood before deploying Hawk on the server.
Many of the protections provided in Hawk depends on whether and how they are used.

MAC Keys Transmission

Hawk does not provide any mechanism for obtaining or transmitting the set of shared credentials required. Any mechanism used
to obtain Hawk credentials must ensure that these transmissions are protected using transport-layer mechanisms such as TLS.

Confidentiality of Requests

While Hawk provides a mechanism for verifying the integrity of HTTP requests, it provides no guarantee of request
confidentiality. Unless other precautions are taken, eavesdroppers will have full access to the request content. Servers should
carefully consider the types of data likely to be sent as part of such requests, and employ transport-layer security mechanisms
to protect sensitive resources.

Spoofing by Counterfeit Servers

Hawk provides limited verification of the server authenticity. When receiving a response back from the server, the server
may choose to include a response Server-Authorization header which the client can use to verify the response. However, it is up to
the server to determine when such measure is included, to up to the client to enforce that policy.

A hostile party could take advantage of this by intercepting the client’s requests and returning misleading or otherwise
incorrect responses. Service providers should consider such attacks when developing services using this protocol, and should
require transport-layer security for any requests where the authenticity of the resource server or of server responses is an issue.

Plaintext Storage of Credentials

The Hawk key functions the same way passwords do in traditional authentication systems. In order to compute the request MAC,
the server must have access to the key in plaintext form. This is in contrast, for example, to modern operating systems, which
store only a one-way hash of user credentials.

If an attacker were to gain access to these keys - or worse, to the server’s database of all such keys - he or she would be able
to perform any action on behalf of any resource owner. Accordingly, it is critical that servers protect these keys from unauthorized
access.

Entropy of Keys

Unless a transport-layer security protocol is used, eavesdroppers will have full access to authenticated requests and request
MAC values, and will thus be able to mount offline brute-force attacks to recover the key used. Servers should be careful to
assign keys which are long enough, and random enough, to resist such attacks for at least the length of time that the Hawk
credentials are valid.

For example, if the credentials are valid for two weeks, servers should ensure that it is not possible to mount a brute force
attack that recovers the key in less than two weeks. Of course, servers are urged to err on the side of caution, and use the
longest key reasonable.

It is equally important that the pseudo-random number generator (PRNG) used to generate these keys be of sufficiently high
quality. Many PRNG implementations generate number sequences that may appear to be random, but which nevertheless exhibit
patterns or other weaknesses which make cryptanalysis or brute force attacks easier. Implementers should be careful to use
cryptographically secure PRNGs to avoid these problems.

Coverage Limitations

The request MAC only covers the HTTP Host header and optionally the Content-Type header. It does not cover any other headers
which can often affect how the request body is interpreted by the server. If the server behavior is influenced by the presence
or value of such headers, an attacker can manipulate the request headers without being detected. Implementers should use the
ext feature to pass application-specific information via the Authorization header which is protected by the request MAC.

The response authentication, when performed, only covers the response payload, content-type, and the request information
provided by the client in it’s request (method, resource, timestamp, nonce, etc.). It does not cover the HTTP status code or
any other response header field (e.g. Location) which can affect the client’s behaviour.

Future Time Manipulation

The protocol relies on a clock sync between the client and server. To accomplish this, the server informs the client of its
current time when an invalid timestamp is received.

If an attacker is able to manipulate this information and cause the client to use an incorrect time, it would be able to cause
the client to generate authenticated requests using time in the future. Such requests will fail when sent by the client, and will
not likely leave a trace on the server (given the common implementation of nonce, if at all enforced). The attacker will then
be able to replay the request at the correct time without detection.

The client must only use the time information provided by the server if:

		it was delivered over a TLS connection and the server identity has been verified, or

		the tsm MAC digest calculated using the same client credentials over the timestamp has been verified.

Client Clock Poisoning

When receiving a request with a bad timestamp, the server provides the client with its current time. The client must never use
the time received from the server to adjust its own clock, and must only use it to calculate an offset for communicating with
that particular server.

Bewit Limitations

Special care must be taken when issuing bewit credentials to third parties. Bewit credentials are valid until expiration and cannot
be revoked or limited without using other means. Whatever resource they grant access to will be completely exposed to anyone with
access to the bewit credentials which act as bearer credentials for that particular resource. While bewit usage is limited to GET
requests only and therefore cannot be used to perform transactions or change server state, it can still be used to expose private
and sensitive information.

Host Header Forgery

Hawk validates the incoming request MAC against the incoming HTTP Host header. However, unless the optional host and port
options are used with server.authenticate(), a malicous client can mint new host names pointing to the server’s IP address and
use that to craft an attack by sending a valid request that’s meant for another hostname than the one used by the server. Server
implementors must manually verify that the host header received matches their expectation (or use the options mentioned above).

Frequently Asked Questions

Where is the protocol specification?

If you are looking for some prose explaining how all this works, this is it. Hawk is being developed as an open source
project instead of a standard. In other words, the code is the specification. Not sure about
something? Open an issue!

Is it done?

At if version 0.10.0, Hawk is feature-complete. However, until this module reaches version 1.0.0 it is considered experimental
and is likely to change. This also means your feedback and contribution are very welcome. Feel free to open issues with questions
and suggestions.

Where can I find Hawk implementations in other languages?

Hawk‘s only reference implementation is provided in JavaScript as a node.js module. However, it has been ported to other languages.
The full list is maintained here [https://github.com/hueniverse/hawk/issues?labels=port&state=closed]. Please add an issue if you are
working on another port. A cross-platform test-suite is in the works.

Why isn’t the algorithm part of the challenge or dynamically negotiated?

The algorithm used is closely related to the key issued as different algorithms require different key sizes (and other
requirements). While some keys can be used for multiple algorithm, the protocol is designed to closely bind the key and algorithm
together as part of the issued credentials.

Why is Host and Content-Type the only headers covered by the request MAC?

It is really hard to include other headers. Headers can be changed by proxies and other intermediaries and there is no
well-established way to normalize them. Many platforms change the case of header field names and values. The only
straight-forward solution is to include the headers in some blob (say, base64 encoded JSON) and include that with the request,
an approach taken by JWT and other such formats. However, that design violates the HTTP header boundaries, repeats information,
and introduces other security issues because firewalls will not be aware of these “hidden” headers. In addition, any information
repeated must be compared to the duplicated information in the header and therefore only moves the problem elsewhere.

Why not just use HTTP Digest?

Digest requires pre-negotiation to establish a nonce. This means you can’t just make a request - you must first send
a protocol handshake to the server. This pattern has become unacceptable for most web services, especially mobile
where extra round-trip are costly.

Why bother with all this nonce and timestamp business?

Hawk is an attempt to find a reasonable, practical compromise between security and usability. OAuth 1.0 got timestamp
and nonces halfway right but failed when it came to scalability and consistent developer experience. Hawk addresses
it by requiring the client to sync its clock, but provides it with tools to accomplish it.

In general, replay protection is a matter of application-specific threat model. It is less of an issue on a TLS-protected
system where the clients are implemented using best practices and are under the control of the server. Instead of dropping
replay protection, Hawk offers a required time window and an optional nonce verification. Together, it provides developers
with the ability to decide how to enforce their security policy without impacting the client’s implementation.

What are app and dlg in the authorization header and normalized mac string?

The original motivation for Hawk was to replace the OAuth 1.0 use cases. This included both a simple client-server mode which
this module is specifically designed for, and a delegated access mode which is being developed separately in
Oz [https://github.com/hueniverse/oz]. In addition to the Hawk use cases, Oz requires another attribute: the application id app.
This provides binding between the credentials and the application in a way that prevents an attacker from tricking an application
to use credentials issued to someone else. It also has an optional ‘delegated-by’ attribute dlg which is the application id of the
application the credentials were directly issued to. The goal of these two additions is to allow Oz to utilize Hawk directly,
but with the additional security of delegated credentials.

What is the purpose of the static strings used in each normalized MAC input?

When calculating a hash or MAC, a static prefix (tag) is added. The prefix is used to prevent MAC values from being
used or reused for a purpose other than what they were created for (i.e. prevents switching MAC values between a request,
response, and a bewit use cases). It also protects against expliots created after a potential change in how the protocol
creates the normalized string. For example, if a future version would switch the order of nonce and timestamp, it
can create an exploit opportunity for cases where the nonce is similar in format to a timestamp.

Does Hawk have anything to do with OAuth?

Short answer: no.

Hawk was originally proposed as the OAuth MAC Token specification. However, the OAuth working group in its consistent
incompetence failed to produce a final, usable solution to address one of the most popular use cases of OAuth 1.0 - using it
to authenticate simple client-server transactions (i.e. two-legged). As you can guess, the OAuth working group is still hard
at work to produce more garbage.

Hawk provides a simple HTTP authentication scheme for making client-server requests. It does not address the OAuth use case
of delegating access to a third party. If you are looking for an OAuth alternative, check out Oz [https://github.com/hueniverse/oz].

Acknowledgements

Hawk is a derivative work of the HTTP MAC Authentication Scheme [http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-05] proposal
co-authored by Ben Adida, Adam Barth, and Eran Hammer, which in turn was based on the OAuth 1.0 community specification.

Special thanks to Ben Laurie for his always insightful feedback and advice.

The Hawk logo was created by Chris Carrasco [http://chriscarrasco.com].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/aws-sign2/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

aws-sign

AWS signing. Originally pulled from LearnBoost/knox, maintained as vendor in request, now a standalone module.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/hawk/node_modules/cryptiles/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cryptiles

General purpose crypto utilities

[image: Build Status] [http://travis-ci.org/hueniverse/cryptiles]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/hawk/node_modules/sntp/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sntp

An SNTP v4 client (RFC4330) for node. Simpy connects to the NTP or SNTP server requested and returns the server time
along with the roundtrip duration and clock offset. To adjust the local time to the NTP time, add the returned t offset
to the local time.

[image: Build Status] [http://travis-ci.org/hueniverse/sntp]

Usage

var Sntp = require('sntp');

// All options are optional

var options = {
 host: 'nist1-sj.ustiming.org', // Defaults to pool.ntp.org
 port: 123, // Defaults to 123 (NTP)
 resolveReference: true, // Default to false (not resolving)
 timeout: 1000 // Defaults to zero (no timeout)
};

// Request server time

Sntp.time(options, function (err, time) {

 if (err) {
 console.log('Failed: ' + err.message);
 process.exit(1);
 }

 console.log('Local clock is off by: ' + time.t + ' milliseconds');
 process.exit(0);
});

If an application needs to maintain continuous time synchronization, the module provides a stateful method for
querying the current offset only when the last one is too old (defaults to daily).

// Request offset once

Sntp.offset(function (err, offset) {

 console.log(offset); // New (served fresh)

 // Request offset again

 Sntp.offset(function (err, offset) {

 console.log(offset); // Identical (served from cache)
 });
});

To set a background offset refresh, start the interval and use the provided now() method. If for any reason the
client fails to obtain an up-to-date offset, the current system clock is used.

var before = Sntp.now(); // System time without offset

Sntp.start(function () {

 var now = Sntp.now(); // With offset
 Sntp.stop();
});

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/hawk/node_modules/boom/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image:]
[image: boom Logo]

HTTP-friendly error objects

[image: Build Status] [http://travis-ci.org/spumko/boom]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/hawk/node_modules/hoek/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image:]
[image: hoek Logo]

General purpose node utilities

[image: Build Status] [http://travis-ci.org/spumko/hoek]

Table of Contents

		Introduction

		Object
		clone

		merge

		applyToDefaults

		unique

		mapToObject

		intersect

		matchKeys

		flatten

		removeKeys

		reach

		inheritAsync

		rename

		Timer

		Binary Encoding/Decoding
		base64urlEncode

		base64urlDecode

		Escaping Characters
		escapeHtml

		escapeHeaderAttribute

		escapeRegex

		Errors
		assert

		abort

		displayStack

		callStack

		toss

		Load files
		loadPackage

		loadDirModules

Introduction

The Hoek general purpose node utilities library is used to aid in a variety of manners. It comes with useful methods for Arrays (clone, merge, applyToDefaults), Objects (removeKeys, copy), Asserting and more.

For example, to use Hoek to set configuration with default options:

var Hoek = require('hoek');

var default = {url : "www.github.com", port : "8000", debug : true}

var config = Hoek.applyToDefaults(default, {port : "3000", admin : true});

// In this case, config would be { url: 'www.github.com', port: '3000', debug: true, admin: true }

Under each of the sections (such as Array), there are subsections which correspond to Hoek methods. Each subsection will explain how to use the corresponding method. In each js excerpt below, the var Hoek = require(‘hoek’) is omitted for brevity.

Object

Hoek provides several helpful methods for objects and arrays.

clone(obj)

This method is used to clone an object or an array. A deep copy is made (duplicates everything, including values that are objects).

var nestedObj = {
 w: /^something$/ig,
 x: {
 a: [1, 2, 3],
 b: 123456,
 c: new Date()
 },
 y: 'y',
 z: new Date()
 };

var copy = Hoek.clone(nestedObj);

copy.x.b = 100;

console.log(copy.y) // results in 'y'
console.log(nestedObj.x.b) // results in 123456
console.log(copy.x.b) // results in 100

merge(target, source, isNullOverride, isMergeArrays)

isNullOverride, isMergeArrays default to true

Merge all the properties of source into target, source wins in conflic, and by default null and undefined from source are applied

var target = {a: 1, b : 2}
var source = {a: 0, c: 5}
var source2 = {a: null, c: 5}

var targetArray = [1, 2, 3];
var sourceArray = [4, 5];

var newTarget = Hoek.merge(target, source); // results in {a: 0, b: 2, c: 5}
newTarget = Hoek.merge(target, source2); // results in {a: null, b: 2, c: 5}
newTarget = Hoek.merge(target, source2, false); // results in {a: 1, b: 2, c: 5}

newTarget = Hoek.merge(targetArray, sourceArray) // results in [1, 2, 3, 4, 5]
newTarget = Hoek.merge(targetArray, sourceArray, true, false) // results in [4, 5]

applyToDefaults(defaults, options)

Apply options to a copy of the defaults

var defaults = {host: "localhost", port: 8000};
var options = {port: 8080};

var config = Hoek.applyToDefaults(defaults, options); // results in {host: "localhost", port: 8080};

unique(array, key)

Remove duplicate items from Array

var array = [1, 2, 2, 3, 3, 4, 5, 6];

var newArray = Hoek.unique(array); // results in [1,2,3,4,5,6];

array = [{id: 1}, {id: 1}, {id: 2}];

newArray = Hoek.unique(array, "id") // results in [{id: 1}, {id: 2}]

mapToObject(array, key)

Convert an Array into an Object

var array = [1,2,3];
var newObject = Hoek.mapToObject(array); // results in [{"1": true}, {"2": true}, {"3": true}]

array = [{id: 1}, {id: 2}];
newObject = Hoek.mapToObject(array, "id") // results in [{"id": 1}, {"id": 2}]

intersect(array1, array2)

Find the common unique items in two arrays

var array1 = [1, 2, 3];
var array2 = [1, 4, 5];

var newArray = Hoek.intersect(array1, array2) // results in [1]

matchKeys(obj, keys)

Find which keys are present

var obj = {a: 1, b: 2, c: 3};
var keys = ["a", "e"];

Hoek.matchKeys(obj, keys) // returns ["a"]

flatten(array, target)

Flatten an array

var array = [1, 2, 3];
var target = [4, 5];

var flattenedArray = Hoek.flatten(array, target) // results in [4, 5, 1, 2, 3];

removeKeys(object, keys)

Remove keys

var object = {a: 1, b: 2, c: 3, d: 4};

var keys = ["a", "b"];

Hoek.removeKeys(object, keys) // object is now {c: 3, d: 4}

reach(obj, chain)

Converts an object key chain string to reference

var chain = 'a.b.c';
var obj = {a : {b : { c : 1}}};

Hoek.reach(obj, chain) // returns 1

inheritAsync(self, obj, keys)

Inherits a selected set of methods from an object, wrapping functions in asynchronous syntax and catching errors

var targetFunc = function () { };

var proto = {
 a: function () {
 return 'a!';
 },
 b: function () {
 return 'b!';
 },
 c: function () {
 throw new Error('c!');
 }
 };

var keys = ['a', 'c'];

Hoek.inheritAsync(targetFunc, proto, ['a', 'c']);

var target = new targetFunc();

target.a(function(err, result){console.log(result)} // returns 'a!'

target.c(function(err, result){console.log(result)} // returns undefined

target.b(function(err, result){console.log(result)} // gives error: Object [object Object] has no method 'b'

rename(obj, from, to)

Rename a key of an object

var obj = {a : 1, b : 2};

Hoek.rename(obj, "a", "c"); // obj is now {c : 1, b : 2}

Timer

A Timer object. Initializing a new timer object sets the ts to the number of milliseconds elapsed since 1 January 1970 00:00:00 UTC.

example :

var timerObj = new Hoek.Timer();
console.log("Time is now: " + timerObj.ts)
console.log("Elapsed time from initialization: " + timerObj.elapsed() + 'milliseconds')

Binary Encoding/Decoding

base64urlEncode(value)

Encodes value in Base64 or URL encoding

base64urlDecode(value)

Decodes data in Base64 or URL encoding.

Escaping Characters

Hoek provides convenient methods for escaping html characters. The escaped characters are as followed:

internals.htmlEscaped = {
 '&': '&',
 '<': '<',
 '>': '>',
 '"': '"',
 "'": ''',
 '`': '`'
};

escapeHtml(string)

var string = '<html> hey </html>';
var escapedString = Hoek.escapeHtml(string); // returns <html> hey </html>

escapeHeaderAttribute(attribute)

Escape attribute value for use in HTTP header

var a = Hoek.escapeHeaderAttribute('I said "go w\\o me"'); //returns I said \"go w\\o me\"

escapeRegex(string)

Escape string for Regex construction

var a = Hoek.escapeRegex('4^f$s.4*5+-_?%=#!:@|~\\/`"(>)[<]d{}s,'); // returns 4\^f\$s\.4*5\+\-_\?%\=#\!\:@\|~\\\/`"\(>\)\[<\]d\{\}s\,

Errors

assert(message)

var a = 1, b =2;

Hoek.assert(a === b, 'a should equal b'); // ABORT: a should equal b

abort(message)

First checks if process.env.NODE_ENV === ‘test’, and if so, throws error message. Otherwise,
displays most recent stack and then exits process.

displayStack(slice)

Displays the trace stack

var stack = Hoek.displayStack();
console.log(stack) // returns something like:

['null (/Users/user/Desktop/hoek/test.js:4:18)',
 'Module._compile (module.js:449:26)',
 'Module._extensions..js (module.js:467:10)',
 'Module.load (module.js:356:32)',
 'Module._load (module.js:312:12)',
 'Module.runMain (module.js:492:10)',
 'startup.processNextTick.process._tickCallback (node.js:244:9)']

callStack(slice)

Returns a trace stack array.

var stack = Hoek.callStack();
console.log(stack) // returns something like:

[['/Users/user/Desktop/hoek/test.js', 4, 18, null, false],
 ['module.js', 449, 26, 'Module._compile', false],
 ['module.js', 467, 10, 'Module._extensions..js', false],
 ['module.js', 356, 32, 'Module.load', false],
 ['module.js', 312, 12, 'Module._load', false],
 ['module.js', 492, 10, 'Module.runMain', false],
 ['node.js',
 244,
 9,
 'startup.processNextTick.process._tickCallback',
 false]]

toss(condition)

toss(condition /*, [message], callback */)

Return an error as first argument of a callback

Load Files

loadPackage(dir)

Load and parse package.json process root or given directory

var pack = Hoek.loadPackage(); // pack.name === 'hoek'

loadDirModules(path, excludeFiles, target)

Loads modules from a given path; option to exclude files (array).

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/stringstream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Decode streams into strings The Right Way(tm)

var fs = require('fs')
var zlib = require('zlib')
var strs = require('stringstream')

var utf8Stream = fs.createReadStream('massiveLogFile.gz')
 .pipe(zlib.createGunzip())
 .pipe(strs('utf8'))

No need to deal with setEncoding() weirdness, just compose streams
like they were supposed to be!

Handles input and output encoding:

// Stream from utf8 to hex to base64... Why not, ay.
var hex64Stream = fs.createReadStream('myFile')
 .pipe(strs('utf8', 'hex'))
 .pipe(strs('hex', 'base64'))

Also deals with base64 output correctly by aligning each emitted data
chunk so that there are no dangling = characters:

var stream = fs.createReadStream('myFile').pipe(strs('base64'))

var base64Str = ''

stream.on('data', function(data) { base64Str += data })
stream.on('end', function() {
 console.log('My base64 encoded file is: ' + base64Str) // Wouldn't work with setEncoding()
 console.log('Original file is: ' + new Buffer(base64Str, 'base64'))
})

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/oauth-sign/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

oauth-sign

OAuth 1 signing. Formerly a vendor lib in mikeal/request, now a standalone module.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/qs/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Please view our hapijs contributing guide [https://github.com/hapijs/hapi/blob/master/CONTRIBUTING.md].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/forever-agent/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

forever-agent

HTTP Agent that keeps socket connections alive between keep-alive requests. Formerly part of mikeal/request, now a standalone module.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/underscore/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 __
 /\ \ __
 __ __ ___ _\ \ __ _ __ ____ ___ ___ _ __ __ /_\ ____
/\ \/\ \ /' _ `\ /'_ \ /'__`\/\ __\/ ,__\ / ___\ / __`\/\ __\/'__`\ \/\ \ /',__\
\ \ _\ \/\ \/\ \/\ \ \ \/\ __/\ \ \//__, `\/\ __//\ \ \ \ \ \//\ __/ __ \ \ \/__, `\
 \ ____/\ _\ _\ ___,_\ ____\\ _\\/____/\ ____\ ____/\ _\\ ____\/_\ _\ \ \/____/
 \/___/ \/_/\/_/\/__,_ /\/____/ \/_/ \/___/ \/____/\/___/ \/_/ \/____/\/_//\ _\ \/___/
 \ ____/
 \/___/

Underscore.js is a utility-belt library for JavaScript that provides
support for the usual functional suspects (each, map, reduce, filter...)
without extending any core JavaScript objects.

For Docs, License, Tests, and pre-packed downloads, see:
http://underscorejs.org

Underscore is an open-sourced component of DocumentCloud:
https://github.com/documentcloud

Many thanks to our contributors:
https://github.com/jashkenas/underscore/contributors

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/consolidate/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.10.0 / 2013-11-23

		add lodash support

		add nunjucks support

0.9.1 / 2013-04-29

		Update ECT version

		Added support for Handlebars helpers with test.

		Invalidates built-in dust cache if caching disabled

0.9.0 / 2013-03-28

		dust-helpers support, latest version of dust

		Re-add doT - global leaks fixed

		improving templayed support

0.8.0 / 2013-01-23

		add templayed support

		add then-jade as an alternative to jade

0.7.0 / 2012-12-28

		add atpl support

0.6.0 2012-12-22

		add partials support

		add support for toffee templates

		remove dot it still leaks and the author has not fixed it

0.5.0 / 2012-10-29

		add mote support

		add support to dust partials

		add support for ECT

		add support for rendering without file

		add support for JUST

		improve Haml-Coffee caching.

0.4.0 / 2012-07-30

		add doT support [sannis]

		add mustache support [ForbesLindesay]

		add walrus support [kagd]

0.3.1 / 2012-06-28

		add QEJS support

		add underscore support

		change whiskers to use pre-defined .__express

		remove engines. Closes #37

		remove kernel, cannot comply with our caching

0.3.0 / 2012-04-18

		Added partials loading for whiskers [gsf]

		Added dustjs-linkedin support

0.2.0 / 2012-04-04

		Added support for dust [fatjonny]

		Added handlebars support [jstewmon]

0.1.0 / 2012-01-03

		Added support for several more engines

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/muri/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.3.1 / 2013-02-17

		fixed; allow ‘#’ in username and password #3

0.3.0 / 2013-01-14

		fixed; default db logic #2

0.2.0 / 2013-01-09

		changed; default db is now ‘test’

0.1.0 / 2012-12-18

		changed; include .sock in UDS

0.0.5 / 2012-12-18

		fixed; unix domain sockets used with db names

0.0.4 / 2012-12-01

		handle multple specified protocols

0.0.3 / 2012-11-29

		validate mongodb:///db

		more detailed error message

0.0.2 / 2012-11-02

		add readPreferenceTags support

		add unix domain support

0.0.1 / 2012-11-01

		initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/node_modules/inflight/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

inflight

Add callbacks to requests in flight to avoid async duplication

USAGE

var inflight = require('inflight')

// some request that does some stuff
function req(key, callback) {
 // key is any random string. like a url or filename or whatever.
 //
 // will return either a falsey value, indicating that the
 // request for this key is already in flight, or a new callback
 // which when called will call all callbacks passed to inflightk
 // with the same key
 callback = inflight(key, callback)

 // If we got a falsey value back, then there's already a req going
 if (!callback) return

 // this is where you'd fetch the url or whatever
 // callback is also once()-ified, so it can safely be assigned
 // to multiple events etc. First call wins.
 setTimeout(function() {
 callback(null, key)
 }, 100)
}

// only assigns a single setTimeout
// when it dings, all cbs get called
req('foo', cb1)
req('foo', cb2)
req('foo', cb3)
req('foo', cb4)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/muri/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #Meet Muri!

Muri is your friendly neighborhood MongoDB URI [http://www.mongodb.org/display/DOCS/Connections] parser for Node.js.

###Install

$ npm install muri

###Use

 var muri = require('muri');
 var o = muri('mongodb://user:pass@local,remote:27018,japan:27019/neatdb?replicaSet=myreplset&journal=true&w=2&wtimeoutMS=50');

 console.log(o);

 { hosts: [{ host: 'local', port: 27017 },
 { host: 'remote', port: 27018 },
 { host: 'japan', port: 27019 }],
 db: 'neatdb',
 options: {
 replicaSet: 'myreplset',
 journal: true,
 w: 2,
 wtimeoutMS: 50
 },
 auth: {
 user: 'user',
 pass: 'pass'
 }
 }

Details

The returned object contains the following properties:

		db: the name of the database. defaults to “admin” if not specified

		auth: if auth is specified, this object will exist { user: 'username', pass: 'password' }

		hosts: array of host/port objects, one for each specified [{ host: 'local', port: 27107 }, { host: '..', port: port }]
		if a port is not specified for a given host, the default port (27017) is used

		if a unix domain socket is passed, host/port will be undefined and ipc will be set to the value specified [{ ipc: '/tmp/mongodb-27017' }]

		options: this is a hash of all options specified in the querystring

LICENSE [https://github.com/aheckmann/muri/blob/master/LICENSE]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [https://travis-ci.org/isaacs/node-glob/] [image: Dependency Status] [https://david-dm.org/isaacs/node-glob] [image: devDependency Status] [https://david-dm.org/isaacs/node-glob#info=devDependencies] [image: optionalDependency Status] [https://david-dm.org/isaacs/node-glob#info=optionalDependencies]

Glob

Match files using the patterns the shell uses, like stars and stuff.

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

[image:]

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Glob Primer

“Globs” are the patterns you type when you do stuff like ls *.js on
the command line, or put build/* in a .gitignore file.

Before parsing the path part patterns, braced sections are expanded
into a set. Braced sections start with { and end with }, with any
number of comma-delimited sections within. Braced sections may contain
slash characters, so a{/b/c,bcd} would expand into a/b/c and abcd.

The following characters have special magic meaning when used in a
path portion:

		* Matches 0 or more characters in a single path portion

		? Matches 1 character

		[...] Matches a range of characters, similar to a RegExp range.
If the first character of the range is ! or ^ then it matches
any character not in the range.

		!(pattern|pattern|pattern) Matches anything that does not match
any of the patterns provided.

		?(pattern|pattern|pattern) Matches zero or one occurrence of the
patterns provided.

		+(pattern|pattern|pattern) Matches one or more occurrences of the
patterns provided.

		*(a|b|c) Matches zero or more occurrences of the patterns provided

		@(pattern|pat*|pat?erN) Matches exactly one of the patterns
provided

		** If a “globstar” is alone in a path portion, then it matches
zero or more directories and subdirectories searching for matches.
It does not crawl symlinked directories.

Dots

If a file or directory path portion has a . as the first character,
then it will not match any glob pattern unless that pattern’s
corresponding path part also has a . as its first character.

For example, the pattern a/.*/c would match the file at a/.b/c.
However the pattern a/*/c would not, because * does not start with
a dot character.

You can make glob treat dots as normal characters by setting
dot:true in the options.

Basename Matching

If you set matchBase:true in the options, and the pattern has no
slashes in it, then it will seek for any file anywhere in the tree
with a matching basename. For example, *.js would match
test/simple/basic.js.

Negation

The intent for negation would be for a pattern starting with ! to
match everything that doesn’t match the supplied pattern. However,
the implementation is weird, and for the time being, this should be
avoided. The behavior will change or be deprecated in version 5.

Empty Sets

If no matching files are found, then an empty array is returned. This
differs from the shell, where the pattern itself is returned. For
example:

$ echo a*s*d*f
a*s*d*f

To get the bash-style behavior, set the nonull:true in the options.

See Also:

		man sh

		man bash (Search for “Pattern Matching”)

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob.hasMagic(pattern, [options])

Returns true if there are any special characters in the pattern, and
false otherwise.

Note that the options affect the results. If noext:true is set in
the options object, then +(a|b) will not be considered a magic
pattern. If the pattern has a brace expansion, like a/{b/c,x/y}
then that is considered magical, unless nobrace:true is set in the
options.

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options])

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instantiating the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

		statCache Collection of all the stat results the glob search
performed.

		cache Convenience object. Each field has the following possible
values:
		false - Path does not exist

		true - Path exists

		'DIR' - Path exists, and is not a directory

		'FILE' - Path exists, and is a directory

		[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir

		statCache Cache of fs.stat results, to prevent statting the same
path multiple times.

		symlinks A record of which paths are symbolic links, which is
relevant in resolving ** patterns.

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		pause Temporarily stop the search

		resume Resume the search

		abort Stop the search forever

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the Glob object, as well.

If you are running many glob operations, you can pass a Glob object
as the options argument to a subsequent operation to shortcut some
stat and readdir calls. At the very least, you may pass in shared
symlinks, statCache, and cache options, so that parallel glob
operations will be sped up by sharing information about the
filesystem.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence.

		silent When an unusual error is encountered when attempting to
read a directory, a warning will be printed to stderr. Set the
silent option to true to suppress these warnings.

		strict When an unusual error is encountered when attempting to
read a directory, the process will just continue on in search of
other matches. Set the strict option to raise an error in these
cases.

		cache See cache property above. Pass in a previously generated
cache object to save some fs calls.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary
to set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		symlinks A cache of known symbolic links. You may pass in a
previously generated symlinks object to save lstat calls when
resolving ** matches.

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set. Set this
flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that
case-insensitive filesystems will sometimes result in glob returning
results that are case-insensitively matched anyway, since readdir
and stat will not raise an error.

		debug Set to enable debug logging in minimatch and glob.

		nobrace Do not expand {a,b} and {1..3} brace sets.

		noglobstar Do not match ** against multiple filenames. (Ie,
treat it as a normal * instead.)

		noext Do not match +(a|b) “extglob” patterns.

		nocase Perform a case-insensitive match. Note: on
case-insensitive filesystems, non-magic patterns will match by
default, since stat and readdir will not raise errors.

		matchBase Perform a basename-only match if the pattern does not
contain any slash characters. That is, *.js would be treated as
equivalent to **/*.js, matching all js files in all directories.

		nonegate Suppress negate behavior. (See below.)

		nocomment Suppress comment behavior. (See below.)

		nonull Return the pattern when no matches are found.

		nodir Do not match directories, only files.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.3, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

Note that symlinked directories are not crawled as part of a **,
though their contents may match against subsequent portions of the
pattern. This prevents infinite loops and duplicates and the like.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes. For the vast majority
of operations, this is never a problem.

Contributing

Any change to behavior (including bugfixes) must come with a test.

Patches that fail tests or reduce performance will be rejected.

to run tests
npm test

to re-generate test fixtures
npm run test-regen

to benchmark against bash/zsh
npm run bench

to profile javascript
npm run prof

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/readable-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readable-stream

Node-core streams for userland

[image: NPM] [https://nodei.co/npm/readable-stream/]
[image: NPM] [https://nodei.co/npm/readable-stream/]

This package is a mirror of the Streams2 and Streams3 implementations in Node-core.

If you want to guarantee a stable streams base, regardless of what version of Node you, or the users of your libraries are using, use readable-stream only and avoid the “stream” module in Node-core.

readable-stream comes in two major versions, v1.0.x and v1.1.x. The former tracks the Streams2 implementation in Node 0.10, including bug-fixes and minor improvements as they are added. The latter tracks Streams3 as it develops in Node 0.11; we will likely see a v1.2.x branch for Node 0.12.

readable-stream uses proper patch-level versioning so if you pin to "~1.0.0" you’ll get the latest Node 0.10 Streams2 implementation, including any fixes and minor non-breaking improvements. The patch-level versions of 1.0.x and 1.1.x should mirror the patch-level versions of Node-core releases. You should prefer the 1.0.x releases for now and when you’re ready to start using Streams3, pin to "~1.1.0"

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/tough-cookie/node_modules/punycode/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Punycode.js [image: Build status] [https://travis-ci.org/bestiejs/punycode.js] [image: Code coverage status] [https://coveralls.io/r/bestiejs/punycode.js] [image: Dependency status] [https://gemnasium.com/bestiejs/punycode.js]

A robust Punycode converter that fully complies to RFC 3492 [http://tools.ietf.org/html/rfc3492] and RFC 5891 [http://tools.ietf.org/html/rfc5891], and works on nearly all JavaScript platforms.

This JavaScript library is the result of comparing, optimizing and documenting different open-source implementations of the Punycode algorithm:

		The C example code from RFC 3492 [http://tools.ietf.org/html/rfc3492#appendix-C]

		punycode.c by Markus W. Scherer (IBM) [http://opensource.apple.com/source/ICU/ICU-400.42/icuSources/common/punycode.c]

		punycode.c by Ben Noordhuis [https://github.com/bnoordhuis/punycode/blob/master/punycode.c]

		JavaScript implementation by some [http://stackoverflow.com/questions/183485/can-anyone-recommend-a-good-free-javascript-for-punycode-to-unicode-conversion/301287#301287]

		punycode.js by Ben Noordhuis [https://github.com/joyent/node/blob/426298c8c1c0d5b5224ac3658c41e7c2a3fe9377/lib/punycode.js] (note: not fully compliant [https://github.com/joyent/node/issues/2072])

This project is bundled [https://github.com/joyent/node/blob/master/lib/punycode.js] with Node.js v0.6.2+ [https://github.com/joyent/node/compare/975f1930b1...61e796decc].

Installation

Via npm [http://npmjs.org/] (only required for Node.js releases older than v0.6.2):

npm install punycode

Via Bower [http://bower.io/]:

bower install punycode

Via Component [https://github.com/component/component]:

component install bestiejs/punycode.js

In a browser:

<script src="punycode.js"></script>

In Narwhal [http://narwhaljs.org/], Node.js [http://nodejs.org/], and RingoJS [http://ringojs.org/]:

var punycode = require('punycode');

In Rhino [http://www.mozilla.org/rhino/]:

load('punycode.js');

Using an AMD loader like RequireJS [http://requirejs.org/]:

require(
 {
 'paths': {
 'punycode': 'path/to/punycode'
 }
 },
 ['punycode'],
 function(punycode) {
 console.log(punycode);
 }
);

API

punycode.decode(string)

Converts a Punycode string of ASCII symbols to a string of Unicode symbols.

// decode domain name parts
punycode.decode('maana-pta'); // 'mañana'
punycode.decode('--dqo34k'); // '☃-⌘'

punycode.encode(string)

Converts a string of Unicode symbols to a Punycode string of ASCII symbols.

// encode domain name parts
punycode.encode('mañana'); // 'maana-pta'
punycode.encode('☃-⌘'); // '--dqo34k'

punycode.toUnicode(input)

Converts a Punycode string representing a domain name or an email address to Unicode. Only the Punycoded parts of the input will be converted, i.e. it doesn’t matter if you call it on a string that has already been converted to Unicode.

// decode domain names
punycode.toUnicode('xn--maana-pta.com');
// → 'mañana.com'
punycode.toUnicode('xn----dqo34k.com');
// → '☃-⌘.com'

// decode email addresses
punycode.toUnicode('джумла@xn--p-8sbkgc5ag7bhce.xn--ba-lmcq');
// → 'джумла@джpумлатест.bрфa'

punycode.toASCII(input)

Converts a Unicode string representing a domain name or an email address to Punycode. Only the non-ASCII parts of the input will be converted, i.e. it doesn’t matter if you call it with a domain that’s already in ASCII.

// encode domain names
punycode.toASCII('mañana.com');
// → 'xn--maana-pta.com'
punycode.toASCII('☃-⌘.com');
// → 'xn----dqo34k.com'

// encode email addresses
punycode.toASCII('джумла@джpумлатест.bрфa');
// → 'джумла@xn--p-8sbkgc5ag7bhce.xn--ba-lmcq'

punycode.ucs2

punycode.ucs2.decode(string)

Creates an array containing the numeric code point values of each Unicode symbol in the string. While JavaScript uses UCS-2 internally [https://mathiasbynens.be/notes/javascript-encoding], this function will convert a pair of surrogate halves (each of which UCS-2 exposes as separate characters) into a single code point, matching UTF-16.

punycode.ucs2.decode('abc');
// → [0x61, 0x62, 0x63]
// surrogate pair for U+1D306 TETRAGRAM FOR CENTRE:
punycode.ucs2.decode('\uD834\uDF06');
// → [0x1D306]

punycode.ucs2.encode(codePoints)

Creates a string based on an array of numeric code point values.

punycode.ucs2.encode([0x61, 0x62, 0x63]);
// → 'abc'
punycode.ucs2.encode([0x1D306]);
// → '\uD834\uDF06'

punycode.version

A string representing the current Punycode.js version number.

Unit tests & code coverage

After cloning this repository, run npm install --dev to install the dependencies needed for Punycode.js development and testing. You may want to install Istanbul globally using npm install istanbul -g.

Once that’s done, you can run the unit tests in Node using npm test or node tests/tests.js. To run the tests in Rhino, Ringo, Narwhal, PhantomJS, and web browsers as well, use grunt test.

To generate the code coverage report, use grunt cover.

Feel free to fork if you see possible improvements!

Author

| [image: twitter/mathias] [https://twitter.com/mathias] |
|—|
| Mathias Bynens [https://mathiasbynens.be/] |

Contributors

| [image: twitter/jdalton] [https://twitter.com/jdalton] |
|—|
| John-David Dalton [http://allyoucanleet.com/] |

License

Punycode.js is available under the MIT [https://mths.be/mit] license.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/kerberos/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

kerberos

Kerberos library for node.js

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/tough-cookie/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 RFC6265 [http://tools.ietf.org/html/rfc6265] Cookies and CookieJar for Node.js

[image: Tough Cookie]

[image: Build Status] [https://travis-ci.org/goinstant/node-cookie]

[image: NPM Stats] [https://npmjs.org/package/tough-cookie]
[image: NPM Downloads]

Synopsis

var tough = require('tough-cookie'); // note: not 'cookie', 'cookies' or 'node-cookie'
var Cookie = tough.Cookie;
var cookie = Cookie.parse(header);
cookie.value = 'somethingdifferent';
header = cookie.toString();

var cookiejar = new tough.CookieJar();
cookiejar.setCookie(cookie, 'http://currentdomain.example.com/path', cb);
// ...
cookiejar.getCookies('http://example.com/otherpath',function(err,cookies) {
 res.headers['cookie'] = cookies.join('; ');
});

Installation

It’s so easy!

npm install tough-cookie

Requires punycode, which should get installed automatically for you. Note that node.js v0.6.2+ bundles punycode by default.

Why the name? NPM modules cookie, cookies and cookiejar were already taken.

API

tough

Functions on the module you get from require('tough-cookie'). All can be used as pure functions and don’t need to be “bound”.

parseDate(string[,strict])

Parse a cookie date string into a Date. Parses according to RFC6265 Section 5.1.1, not Date.parse(). If strict is set to true then leading/trailing non-seperator characters around the time part will cause the parsing to fail (e.g. “Thu, 01 Jan 1970 00:00:010 GMT” has an extra trailing zero but Chrome, an assumedly RFC-compliant browser, treats this as valid).

formatDate(date)

Format a Date into a RFC1123 string (the RFC6265-recommended format).

canonicalDomain(str)

Transforms a domain-name into a canonical domain-name. The canonical domain-name is a trimmed, lowercased, stripped-of-leading-dot and optionally punycode-encoded domain-name (Section 5.1.2 of RFC6265). For the most part, this function is idempotent (can be run again on its output without ill effects).

domainMatch(str,domStr[,canonicalize=true])

Answers “does this real domain match the domain in a cookie?”. The str is the “current” domain-name and the domStr is the “cookie” domain-name. Matches according to RFC6265 Section 5.1.3, but it helps to think of it as a “suffix match”.

The canonicalize parameter will run the other two paramters through canonicalDomain or not.

defaultPath(path)

Given a current request/response path, gives the Path apropriate for storing in a cookie. This is basically the “directory” of a “file” in the path, but is specified by Section 5.1.4 of the RFC.

The path parameter MUST be only the pathname part of a URI (i.e. excludes the hostname, query, fragment, etc.). This is the .pathname property of node’s uri.parse() output.

pathMatch(reqPath,cookiePath)

Answers “does the request-path path-match a given cookie-path?” as per RFC6265 Section 5.1.4. Returns a boolean.

This is essentially a prefix-match where cookiePath is a prefix of reqPath.

parse(header[,strict=false])

alias for Cookie.parse(header[,strict])

fromJSON(string)

alias for Cookie.fromJSON(string)

getPublicSuffix(hostname)

Returns the public suffix of this hostname. The public suffix is the shortest domain-name upon which a cookie can be set. Returns null if the hostname cannot have cookies set for it.

For example: www.example.com and www.subdomain.example.com both have public suffix example.com.

For further information, see http://publicsuffix.org/. This module derives its list from that site.

cookieCompare(a,b)

For use with .sort(), sorts a list of cookies into the recommended order given in the RFC (Section 5.4 step 2). Longest .paths go first, then sorted oldest to youngest.

var cookies = [/* unsorted array of Cookie objects */];
cookies = cookies.sort(cookieCompare);

permuteDomain(domain)

Generates a list of all possible domains that domainMatch() the parameter. May be handy for implementing cookie stores.

permutePath(path)

Generates a list of all possible paths that pathMatch() the parameter. May be handy for implementing cookie stores.

Cookie

Cookie.parse(header[,strict=false])

Parses a single Cookie or Set-Cookie HTTP header into a Cookie object. Returns undefined if the string can’t be parsed. If in strict mode, returns undefined if the cookie doesn’t follow the guidelines in section 4 of RFC6265. Generally speaking, strict mode can be used to validate your own generated Set-Cookie headers, but acting as a client you want to be lenient and leave strict mode off.

Here’s how to process the Set-Cookie header(s) on a node HTTP/HTTPS response:

if (res.headers['set-cookie'] instanceof Array)
 cookies = res.headers['set-cookie'].map(function (c) { return (Cookie.parse(c)); });
else
 cookies = [Cookie.parse(res.headers['set-cookie'])];

Cookie.fromJSON(string)

Convert a JSON string to a Cookie object. Does a JSON.parse() and converts the .created, .lastAccessed and .expires properties into Date objects.

Properties

		key - string - the name or key of the cookie (default “”)

		value - string - the value of the cookie (default “”)

		expires - Date - if set, the Expires= attribute of the cookie (defaults to the string "Infinity"). See setExpires()

		maxAge - seconds - if set, the Max-Age= attribute in seconds of the cookie. May also be set to strings "Infinity" and "-Infinity" for non-expiry and immediate-expiry, respectively. See setMaxAge()

		domain - string - the Domain= attribute of the cookie

		path - string - the Path= of the cookie

		secure - boolean - the Secure cookie flag

		httpOnly - boolean - the HttpOnly cookie flag

		extensions - Array - any unrecognized cookie attributes as strings (even if equal-signs inside)

After a cookie has been passed through CookieJar.setCookie() it will have the following additional attributes:

		hostOnly - boolean - is this a host-only cookie (i.e. no Domain field was set, but was instead implied)

		pathIsDefault - boolean - if true, there was no Path field on the cookie and defaultPath() was used to derive one.

		created - Date - when this cookie was added to the jar

		lastAccessed - Date - last time the cookie got accessed. Will affect cookie cleaning once implemented. Using cookiejar.getCookies(...) will update this attribute.

Construction([{options}])

Receives an options object that can contain any Cookie properties, uses the default for unspecified properties.

.toString()

encode to a Set-Cookie header value. The Expires cookie field is set using formatDate(), but is omitted entirely if .expires is Infinity.

.cookieString()

encode to a Cookie header value (i.e. the .key and .value properties joined with ‘=’).

.setExpires(String)

sets the expiry based on a date-string passed through parseDate(). If parseDate returns null (i.e. can’t parse this date string), .expires is set to "Infinity" (a string) is set.

.setMaxAge(number)

sets the maxAge in seconds. Coerces -Infinity to "-Infinity" and Infinity to "Infinity" so it JSON serializes correctly.

.expiryTime([now=Date.now()])

.expiryDate([now=Date.now()])

expiryTime() Computes the absolute unix-epoch milliseconds that this cookie expires. expiryDate() works similarly, except it returns a Date object. Note that in both cases the now parameter should be milliseconds.

Max-Age takes precedence over Expires (as per the RFC). The .created attribute – or, by default, the now paramter – is used to offset the .maxAge attribute.

If Expires (.expires) is set, that’s returned.

Otherwise, expiryTime() returns Infinity and expiryDate() returns a Date object for “Tue, 19 Jan 2038 03:14:07 GMT” (latest date that can be expressed by a 32-bit time_t; the common limit for most user-agents).

.TTL([now=Date.now()])

compute the TTL relative to now (milliseconds). The same precedence rules as for expiryTime/expiryDate apply.

The “number” Infinity is returned for cookies without an explicit expiry and 0 is returned if the cookie is expired. Otherwise a time-to-live in milliseconds is returned.

.canonicalizedDoman()

.cdomain()

return the canonicalized .domain field. This is lower-cased and punycode (RFC3490) encoded if the domain has any non-ASCII characters.

.validate()

Status: IN PROGRESS. Works for a few things, but is by no means comprehensive.

validates cookie attributes for semantic correctness. Useful for “lint” checking any Set-Cookie headers you generate. For now, it returns a boolean, but eventually could return a reason string – you can future-proof with this construct:

if (cookie.validate() === true) {
 // it's tasty
} else {
 // yuck!
}

CookieJar

Construction([store = new MemoryCookieStore()][, rejectPublicSuffixes])

Simply use new CookieJar(). If you’d like to use a custom store, pass that to the constructor otherwise a MemoryCookieStore will be created and used.

Attributes

		rejectPublicSuffixes - boolean - reject cookies with domains like “com” and “co.uk” (default: true)

Since eventually this module would like to support database/remote/etc. CookieJars, continuation passing style is used for CookieJar methods.

.setCookie(cookieOrString, currentUrl, [{options},] cb(err,cookie))

Attempt to set the cookie in the cookie jar. If the operation fails, an error will be given to the callback cb, otherwise the cookie is passed through. The cookie will have updated .created, .lastAccessed and .hostOnly properties.

The options object can be omitted and can have the following properties:

		http - boolean - default true - indicates if this is an HTTP or non-HTTP API. Affects HttpOnly cookies.

		secure - boolean - autodetect from url - indicates if this is a “Secure” API. If the currentUrl starts with https: or wss: then this is defaulted to true, otherwise false.

		now - Date - default new Date() - what to use for the creation/access time of cookies

		strict - boolean - default false - perform extra checks

		ignoreError - boolean - default false - silently ignore things like parse errors and invalid domains. CookieStore errors aren’t ignored by this option.

As per the RFC, the .hostOnly property is set if there was no “Domain=” parameter in the cookie string (or .domain was null on the Cookie object). The .domain property is set to the fully-qualified hostname of currentUrl in this case. Matching this cookie requires an exact hostname match (not a domainMatch as per usual).

.setCookieSync(cookieOrString, currentUrl, [{options}])

Synchronous version of setCookie; only works with synchronous stores (e.g. the default MemoryCookieStore).

.storeCookie(cookie, [{options},] cb(err,cookie))

REMOVED removed in lieu of the CookieStore API below

.getCookies(currentUrl, [{options},] cb(err,cookies))

Retrieve the list of cookies that can be sent in a Cookie header for the current url.

If an error is encountered, that’s passed as err to the callback, otherwise an Array of Cookie objects is passed. The array is sorted with cookieCompare() unless the {sort:false} option is given.

The options object can be omitted and can have the following properties:

		http - boolean - default true - indicates if this is an HTTP or non-HTTP API. Affects HttpOnly cookies.

		secure - boolean - autodetect from url - indicates if this is a “Secure” API. If the currentUrl starts with https: or wss: then this is defaulted to true, otherwise false.

		now - Date - default new Date() - what to use for the creation/access time of cookies

		expire - boolean - default true - perform expiry-time checking of cookies and asynchronously remove expired cookies from the store. Using false will return expired cookies and not remove them from the store (which is useful for replaying Set-Cookie headers, potentially).

		allPaths - boolean - default false - if true, do not scope cookies by path. The default uses RFC-compliant path scoping. Note: may not be supported by the CookieStore fetchCookies function (the default MemoryCookieStore supports it).

The .lastAccessed property of the returned cookies will have been updated.

.getCookiesSync(currentUrl, [{options}])

Synchronous version of getCookies; only works with synchronous stores (e.g. the default MemoryCookieStore).

.getCookieString(...)

Accepts the same options as .getCookies() but passes a string suitable for a Cookie header rather than an array to the callback. Simply maps the Cookie array via .cookieString().

.getCookieStringSync(...)

Synchronous version of getCookieString; only works with synchronous stores (e.g. the default MemoryCookieStore).

.getSetCookieStrings(...)

Returns an array of strings suitable for Set-Cookie headers. Accepts the same options as .getCookies(). Simply maps the cookie array via .toString().

.getSetCookieStringsSync(...)

Synchronous version of getSetCookieStrings; only works with synchronous stores (e.g. the default MemoryCookieStore).

Store

Base class for CookieJar stores.

CookieStore API

The storage model for each CookieJar instance can be replaced with a custom implementation. The default is MemoryCookieStore which can be found in the lib/memstore.js file. The API uses continuation-passing-style to allow for asynchronous stores.

Stores should inherit from the base Store class, which is available as require('tough-cookie').Store. Stores are asynchronous by default, but if store.synchronous is set, then the *Sync methods on the CookieJar can be used.

All domain parameters will have been normalized before calling.

The Cookie store must have all of the following methods.

store.findCookie(domain, path, key, cb(err,cookie))

Retrieve a cookie with the given domain, path and key (a.k.a. name). The RFC maintains that exactly one of these cookies should exist in a store. If the store is using versioning, this means that the latest/newest such cookie should be returned.

Callback takes an error and the resulting Cookie object. If no cookie is found then null MUST be passed instead (i.e. not an error).

store.findCookies(domain, path, cb(err,cookies))

Locates cookies matching the given domain and path. This is most often called in the context of cookiejar.getCookies() above.

If no cookies are found, the callback MUST be passed an empty array.

The resulting list will be checked for applicability to the current request according to the RFC (domain-match, path-match, http-only-flag, secure-flag, expiry, etc.), so it’s OK to use an optimistic search algorithm when implementing this method. However, the search algorithm used SHOULD try to find cookies that domainMatch() the domain and pathMatch() the path in order to limit the amount of checking that needs to be done.

As of version 0.9.12, the allPaths option to cookiejar.getCookies() above will cause the path here to be null. If the path is null, path-matching MUST NOT be performed (i.e. domain-matching only).

store.putCookie(cookie, cb(err))

Adds a new cookie to the store. The implementation SHOULD replace any existing cookie with the same .domain, .path, and .key properties – depending on the nature of the implementation, it’s possible that between the call to fetchCookie and putCookie that a duplicate putCookie can occur.

The cookie object MUST NOT be modified; the caller will have already updated the .creation and .lastAccessed properties.

Pass an error if the cookie cannot be stored.

store.updateCookie(oldCookie, newCookie, cb(err))

Update an existing cookie. The implementation MUST update the .value for a cookie with the same domain, .path and .key. The implementation SHOULD check that the old value in the store is equivalent to oldCookie - how the conflict is resolved is up to the store.

The .lastAccessed property will always be different between the two objects and .created will always be the same. Stores MAY ignore or defer the .lastAccessed change at the cost of affecting how cookies are sorted (or selected for deletion).

Stores may wish to optimize changing the .value of the cookie in the store versus storing a new cookie. If the implementation doesn’t define this method a stub that calls putCookie(newCookie,cb) will be added to the store object.

The newCookie and oldCookie objects MUST NOT be modified.

Pass an error if the newCookie cannot be stored.

store.removeCookie(domain, path, key, cb(err))

Remove a cookie from the store (see notes on findCookie about the uniqueness constraint).

The implementation MUST NOT pass an error if the cookie doesn’t exist; only pass an error due to the failure to remove an existing cookie.

store.removeCookies(domain, path, cb(err))

Removes matching cookies from the store. The path paramter is optional, and if missing means all paths in a domain should be removed.

Pass an error ONLY if removing any existing cookies failed.

TODO

		full RFC5890/RFC5891 canonicalization for domains in cdomain()
		the optional punycode requirement implements RFC3492, but RFC6265 requires RFC5891

		better tests for validate()?

Copyright and License

(tl;dr: MIT with some MPL/1.1)

Copyright 2012- GoInstant, Inc. and other contributors. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Portions may be licensed under different licenses (in particular public-suffix.txt is MPL/1.1); please read the LICENSE file for full details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/readable-stream/node_modules/core-util-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

core-util-is

The util.is* functions introduced in Node v0.12.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/cssstyle/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

CSSStyleDeclaration

CSSStyleDeclaration is a work-a-like to the CSSStyleDeclaration class in Nikita Vasilyev’s CSSOM [https://github.com/NV/CSSOM]. I made it so that when using jQuery in node [https://github.com/tmtk75/node-jquery] setting css attributes via $.fn.css() would work. node-jquery uses jsdom [https://github.com/tmpvar/jsdom] to create a DOM to use in node. jsdom uses CSSOM for styling, and CSSOM’s implementation of the CSSStyleDeclaration [http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSSStyleDeclaration] doesn’t support CSS2Properties [http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSS2Properties], which is how jQuery’s $.fn.css() [http://api.jquery.com/css/] operates.

Why not just issue a pull request?

Well, NV wants to keep CSSOM fast (which I can appreciate) and CSS2Properties aren’t required by the standard (though every browser has the interface). So I figured the path of least resistence would be to just modify this one class, publish it as a node module (that requires CSSOM) and then make a pull request of jsdom to use it.

How do I test this code?

npm test should do the trick, assuming you have the dev dependencies installed:

$ npm test

tests
✔ Verify Has Properties
✔ Verify Has Functions
✔ Verify Has Special Properties
✔ Test From Style String
✔ Test From Properties
✔ Test Shorthand Properties
✔ Test width and height Properties and null and empty strings
✔ Test Implicit Properties

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/readable-stream/node_modules/isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

isarray

Array#isArray for older browsers.

Usage

var isArray = require('isarray');

console.log(isArray([])); // => true
console.log(isArray({})); // => false

Installation

With npm [http://npmjs.org] do

$ npm install isarray

Then bundle for the browser with
browserify [https://github.com/substack/browserify].

With component [http://component.io] do

$ component install juliangruber/isarray

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/examples/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Authentication

OAuth

OAuth1.0 Refresh Token

		http://oauth.googlecode.com/svn/spec/ext/session/1.0/drafts/1/spec.html#anchor4

		https://developer.yahoo.com/oauth/guide/oauth-refreshaccesstoken.html

request.post('https://api.login.yahoo.com/oauth/v2/get_token', {
 oauth: {
 consumer_key: '...',
 consumer_secret: '...',
 token: '...',
 token_secret: '...',
 session_handle: '...'
 }
}, function (err, res, body) {
 var result = require('querystring').parse(body)
 // assert.equal(typeof result, 'object')
})

OAuth2 Refresh Token

		https://tools.ietf.org/html/draft-ietf-oauth-v2-31#section-6

request.post('https://accounts.google.com/o/oauth2/token', {
 form: {
 grant_type: 'refresh_token',
 client_id: '...',
 client_secret: '...',
 refresh_token: '...'
 },
 json: true
}, function (err, res, body) {
 // assert.equal(typeof body, 'object')
})

Multipart

multipart/form-data

Flickr Image Upload

		https://www.flickr.com/services/api/upload.api.html

request.post('https://up.flickr.com/services/upload', {
 oauth: {
 consumer_key: '...',
 consumer_secret: '...',
 token: '...',
 token_secret: '...'
 },
 // all meta data should be included here for proper signing
 qs: {
 title: 'My cat is awesome',
 description: 'Sent on ' + new Date(),
 is_public: 1
 },
 // again the same meta data + the actual photo
 formData: {
 title: 'My cat is awesome',
 description: 'Sent on ' + new Date(),
 is_public: 1,
 photo:fs.createReadStream('cat.png')
 },
 json: true
}, function (err, res, body) {
 // assert.equal(typeof body, 'object')
})

Streams

POST data

Use Request as a Writable stream to easily POST Readable streams (like files, other HTTP requests, or otherwise).

TL;DR: Pipe a Readable Stream onto Request via:

READABLE.pipe(request.post(URL));

A more detailed example:

var fs = require('fs')
 , path = require('path')
 , http = require('http')
 , request = require('request')
 , TMP_FILE_PATH = path.join(path.sep, 'tmp', 'foo')
;

// write a temporary file:
fs.writeFileSync(TMP_FILE_PATH, 'foo bar baz quk\n');

http.createServer(function(req, res) {
 console.log('the server is receiving data!\n');
 req
 .on('end', res.end.bind(res))
 .pipe(process.stdout)
 ;
}).listen(3000).unref();

fs.createReadStream(TMP_FILE_PATH)
 .pipe(request.post('http://127.0.0.1:3000'))
;

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/readable-stream/node_modules/string_decoder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 string_decoder.js (require('string_decoder')) from Node.js core

Copyright Joyent, Inc. and other Node contributors. See LICENCE file for details.

Version numbers match the versions found in Node core, e.g. 0.10.24 matches Node 0.10.24, likewise 0.11.10 matches Node 0.11.10. Prefer the stable version over the unstable.

The build/ directory contains a build script that will scrape the source from the joyent/node [https://github.com/joyent/node] repo given a specific Node version.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/async/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Async.js

[image: Build Status via Travis CI] [https://travis-ci.org/caolan/async]

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with Node.js [http://nodejs.org], it can also be used directly in the
browser. Also supports component [https://github.com/component/component].

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, each…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the Node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Common Pitfalls

Binding a context to an iterator

This section is really about bind, not about async. If you are wondering how to
make async execute your iterators in a given context, or are confused as to why
a method of another library isn’t working as an iterator, study this example:

// Here is a simple object with an (unnecessarily roundabout) squaring method
var AsyncSquaringLibrary = {
 squareExponent: 2,
 square: function(number, callback){
 var result = Math.pow(number, this.squareExponent);
 setTimeout(function(){
 callback(null, result);
 }, 200);
 }
};

async.map([1, 2, 3], AsyncSquaringLibrary.square, function(err, result){
 // result is [NaN, NaN, NaN]
 // This fails because the `this.squareExponent` expression in the square
 // function is not evaluated in the context of AsyncSquaringLibrary, and is
 // therefore undefined.
});

async.map([1, 2, 3], AsyncSquaringLibrary.square.bind(AsyncSquaringLibrary), function(err, result){
 // result is [1, 4, 9]
 // With the help of bind we can attach a context to the iterator before
 // passing it to async. Now the square function will be executed in its
 // 'home' AsyncSquaringLibrary context and the value of `this.squareExponent`
 // will be as expected.
});

Download

The source is available for download from
GitHub [http://github.com/caolan/async].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 29.6kb Uncompressed

In the Browser

So far it’s been tested in IE6, IE7, IE8, FF3.6 and Chrome 5.

Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

		each

		eachSeries

		eachLimit

		map

		mapSeries

		mapLimit

		filter

		filterSeries

		reject

		rejectSeries

		reduce

		reduceRight

		detect

		detectSeries

		sortBy

		some

		every

		concat

		concatSeries

Control Flow

		series

		parallel

		parallelLimit

		whilst

		doWhilst

		until

		doUntil

		forever

		waterfall

		compose

		seq

		applyEach

		applyEachSeries

		queue

		priorityQueue

		cargo

		auto

		retry

		iterator

		apply

		nextTick

		times

		timesSeries

Utils

		memoize

		unmemoize

		log

		dir

		noConflict

Collections

[bookmark: forEach]
[bookmark: each]

each(arr, iterator, callback)

Applies the function iterator to each item in arr, in parallel.
The iterator is called with an item from the list, and a callback for when it
has finished. If the iterator passes an error to its callback, the main
callback (for the each function) is immediately called with the error.

Note, that since this function applies iterator to each item in parallel,
there is no guarantee that the iterator functions will complete in order.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called when all iterator functions
have finished, or an error occurs.

Examples

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.each(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

// assuming openFiles is an array of file names

async.each(openFiles, function(file, callback) {

 // Perform operation on file here.
 console.log('Processing file ' + file);

 if(file.length > 32) {
 console.log('This file name is too long');
 callback('File name too long');
 } else {
 // Do work to process file here
 console.log('File processed');
 callback();
 }
}, function(err){
 // if any of the file processing produced an error, err would equal that error
 if(err) {
 // One of the iterations produced an error.
 // All processing will now stop.
 console.log('A file failed to process');
 } else {
 console.log('All files have been processed successfully');
 }
});

[bookmark: forEachSeries]
[bookmark: eachSeries]

eachSeries(arr, iterator, callback)

The same as each, only iterator is applied to each item in arr in
series. The next iterator is only called once the current one has completed.
This means the iterator functions will complete in order.

[bookmark: forEachLimit]
[bookmark: eachLimit]

eachLimit(arr, limit, iterator, callback)

The same as each, only no more than limit iterators will be simultaneously
running at any time.

Note that the items in arr are not processed in batches, so there is no guarantee that
the first limit iterator functions will complete before any others are started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called when all iterator functions
have finished, or an error occurs.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.eachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in arr through
the iterator function. The iterator is called with an item from arr and a
callback for when it has finished processing. Each of these callback takes 2 arguments:
an error, and the transformed item from arr. If iterator passes an error to this
callback, the main callback (for the map function) is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel,
there is no guarantee that the iterator functions will complete in order.
However, the results array will be in the same order as the original arr.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called when all iterator
functions have finished, or an error occurs. Results is an array of the
transformed items from the arr.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map, only the iterator is applied to each item in arr in
series. The next iterator is only called once the current one has completed.
The results array will be in the same order as the original.

[bookmark: mapLimit]

mapLimit(arr, limit, iterator, callback)

The same as map, only no more than limit iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first limit iterator functions will complete before any others are started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called when all iterator
calls have finished, or an error occurs. The result is an array of the
transformed items from the original arr.

Example

async.mapLimit(['file1','file2','file3'], 1, fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: select]
[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values in arr which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false; it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in arr.
The iterator is passed a callback(truthValue), which must be called with a
boolean argument once it has completed.

		callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: selectSeries]
[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

Alias: selectSeries

The same as filter only the iterator is applied to each item in arr in
series. The next iterator is only called once the current one has completed.
The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as reject, only the iterator is applied to each item in arr
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

Aliases: inject, foldl

Reduces arr into a single value using an async iterator to return
each successive step. memo is the initial state of the reduction.
This function only operates in series.

For performance reasons, it may make sense to split a call to this function into
a parallel map, and then use the normal Array.prototype.reduce on the results.
This function is for situations where each step in the reduction needs to be async;
if you can get the data before reducing it, then it’s probably a good idea to do so.

Arguments

		arr - An array to iterate over.

		memo - The initial state of the reduction.

		iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback(err, reduction) which accepts an optional error as its first
argument, and the state of the reduction as the second. If an error is
passed to the callback, the reduction is stopped and the main callback is
immediately called with the error.

		callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on arr in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in arr that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original arr (in terms of order) that passes the test.

If order within the original arr is important, then look at detectSeries.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in arr.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], fs.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in arr
in series. This means the result is always the first in the original arr (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each arr value through an async iterator.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err, sortValue) which must be called once it
has completed with an error (which can be null) and a value to use as the sort
criteria.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error occurs. Results is the items from
the original arr sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

Sort Order

By modifying the callback parameter the sorting order can be influenced:

//ascending order
async.sortBy([1,9,3,5], function(x, callback){
 callback(err, x);
}, function(err,result){
 //result callback
});

//descending order
async.sortBy([1,9,3,5], function(x, callback){
 callback(err, x*-1); //<- x*-1 instead of x, turns the order around
}, function(err,result){
 //result callback
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the arr satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false; it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array
in parallel. The iterator is passed a callback(truthValue) which must be
called with a boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in arr satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false; it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array
in parallel. The iterator is passed a callback(truthValue) which must be
called with a boolean argument once it has completed.

		callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies iterator to each item in arr, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of arr passed to the iterator function.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err, results) which must be called once it
has completed with an error (which can be null) and an array of results.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error occurs. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run the functions in the tasks array in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run, and callback is immediately called with the value of the error.
Otherwise, callback receives an array of results when tasks have completed.

It is also possible to use an object instead of an array. Each property will be
run as a function, and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
series.

Note that while many implementations preserve the order of object properties, the
ECMAScript Language Specifcation [http://www.ecma-international.org/ecma-262/5.1/#sec-8.6]
explicitly states that

The mechanics and order of enumerating the properties is not specified.

So if you rely on the order in which your series of functions are executed, and want
this to work on all platforms, consider using an array.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error err (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 }
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run the tasks array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
parallel.

Arguments

		tasks - An array or object containing functions to run. Each function is passed
a callback(err, result) which it must call on completion with an error err
(which can be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 }
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: parallelLimit]

parallelLimit(tasks, limit, [callback])

The same as parallel, only tasks are executed in parallel
with a maximum of limit tasks executing at any time.

Note that the tasks are not executed in batches, so there is no guarantee that
the first limit tasks will complete before any others are started.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error err (which can
be null) and an optional result value.

		limit - The maximum number of tasks to run at any time.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls callback when stopped,
or an error occurs.

Arguments

		test() - synchronous truth test to perform before each execution of fn.

		fn(callback) - A function which is called each time test passes. The function is
passed a callback(err), which must be called once it has completed with an
optional err argument.

		callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: doWhilst]

doWhilst(fn, test, callback)

The post-check version of whilst. To reflect the difference in
the order of operations, the arguments test and fn are switched.

doWhilst is to whilst as do while is to while in plain JavaScript.

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn until test returns true. Calls callback when stopped,
or an error occurs.

The inverse of whilst.

[bookmark: doUntil]

doUntil(fn, test, callback)

Like doWhilst, except the test is inverted. Note the argument ordering differs from until.

[bookmark: forever]

forever(fn, errback)

Calls the asynchronous function fn with a callback parameter that allows it to
call itself again, in series, indefinitely.

If an error is passed to the callback then errback is called with the
error, and execution stops, otherwise it will never be called.

async.forever(
 function(next) {
 // next is suitable for passing to things that need a callback(err [, whatever]);
 // it will result in this function being called again.
 },
 function(err) {
 // if next is called with a value in its first parameter, it will appear
 // in here as 'err', and execution will stop.
 }
);

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs the tasks array of functions in series, each passing their results to the next in
the array. However, if any of the tasks pass an error to their own callback, the
next function is not executed, and the main callback is immediately called with
the error.

Arguments

		tasks - An array of functions to run, each function is passed a
callback(err, result1, result2, ...) it must call on completion. The first
argument is an error (which can be null) and any further arguments will be
passed as arguments in order to the next task.

		callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 // arg1 now equals 'one' and arg2 now equals 'two'
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: compose]

compose(fn1, fn2...)

Creates a function which is a composition of the passed asynchronous
functions. Each function consumes the return value of the function that
follows. Composing functions f(), g(), and h() would produce the result of
f(g(h())), only this version uses callbacks to obtain the return values.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

function add1(n, callback) {
 setTimeout(function () {
 callback(null, n + 1);
 }, 10);
}

function mul3(n, callback) {
 setTimeout(function () {
 callback(null, n * 3);
 }, 10);
}

var add1mul3 = async.compose(mul3, add1);

add1mul3(4, function (err, result) {
 // result now equals 15
});

[bookmark: seq]

seq(fn1, fn2...)

Version of the compose function that is more natural to read.
Each following function consumes the return value of the latter function.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

// Requires lodash (or underscore), express3 and dresende's orm2.
// Part of an app, that fetches cats of the logged user.
// This example uses `seq` function to avoid overnesting and error
// handling clutter.
app.get('/cats', function(request, response) {
 function handleError(err, data, callback) {
 if (err) {
 console.error(err);
 response.json({ status: 'error', message: err.message });
 }
 else {
 callback(data);
 }
 }
 var User = request.models.User;
 async.seq(
 _.bind(User.get, User), // 'User.get' has signature (id, callback(err, data))
 handleError,
 function(user, fn) {
 user.getCats(fn); // 'getCats' has signature (callback(err, data))
 },
 handleError,
 function(cats) {
 response.json({ status: 'ok', message: 'Cats found', data: cats });
 }
)(req.session.user_id);
 }
});

[bookmark: applyEach]

applyEach(fns, args..., callback)

Applies the provided arguments to each function in the array, calling
callback after all functions have completed. If you only provide the first
argument, then it will return a function which lets you pass in the
arguments as if it were a single function call.

Arguments

		fns - the asynchronous functions to all call with the same arguments

		args... - any number of separate arguments to pass to the function

		callback - the final argument should be the callback, called when all
functions have completed processing

Example

async.applyEach([enableSearch, updateSchema], 'bucket', callback);

// partial application example:
async.each(
 buckets,
 async.applyEach([enableSearch, updateSchema]),
 callback
);

[bookmark: applyEachSeries]

applyEachSeries(arr, iterator, callback)

The same as applyEach only the functions are applied in series.

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue are processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one becomes available.
Once a worker completes a task, that task‘s callback is called.

Arguments

		worker(task, callback) - An asynchronous function for processing a queued
task, which must call its callback(err) argument when finished, with an
optional error as an argument.

		concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		started - a function returning whether or not any items have been pushed and processed by the queue

		running() - a function returning the number of items currently being processed.

		idle() - a function returning false if there are items waiting or being processed, or true if not.

		concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

		push(task, [callback]) - add a new task to the queue. Calls callback once
the worker has finished processing the task. Instead of a single task, a tasks array
can be submitted. The respective callback is used for every task in the list.

		unshift(task, [callback]) - add a new task to the front of the queue.

		saturated - a callback that is called when the queue length hits the concurrency limit,
and further tasks will be queued.

		empty - a callback that is called when the last item from the queue is given to a worker.

		drain - a callback that is called when the last item from the queue has returned from the worker.

		paused - a boolean for determining whether the queue is in a paused state

		pause() - a function that pauses the processing of tasks until resume() is called.

		resume() - a function that resumes the processing of queued tasks when the queue is paused.

		kill() - a function that empties remaining tasks from the queue forcing it to go idle.

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

// add some items to the front of the queue

q.unshift({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

[bookmark: priorityQueue]

priorityQueue(worker, concurrency)

The same as queue only tasks are assigned a priority and completed in ascending priority order. There are two differences between queue and priorityQueue objects:

		push(task, priority, [callback]) - priority should be a number. If an array of
tasks is given, all tasks will be assigned the same priority.

		The unshift method was removed.

[bookmark: cargo]

cargo(worker, [payload])

Creates a cargo object with the specified payload. Tasks added to the
cargo will be processed altogether (up to the payload limit). If the
worker is in progress, the task is queued until it becomes available. Once
the worker has completed some tasks, each callback of those tasks is called.
Check out this animation [https://camo.githubusercontent.com/6bbd36f4cf5b35a0f11a96dcd2e97711ffc2fb37/68747470733a2f2f662e636c6f75642e6769746875622e636f6d2f6173736574732f313637363837312f36383130382f62626330636662302d356632392d313165322d393734662d3333393763363464633835382e676966] for how cargo and queue work.

While queue passes only one task to one of a group of workers
at a time, cargo passes an array of tasks to a single worker, repeating
when the worker is finished.

Arguments

		worker(tasks, callback) - An asynchronous function for processing an array of
queued tasks, which must call its callback(err) argument when finished, with
an optional err argument.

		payload - An optional integer for determining how many tasks should be
processed per round; if omitted, the default is unlimited.

Cargo objects

The cargo object returned by this function has the following properties and
methods:

		length() - A function returning the number of items waiting to be processed.

		payload - An integer for determining how many tasks should be
process per round. This property can be changed after a cargo is created to
alter the payload on-the-fly.

		push(task, [callback]) - Adds task to the queue. The callback is called
once the worker has finished processing the task. Instead of a single task, an array of tasks
can be submitted. The respective callback is used for every task in the list.

		saturated - A callback that is called when the queue.length() hits the concurrency and further tasks will be queued.

		empty - A callback that is called when the last item from the queue is given to a worker.

		drain - A callback that is called when the last item from the queue has returned from the worker.

Example

// create a cargo object with payload 2

var cargo = async.cargo(function (tasks, callback) {
 for(var i=0; i<tasks.length; i++){
 console.log('hello ' + tasks[i].name);
 }
 callback();
}, 2);

// add some items

cargo.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
cargo.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});
cargo.push({name: 'baz'}, function (err) {
 console.log('finished processing baz');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running the functions in tasks, based on their
requirements. Each function can optionally depend on other functions being completed
first, and each function is run as soon as its requirements are satisfied.

If any of the functions pass an error to their callback, it will not
complete (so any other functions depending on it will not run), and the main
callback is immediately called with the error. Functions also receive an
object containing the results of functions which have completed so far.

Note, all functions are called with a results object as a second argument,
so it is unsafe to pass functions in the tasks object which cannot handle the
extra argument.

For example, this snippet of code:

async.auto({
 readData: async.apply(fs.readFile, 'data.txt', 'utf-8')
}, callback);

will have the effect of calling readFile with the results object as the last
argument, which will fail:

fs.readFile('data.txt', 'utf-8', cb, {});

Instead, wrap the call to readFile in a function which does not forward the
results object:

async.auto({
 readData: function(cb, results){
 fs.readFile('data.txt', 'utf-8', cb);
 }
}, callback);

Arguments

		tasks - An object. Each of its properties is either a function or an array of
requirements, with the function itself the last item in the array. The object’s key
of a property serves as the name of the task defined by that property,
i.e. can be used when specifying requirements for other tasks.
The function receives two arguments: (1) a callback(err, result) which must be
called when finished, passing an error (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions.

		callback(err, results) - An optional callback which is called when all the
tasks have been completed. It receives the err argument if any tasks
pass an error to their callback. Results are always returned; however, if
an error occurs, no further tasks will be performed, and the results
object will only contain partial results.

Example

async.auto({
 get_data: function(callback){
 console.log('in get_data');
 // async code to get some data
 callback(null, 'data', 'converted to array');
 },
 make_folder: function(callback){
 console.log('in make_folder');
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 callback(null, 'folder');
 },
 write_file: ['get_data', 'make_folder', function(callback, results){
 console.log('in write_file', JSON.stringify(results));
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, 'filename');
 }],
 email_link: ['write_file', function(callback, results){
 console.log('in email_link', JSON.stringify(results));
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 callback(null, {'file':results.write_file, 'email':'user@example.com'});
 }]
}, function(err, results) {
 console.log('err = ', err);
 console.log('results = ', results);
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 console.log('in get_data');
 // async code to get some data
 callback(null, 'data', 'converted to array');
 },
 function(callback){
 console.log('in make_folder');
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 callback(null, 'folder');
 }
],
function(err, results){
 async.series([
 function(callback){
 console.log('in write_file', JSON.stringify(results));
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 results.push('filename');
 callback(null);
 },
 function(callback){
 console.log('in email_link', JSON.stringify(results));
 // once the file is written let's email a link to it...
 callback(null, {'file':results.pop(), 'email':'user@example.com'});
 }
]);
});

For a complicated series of async tasks, using the auto function makes adding
new tasks much easier (and the code more readable).

[bookmark: retry]

retry([times = 5], task, [callback])

Attempts to get a successful response from task no more than times times before
returning an error. If the task is successful, the callback will be passed the result
of the successfull task. If all attemps fail, the callback will be passed the error and
result (if any) of the final attempt.

Arguments

		times - An integer indicating how many times to attempt the task before giving up. Defaults to 5.

		task(callback, results) - A function which receives two arguments: (1) a callback(err, result)
which must be called when finished, passing err (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions (if nested inside another control flow).

		callback(err, results) - An optional callback which is called when the
task has succeeded, or after the final failed attempt. It receives the err and result arguments of the last attempt at completing the task.

The retry function can be used as a stand-alone control flow by passing a
callback, as shown below:

async.retry(3, apiMethod, function(err, result) {
 // do something with the result
});

It can also be embeded within other control flow functions to retry individual methods
that are not as reliable, like this:

async.auto({
 users: api.getUsers.bind(api),
 payments: async.retry(3, api.getPayments.bind(api))
}, function(err, results) {
 // do something with the results
});

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the tasks array,
returning a continuation to call the next one after that. It’s also possible to
“peek” at the next iterator with iterator.next().

This function is used internally by the async module, but can be useful when
you want to manually control the flow of functions in series.

Arguments

		tasks - An array of functions to run.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied.

Useful as a shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 }
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls callback on a later loop around the event loop. In Node.js this just
calls process.nextTick; in the browser it falls back to setImmediate(callback)
if available, otherwise setTimeout(callback, 0), which means other higher priority
events may precede the execution of callback.

This is used internally for browser-compatibility purposes.

Arguments

		callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two']
});
call_order.push('one')

[bookmark: times]

times(n, callback)

Calls the callback function n times, and accumulates results in the same manner
you would use with map.

Arguments

		n - The number of times to run the function.

		callback - The function to call n times.

Example

// Pretend this is some complicated async factory
var createUser = function(id, callback) {
 callback(null, {
 id: 'user' + id
 })
}
// generate 5 users
async.times(5, function(n, next){
 createUser(n, function(err, user) {
 next(err, user)
 })
}, function(err, users) {
 // we should now have 5 users
});

[bookmark: timesSeries]

timesSeries(n, callback)

The same as times, only the iterator is applied to each item in arr in
series. The next iterator is only called once the current one has completed.
The results array will be in the same order as the original.

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

The cache of results is exposed as the memo property of the function returned
by memoize.

Arguments

		fn - The function to proxy and cache results from.

		hasher - Tn optional function for generating a custom hash for storing
results. It has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Handy for testing.

Arguments

		fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in Node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in Node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/readable-stream/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/commander/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Commander.js

[image: Build Status] [http://travis-ci.org/tj/commander.js]
[image: NPM Version] [https://www.npmjs.org/package/commander]
[image: NPM Downloads] [https://www.npmjs.org/package/commander]

The complete solution for node.js [http://nodejs.org] command-line interfaces, inspired by Ruby’s commander [https://github.com/tj/commander].API documentation: http://tj.github.com/commander.js/

Installation

$ npm install commander

Option parsing

Options with commander are defined with the .option() method, also serving as documentation for the options. The example below parses args and options from process.argv, leaving remaining args as the program.args array which were not consumed by options.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
 .version('0.0.1')
 .option('-p, --peppers', 'Add peppers')
 .option('-P, --pineapple', 'Add pineapple')
 .option('-b, --bbq', 'Add bbq sauce')
 .option('-c, --cheese [type]', 'Add the specified type of cheese [marble]', 'marble')
 .parse(process.argv);

console.log('you ordered a pizza with:');
if (program.peppers) console.log(' - peppers');
if (program.pineapple) console.log(' - pineapple');
if (program.bbq) console.log(' - bbq');
console.log(' - %s cheese', program.cheese);

Short flags may be passed as a single arg, for example -abc is equivalent to -a -b -c. Multi-word options such as “–template-engine” are camel-cased, becoming program.templateEngine etc.

Variadic arguments

The last argument of a command can be variadic, and only the last argument. To make an argument variadic you have to
append ... to the argument name. Here is an example:

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
 .version('0.0.1')
 .command('rmdir <dir> [otherDirs...]')
 .action(function (dir, otherDirs) {
 console.log('rmdir %s', dir);
 if (otherDirs) {
 otherDirs.forEach(function (oDir) {
 console.log('rmdir %s', oDir);
 });
 }
 });

program.parse(process.argv);

An Array is used for the value of a variadic argument. This applies to program.args as well as the argument passed
to your action as demonstrated above.

Git-style sub-commands

// file: ./examples/pm
var program = require('..');

program
 .version('0.0.1')
 .command('install [name]', 'install one or more packages')
 .command('search [query]', 'search with optional query')
 .command('list', 'list packages installed')
 .parse(process.argv);

When .command() is invoked with a description argument, no .action(callback) should be called to handle sub-commands, otherwise there will be an error. This tells commander that you’re going to use separate executables for sub-commands, much like git(1) and other popular tools.The commander will try to find the executable script in current directory with the name scriptBasename-subcommand, like pm-install, pm-search.

Automated –help

The help information is auto-generated based on the information commander already knows about your program, so the following --help info is for free:

 $./examples/pizza --help

 Usage: pizza [options]

 Options:

 -V, --version output the version number
 -p, --peppers Add peppers
 -P, --pineapple Add pineapple
 -b, --bbq Add bbq sauce
 -c, --cheese <type> Add the specified type of cheese [marble]
 -h, --help output usage information

Coercion

function range(val) {
 return val.split('..').map(Number);
}

function list(val) {
 return val.split(',');
}

function collect(val, memo) {
 memo.push(val);
 return memo;
}

function increaseVerbosity(v, total) {
 return total + 1;
}

program
 .version('0.0.1')
 .usage('[options] <file ...>')
 .option('-i, --integer <n>', 'An integer argument', parseInt)
 .option('-f, --float <n>', 'A float argument', parseFloat)
 .option('-r, --range <a>..', 'A range', range)
 .option('-l, --list <items>', 'A list', list)
 .option('-o, --optional [value]', 'An optional value')
 .option('-c, --collect [value]', 'A repeatable value', collect, [])
 .option('-v, --verbose', 'A value that can be increased', increaseVerbosity, 0)
 .parse(process.argv);

console.log(' int: %j', program.integer);
console.log(' float: %j', program.float);
console.log(' optional: %j', program.optional);
program.range = program.range || [];
console.log(' range: %j..%j', program.range[0], program.range[1]);
console.log(' list: %j', program.list);
console.log(' collect: %j', program.collect);
console.log(' verbosity: %j', program.verbose);
console.log(' args: %j', program.args);

Custom help

You can display arbitrary -h, --help information
by listening for “–help”. Commander will automatically
exit once you are done so that the remainder of your program
does not execute causing undesired behaviours, for example
in the following executable “stuff” will not output when
--help is used.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
 .version('0.0.1')
 .option('-f, --foo', 'enable some foo')
 .option('-b, --bar', 'enable some bar')
 .option('-B, --baz', 'enable some baz');

// must be before .parse() since
// node's emit() is immediate

program.on('--help', function(){
 console.log(' Examples:');
 console.log('');
 console.log(' $ custom-help --help');
 console.log(' $ custom-help -h');
 console.log('');
});

program.parse(process.argv);

console.log('stuff');

Yields the following help output when node script-name.js -h or node script-name.js --help are run:

Usage: custom-help [options]

Options:

 -h, --help output usage information
 -V, --version output the version number
 -f, --foo enable some foo
 -b, --bar enable some bar
 -B, --baz enable some baz

Examples:

 $ custom-help --help
 $ custom-help -h

.outputHelp()

Output help information without exiting.

.help()

Output help information and exit immediately.

Links

		ascii tables [https://github.com/LearnBoost/cli-table]

		progress bars [https://github.com/tj/node-progress]

		more progress bars [https://github.com/substack/node-multimeter]

		examples [https://github.com/tj/commander.js/tree/master/examples]

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/bson/node_modules/nan/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

NAN ChangeLog

Version 1.3.0: current Node unstable: 0.11.13, Node stable: 0.10.30

1.3.0 Aug 2 2014

		Added NanNew<v8::String, std::string>(std::string)

		Added NanNew<v8::String, std::string&>(std::string&)

		Added NanAsciiString helper class

		Added NanUtf8String helper class

		Added NanUcs2String helper class

		Deprecated NanRawString()

		Deprecated NanCString()

		Added NanGetIsolateData(v8::Isolate *isolate)

		Added NanMakeCallback(v8::Handle<v8::Object> target, v8::Handle<v8::Function> func, int argc, v8::Handle<v8::Value>* argv)

		Added NanMakeCallback(v8::Handle<v8::Object> target, v8::Handle<v8::String> symbol, int argc, v8::Handle<v8::Value>* argv)

		Added NanMakeCallback(v8::Handle<v8::Object> target, const char* method, int argc, v8::Handle<v8::Value>* argv)

		Added NanSetTemplate(v8::Handle<v8::Template> templ, v8::Handle<v8::String> name , v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

		Added NanSetPrototypeTemplate(v8::Local<v8::FunctionTemplate> templ, v8::Handle<v8::String> name, v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

		Added NanSetInstanceTemplate(v8::Local<v8::FunctionTemplate> templ, const char *name, v8::Handle<v8::Data> value)

		Added NanSetInstanceTemplate(v8::Local<v8::FunctionTemplate> templ, v8::Handle<v8::String> name, v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

1.2.0 Jun 5 2014

		Add NanSetPrototypeTemplate

		Changed NAN_WEAK_CALLBACK internals, switched _NanWeakCallbackData to class,
introduced _NanWeakCallbackDispatcher

		Removed -Wno-unused-local-typedefs from test builds

		Made test builds Windows compatible (‘Sleep()’)

1.1.2 May 28 2014

		Release to fix more stuff-ups in 1.1.1

1.1.1 May 28 2014

		Release to fix version mismatch in nan.h and lack of changelog entry for 1.1.0

1.1.0 May 25 2014

		Remove nan_isolate, use v8::Isolate::GetCurrent() internally instead

		Additional explicit overloads for NanNew(): (char,int), (uint8_t[,int]),
(uint16_t[,int), double, int, unsigned int, bool, v8::String::ExternalStringResource,
v8::String::ExternalAsciiStringResource*

		Deprecate NanSymbol()

		Added SetErrorMessage() and ErrorMessage() to NanAsyncWorker

1.0.0 May 4 2014

		Heavy API changes for V8 3.25 / Node 0.11.13

		Use cpplint.py

		Removed NanInitPersistent

		Removed NanPersistentToLocal

		Removed NanFromV8String

		Removed NanMakeWeak

		Removed NanNewLocal

		Removed NAN_WEAK_CALLBACK_OBJECT

		Removed NAN_WEAK_CALLBACK_DATA

		Introduce NanNew, replaces NanNewLocal, NanPersistentToLocal, adds many overloaded typed versions

		Introduce NanUndefined, NanNull, NanTrue and NanFalse

		Introduce NanEscapableScope and NanEscapeScope

		Introduce NanMakeWeakPersistent (requires a special callback to work on both old and new node)

		Introduce NanMakeCallback for node::MakeCallback

		Introduce NanSetTemplate

		Introduce NanGetCurrentContext

		Introduce NanCompileScript and NanRunScript

		Introduce NanAdjustExternalMemory

		Introduce NanAddGCEpilogueCallback, NanAddGCPrologueCallback, NanRemoveGCEpilogueCallback, NanRemoveGCPrologueCallback

		Introduce NanGetHeapStatistics

		Rename NanAsyncWorker#SavePersistent() to SaveToPersistent()

0.8.0 Jan 9 2014

		NanDispose -> NanDisposePersistent, deprecate NanDispose

		Extract NANRETURN_TYPE, pull up NAN()

0.7.1 Jan 9 2014

		Fixes to work against debug builds of Node

		Safer NanPersistentToLocal (avoid reinterpret_cast)

		Speed up common NanRawString case by only extracting flattened string when necessary

0.7.0 Dec 17 2013

		New no-arg form of NanCallback() constructor.

		NanCallback#Call takes Handle rather than Local

		Removed deprecated NanCallback#Run method, use NanCallback#Call instead

		Split off NAN*_ARGS_TYPE from NAN*_ARGS

		Restore (unofficial) Node 0.6 compatibility at NanCallback#Call()

		Introduce NanRawString() for char* (or appropriate void*) from v8::String
(replacement for NanFromV8String)

		Introduce NanCString() for null-terminated char* from v8::String

0.6.0 Nov 21 2013

		Introduce NanNewLocal(v8::Handle value) for use in place of
v8::Local::New(...) since v8 started requiring isolate in Node 0.11.9

0.5.2 Nov 16 2013

		Convert SavePersistent and GetFromPersistent in NanAsyncWorker from protected and public

0.5.1 Nov 12 2013

		Use node::MakeCallback() instead of direct v8::Function::Call()

0.5.0 Nov 11 2013

		Added @TooTallNate as collaborator

		New, much simpler, “include_dirs” for binding.gyp

		Added full range of NAN_INDEX_* macros to match NAN_PROPERTY_* macros

0.4.4 Nov 2 2013

		Isolate argument from v8::Persistent::MakeWeak removed for 0.11.8+

0.4.3 Nov 2 2013

		Include node_object_wrap.h, removed from node.h for Node 0.11.8.

0.4.2 Nov 2 2013

		Handle deprecation of v8::Persistent::Dispose(v8::Isolate* isolate)) for
Node 0.11.8 release.

0.4.1 Sep 16 2013

		Added explicit #include <uv.h> as it was removed from node.h for v0.11.8

0.4.0 Sep 2 2013

		Added NAN_INLINE and NAN_DEPRECATED and made use of them

		Added NanError, NanTypeError and NanRangeError

		Cleaned up code

0.3.2 Aug 30 2013

		Fix missing scope declaration in GetFromPersistent() and SaveToPersistent
in NanAsyncWorker

0.3.1 Aug 20 2013

		fix “not all control paths return a value” compile warning on some platforms

0.3.0 Aug 19 2013

		Made NAN work with NPM

		Lots of fixes to NanFromV8String, pulling in features from new Node core

		Changed node::encoding to Nan::Encoding in NanFromV8String to unify the API

		Added optional error number argument for NanThrowError()

		Added NanInitPersistent()

		Added NanReturnNull() and NanReturnEmptyString()

		Added NanLocker and NanUnlocker

		Added missing scopes

		Made sure to clear disposed Persistent handles

		Changed NanAsyncWorker to allocate error messages on the heap

		Changed NanThrowError(Local) to NanThrowError(Handle)

		Fixed leak in NanAsyncWorker when errmsg is used

0.2.2 Aug 5 2013

		Fixed usage of undefined variable with node::BASE64 in NanFromV8String()

0.2.1 Aug 5 2013

		Fixed 0.8 breakage, node::BUFFER encoding type not available in 0.8 for
NanFromV8String()

0.2.0 Aug 5 2013

		Added NAN_PROPERTY_GETTER, NAN_PROPERTY_SETTER, NAN_PROPERTY_ENUMERATOR,
NAN_PROPERTY_DELETER, NAN_PROPERTY_QUERY

		Extracted _NAN_METHOD_ARGS, _NAN_GETTER_ARGS, _NAN_SETTER_ARGS,
_NAN_PROPERTY_GETTER_ARGS, _NAN_PROPERTY_SETTER_ARGS,
_NAN_PROPERTY_ENUMERATOR_ARGS, _NAN_PROPERTY_DELETER_ARGS,
_NAN_PROPERTY_QUERY_ARGS

		Added NanGetInternalFieldPointer, NanSetInternalFieldPointer

		Added NAN_WEAK_CALLBACK, NAN_WEAK_CALLBACK_OBJECT,
NAN_WEAK_CALLBACK_DATA, NanMakeWeak

		Renamed THROW_ERROR to _NAN_THROW_ERROR

		Added NanNewBufferHandle(char, size_t, node::smalloc::FreeCallback, void)

		Added NanBufferUse(char*, uint32_t)

		Added NanNewContextHandle(v8::ExtensionConfiguration*,
v8::Handle<v8::ObjectTemplate>, v8::Handle<v8::Value>)

		Fixed broken NanCallback#GetFunction()

		Added optional encoding and size arguments to NanFromV8String()

		Added NanGetPointerSafe() and NanSetPointerSafe()

		Added initial test suite (to be expanded)

		Allow NanUInt32OptionValue to convert any Number object

0.1.0 Jul 21 2013

		Added NAN_GETTER, NAN_SETTER

		Added NanThrowError with single Local argument

		Added NanNewBufferHandle with single uint32_t argument

		Added NanHasInstance(Persistent<FunctionTemplate>&, Handle<Value>)

		Added Local<Function> NanCallback#GetFunction()

		Added NanCallback#Call(int, Local<Value>[])

		Deprecated NanCallback#Run(int, Local<Value>[]) in favour of Call

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/bson/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Javascript + C++ BSON parser

This BSON parser is primarily meant for usage with the mongodb node.js driver. However thanks to such wonderful tools at onejs we are able to package up a BSON parser that will work in the browser aswell. The current build is located in the browser_build/bson.js file.

A simple example on how to use it

<head>
 <script src="https://raw.github.com/mongodb/js-bson/master/browser_build/bson.js">
 </script>
</head>
<body onload="start();">
<script>
 function start() {
 var BSON = bson().BSON;
 var Long = bson().Long;

 var doc = {long: Long.fromNumber(100)}

 // Serialize a document
 var data = BSON.serialize(doc, false, true, false);
 // De serialize it again
 var doc_2 = BSON.deserialize(data);
 }
</script>
</body>

It’s got two simple methods to use in your application.

		BSON.serialize(object, checkKeys, asBuffer, serializeFunctions)
		@param {Object} object the Javascript object to serialize.

		@param {Boolean} checkKeys the serializer will check if keys are valid.

		@param {Boolean} asBuffer return the serialized object as a Buffer object (ignore).

		@param {Boolean} serializeFunctions serialize the javascript functions (default:false)

		@return {TypedArray/Array} returns a TypedArray or Array depending on what your browser supports

		BSON.deserialize(buffer, options, isArray)
		Options
		evalFunctions {Boolean, default:false}, evaluate functions in the BSON document scoped to the object deserialized.

		cacheFunctions {Boolean, default:false}, cache evaluated functions for reuse.

		cacheFunctionsCrc32 {Boolean, default:false}, use a crc32 code for caching, otherwise use the string of the function.

		@param {TypedArray/Array} a TypedArray/Array containing the BSON data

		@param {Object} [options] additional options used for the deserialization.

		@param {Boolean} [isArray] ignore used for recursive parsing.

		@return {Object} returns the deserialized Javascript Object.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/consolidate/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Consolidate.js

Template engine consolidation library.

Installation

$ npm install consolidate

Supported template engines

		atpl [https://github.com/soywiz/atpl.js]

		dust [https://github.com/akdubya/dustjs] (website) [http://akdubya.github.com/dustjs/]

		eco [https://github.com/sstephenson/eco]

		ect [https://github.com/baryshev/ect] (website) [http://ectjs.com/]

		ejs [https://github.com/visionmedia/ejs]

		haml [https://github.com/visionmedia/haml.js] (website) [http://haml-lang.com/]

		haml-coffee [https://github.com/9elements/haml-coffee] (website) [http://haml-lang.com/]

		handlebars [https://github.com/wycats/handlebars.js/] (website) [http://handlebarsjs.com/]

		hogan [https://github.com/twitter/hogan.js] (website) [http://twitter.github.com/hogan.js/]

		jade [https://github.com/visionmedia/jade] (website) [http://jade-lang.com/]

		jazz [https://github.com/shinetech/jazz]

		jqtpl [https://github.com/kof/node-jqtpl] (website) [http://api.jquery.com/category/plugins/templates/]

		JUST [https://github.com/baryshev/just]

		liquor [https://github.com/chjj/liquor]

		lodash [https://github.com/bestiejs/lodash] (website) [http://lodash.com/]

		mustache [https://github.com/janl/mustache.js]

		QEJS [https://github.com/jepso/QEJS]

		ractive [https://github.com/Rich-Harris/Ractive]

		swig [https://github.com/paularmstrong/swig] (website) [http://paularmstrong.github.com/swig/]

		templayed [http://archan937.github.com/templayed.js/]

		toffee [https://github.com/malgorithms/toffee]

		underscore [https://github.com/documentcloud/underscore] (website) [http://documentcloud.github.com/underscore/]

		walrus [https://github.com/jeremyruppel/walrus] (website) [http://documentup.com/jeremyruppel/walrus/]

		whiskers [https://github.com/gsf/whiskers.js/tree/]

NOTE: you must still install the engines you wish to use, add them to your package.json dependencies.

API

All templates supported by this library may be rendered using the signature (path[, locals], callback) as shown below, which happens to be the signature that Express 3.x supports so any of these engines may be used within Express.

NOTE: All this example code uses cons.swig for the swig template engine. Replace swig with whatever templating you are using. For example, use cons.hogan for hogan.js, cons.jade for jade, etc. console.log(cons) for the full list of identifiers.

var cons = require('consolidate');
cons.swig('views/page.html', { user: 'tobi' }, function(err, html){
 if (err) throw err;
 console.log(html);
});

Or without options / local variables:

var cons = require('consolidate');
cons.swig('views/page.html', function(err, html){
 if (err) throw err;
 console.log(html);
});

To dynamically pass the engine, simply use the subscript operator and a variable:

var cons = require('consolidate')
 , name = 'swig';

cons[name]('views/page.html', { user: 'tobi' }, function(err, html){
 if (err) throw err;
 console.log(html);
});

Caching

To enable caching simply pass { cache: true }. Engines may use this option to cache things reading the file contents, compiled Functions etc. Engines which do not support this may simply ignore it. All engines that consolidate.js implements I/O for will cache the file contents, ideal for production environments.

var cons = require('consolidate');
cons.swig('views/page.html', { user: 'tobi' }, function(err, html){
 if (err) throw err;
 console.log(html);
});

Express 3.x example

var express = require('express')
 , cons = require('consolidate')
 , app = express();

// assign the swig engine to .html files
app.engine('html', cons.swig);

// set .html as the default extension
app.set('view engine', 'html');
app.set('views', __dirname + '/views');

var users = [];
users.push({ name: 'tobi' });
users.push({ name: 'loki' });
users.push({ name: 'jane' });

app.get('/', function(req, res){
 res.render('index', {
 title: 'Consolidate.js'
 });
});

app.get('/users', function(req, res){
 res.render('users', {
 title: 'Users',
 users: users
 });
});

app.listen(3000);
console.log('Express server listening on port 3000');

Running tests

Install dev deps:

$ npm install -d

Run the tests:

$ make test

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/node_modules/bson/node_modules/nan/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Native Abstractions for Node.js

A header file filled with macro and utility goodness for making add-on development for Node.js easier across versions 0.8, 0.10 and 0.11, and eventually 0.12.

Current version: 1.3.0

(See nan.h [https://github.com/rvagg/nan/blob/master/CHANGELOG.md] for complete ChangeLog)

[image: NPM] [https://nodei.co/npm/nan/] [image: NPM] [https://nodei.co/npm/nan/]

[image: Build Status] [http://travis-ci.org/rvagg/nan]
[image: Build status] [https://ci.appveyor.com/project/RodVagg/nan]

Thanks to the crazy changes in V8 (and some in Node core), keeping native addons compiling happily across versions, particularly 0.10 to 0.11/0.12, is a minor nightmare. The goal of this project is to store all logic necessary to develop native Node.js addons without having to inspect NODE_MODULE_VERSION and get yourself into a macro-tangle.

This project also contains some helper utilities that make addon development a bit more pleasant.

		News & Updates

		Usage

		Example

		API

[bookmark: news]

News & Updates

Aug-2014: 1.3.0 release

		NanCString() and NanRawString() have been deprecated in favour of new NanAsciiString, NanUtf8String and NanUcs2String. These classes manage the underlying memory for you in a safer way than just handing off an allocated array. You should now *NanAsciiString(handle) to access the raw char data, you can also allocate on the heap if you need to keep a reference.

		Two more NanMakeCallback overloads have been added to for parity with Node core.

		You can now NanNew(std::string) (use NanNew<std::string&>(std::string&) to pass by reference)

		NanSetTemplate, NanSetPrototypeTemplate and NanSetInstanceTemplate have been added.

May-2014: 1.1.0 release

		We’ve deprecated NanSymbol(), you should just use NanNew<String>() now.

		NanNull(), NanUndefined(), NanTrue(), NanFalse() all return Locals now.

		nan_isolate is gone, it was intended to be internal-only but if you were using it then you should switch to v8::Isolate::GetCurrent().

		NanNew() has received some additional overload-love so you should be able to give it many kinds of values without specifying the <Type>.

		Lots of small fixes and additions to expand the V8 API coverage, use the source, Luke.

May-2014: Major changes for V8 3.25 / Node 0.11.13

Node 0.11.11 and 0.11.12 were both broken releases for native add-ons, you simply can’t properly compile against either of them for different reasons. But we now have a 0.11.13 release that jumps a couple of versions of V8 ahead and includes some more, major (traumatic) API changes.

Because we are now nearing Node 0.12 and estimate that the version of V8 we are using in Node 0.11.13 will be close to the API we get for 0.12, we have taken the opportunity to not only fix NAN for 0.11.13 but make some major changes to improve the NAN API.

We have removed support for Node 0.11 versions prior to 0.11.13. As usual, our tests are run against (and pass) the last 5 versions of Node 0.8 and Node 0.10. We also include Node 0.11.13 obviously.

The major change is something that Benjamin Byholm has put many hours in to. We now have a fantastic new NanNew<T>(args) interface for creating new Locals, this replaces NanNewLocal() and much more. If you look in ./nan.h you’ll see a large number of overloaded versions of this method. In general you should be able to NanNew<Type>(arguments) for any type you want to make a Local from. This includes Persistent types, so we now have a Local<T> NanNew(const Persistent<T> arg) to replace NanPersistentToLocal().

We also now have NanUndefined(), NanNull(), NanTrue() and NanFalse(). Mainly because of the new requirement for an Isolate argument for each of the native V8 versions of this.

V8 has now introduced an EscapableHandleScope from which you scope.Escape(Local<T> value) to return a value from a one scope to another. This replaces the standard HandleScope and scope.Close(Local<T> value), although HandleScope still exists for when you don’t need to return a handle to the caller. For NAN we are exposing it as NanEscapableScope() and NanEscapeScope(), while NanScope() is still how you create a new scope that doesn’t need to return handles. For older versions of Node/V8, it’ll still map to the older HandleScope functionality.

NanFromV8String() was deprecated and has now been removed. You should use NanCString() or NanRawString() instead.

Because node::MakeCallback() now takes an Isolate, and because it doesn’t exist in older versions of Node, we’ve introduced NanMakeCallback(). You should always use this when calling a JavaScript function from C++.

There’s lots more, check out the Changelog in nan.h or look through #86 [https://github.com/rvagg/nan/pull/86] for all the gory details.

Dec-2013: NanCString and NanRawString

Two new functions have been introduced to replace the functionality that’s been provided by NanFromV8String until now. NanCString has sensible defaults so it’s super easy to fetch a null-terminated c-style string out of a v8::String. NanFromV8String is still around and has defaults that allow you to pass a single handle to fetch a char* while NanRawString requires a little more attention to arguments.

Nov-2013: Node 0.11.9+ breaking V8 change

The version of V8 that’s shipping with Node 0.11.9+ has changed the signature for new Locals to: v8::Local<T>::New(isolate, value), i.e. introducing the isolate argument and therefore breaking all new Local declarations for previous versions. NAN 0.6+ now includes a NanNewLocal<T>(value) that can be used in place to work around this incompatibility and maintain compatibility with 0.8->0.11.9+ (minus a few early 0.11 releases).

For example, if you wanted to return a null on a callback you will have to change the argument from v8::Local<v8::Value>::New(v8::Null()) to NanNewLocal<v8::Value>(v8::Null()).

Nov-2013: Change to binding.gyp "include_dirs" for NAN

Inclusion of NAN in a project’s binding.gyp is now greatly simplified. You can now just use "<!(node -e \"require('nan')\")" in your "include_dirs", see example below (note Windows needs the quoting around require to be just right: "require('nan')" with appropriate \ escaping).

[bookmark: usage]

Usage

Simply add NAN as a dependency in the package.json of your Node addon:

$ npm install --save nan

Pull in the path to NAN in your binding.gyp so that you can use #include <nan.h> in your .cpp files:

"include_dirs" : [
 "<!(node -e \"require('nan')\")"
]

This works like a -I<path-to-NAN> when compiling your addon.

[bookmark: example]

Example

See LevelDOWN [https://github.com/rvagg/node-leveldown/pull/48] for a full example of NAN in use.

For a simpler example, see the async pi estimation example [https://github.com/rvagg/nan/tree/master/examples/async_pi_estimate] in the examples directory for full code and an explanation of what this Monte Carlo Pi estimation example does. Below are just some parts of the full example that illustrate the use of NAN.

Compare to the current 0.10 version of this example, found in the node-addon-examples [https://github.com/rvagg/node-addon-examples/tree/master/9_async_work] repository and also a 0.11 version of the same found here [https://github.com/kkoopa/node-addon-examples/tree/5c01f58fc993377a567812597e54a83af69686d7/9_async_work].

Note that there is no embedded version sniffing going on here and also the async work is made much simpler, see below for details on the NanAsyncWorker class.

// addon.cc
#include <node.h>
#include <nan.h>
// ...

using v8::FunctionTemplate;
using v8::Handle;
using v8::Object;
using v8::String;

void InitAll(Handle<Object> exports) {
 exports->Set(NanNew<String>("calculateSync"),
 NanNew<FunctionTemplate>(CalculateSync)->GetFunction());

 exports->Set(NanNew<String>("calculateAsync"),
 NanNew<FunctionTemplate>(CalculateAsync)->GetFunction());
}

NODE_MODULE(addon, InitAll)

// sync.h
#include <node.h>
#include <nan.h>

NAN_METHOD(CalculateSync);

// sync.cc
#include <node.h>
#include <nan.h>
#include "./sync.h"
// ...

using v8::Number;

// Simple synchronous access to the `Estimate()` function
NAN_METHOD(CalculateSync) {
 NanScope();

 // expect a number as the first argument
 int points = args[0]->Uint32Value();
 double est = Estimate(points);

 NanReturnValue(NanNew<Number>(est));
}

// async.h
#include <node.h>
#include <nan.h>

NAN_METHOD(CalculateAsync);

// async.cc
#include <node.h>
#include <nan.h>
#include "./async.h"

// ...

using v8::Function;
using v8::Local;
using v8::Null;
using v8::Number;
using v8::Value;

class PiWorker : public NanAsyncWorker {
 public:
 PiWorker(NanCallback *callback, int points)
 : NanAsyncWorker(callback), points(points) {}
 ~PiWorker() {}

 // Executed inside the worker-thread.
 // It is not safe to access V8, or V8 data structures
 // here, so everything we need for input and output
 // should go on `this`.
 void Execute () {
 estimate = Estimate(points);
 }

 // Executed when the async work is complete
 // this function will be run inside the main event loop
 // so it is safe to use V8 again
 void HandleOKCallback () {
 NanScope();

 Local<Value> argv[] = {
 NanNull()
 , NanNew<Number>(estimate)
 };

 callback->Call(2, argv);
 };

 private:
 int points;
 double estimate;
};

// Asynchronous access to the `Estimate()` function
NAN_METHOD(CalculateAsync) {
 NanScope();

 int points = args[0]->Uint32Value();
 NanCallback *callback = new NanCallback(args[1].As<Function>());

 NanAsyncQueueWorker(new PiWorker(callback, points));
 NanReturnUndefined();
}

[bookmark: api]

API

		NAN_METHOD

		NAN_GETTER

		NAN_SETTER

		NAN_PROPERTY_GETTER

		NAN_PROPERTY_SETTER

		NAN_PROPERTY_ENUMERATOR

		NAN_PROPERTY_DELETER

		NAN_PROPERTY_QUERY

		NAN_INDEX_GETTER

		NAN_INDEX_SETTER

		NAN_INDEX_ENUMERATOR

		NAN_INDEX_DELETER

		NAN_INDEX_QUERY

		NAN_WEAK_CALLBACK

		NAN_DEPRECATED

		NAN_INLINE

		NanNew

		NanUndefined

		NanNull

		NanTrue

		NanFalse

		NanReturnValue

		NanReturnUndefined

		NanReturnNull

		NanReturnEmptyString

		NanScope

		NanEscapableScope

		NanEscapeScope

		NanLocker

		NanUnlocker

		NanGetInternalFieldPointer

		NanSetInternalFieldPointer

		NanObjectWrapHandle

		NanSymbol

		NanGetPointerSafe

		NanSetPointerSafe

		NanRawString

		NanCString

		NanAsciiString

		NanUtf8String

		NanUcs2String

		NanBooleanOptionValue

		NanUInt32OptionValue

		NanError, NanTypeError, NanRangeError

		NanThrowError, NanThrowTypeError, NanThrowRangeError, NanThrowError(Handle), NanThrowError(Handle, int)

		NanNewBufferHandle(char *, size_t, FreeCallback, void *), NanNewBufferHandle(char *, uint32_t), NanNewBufferHandle(uint32_t)

		NanBufferUse(char *, uint32_t)

		NanNewContextHandle

		NanGetCurrentContext

		NanHasInstance

		NanDisposePersistent

		NanAssignPersistent

		NanMakeWeakPersistent

		NanSetTemplate

		NanSetPrototypeTemplate

		NanSetInstanceTemplate

		NanMakeCallback

		NanCompileScript

		NanRunScript

		NanAdjustExternalMemory

		NanAddGCEpilogueCallback

		NanAddGCPrologueCallback

		NanRemoveGCEpilogueCallback

		NanRemoveGCPrologueCallback

		NanGetHeapStatistics

		NanCallback

		NanAsyncWorker

		NanAsyncQueueWorker

[bookmark: api_nan_method]

NAN_METHOD(methodname)

Use NAN_METHOD to define your V8 accessible methods:

// .h:
class Foo : public node::ObjectWrap {
 ...

 static NAN_METHOD(Bar);
 static NAN_METHOD(Baz);
}

// .cc:
NAN_METHOD(Foo::Bar) {
 ...
}

NAN_METHOD(Foo::Baz) {
 ...
}

The reason for this macro is because of the method signature change in 0.11:

// 0.10 and below:
Handle<Value> name(const Arguments& args)

// 0.11 and above
void name(const FunctionCallbackInfo<Value>& args)

The introduction of FunctionCallbackInfo brings additional complications:

[bookmark: api_nan_getter]

NAN_GETTER(methodname)

Use NAN_GETTER to declare your V8 accessible getters. You get a Local<String> property and an appropriately typed args object that can act like the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_GETTER.

[bookmark: api_nan_setter]

NAN_SETTER(methodname)

Use NAN_SETTER to declare your V8 accessible setters. Same as NAN_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_property_getter]

NAN_PROPERTY_GETTER(cbname)

Use NAN_PROPERTY_GETTER to declare your V8 accessible property getters. You get a Local<String> property and an appropriately typed args object that can act similar to the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_GETTER.

[bookmark: api_nan_property_setter]

NAN_PROPERTY_SETTER(cbname)

Use NAN_PROPERTY_SETTER to declare your V8 accessible property setters. Same as NAN_PROPERTY_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_property_enumerator]

NAN_PROPERTY_ENUMERATOR(cbname)

Use NAN_PROPERTY_ENUMERATOR to declare your V8 accessible property enumerators. You get an appropriately typed args object like the args argument to a NAN_PROPERTY_GETTER call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_ENUMERATOR.

[bookmark: api_nan_property_deleter]

NAN_PROPERTY_DELETER(cbname)

Use NAN_PROPERTY_DELETER to declare your V8 accessible property deleters. Same as NAN_PROPERTY_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_DELETER.

[bookmark: api_nan_property_query]

NAN_PROPERTY_QUERY(cbname)

Use NAN_PROPERTY_QUERY to declare your V8 accessible property queries. Same as NAN_PROPERTY_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_QUERY.

[bookmark: api_nan_index_getter]

NAN_INDEX_GETTER(cbname)

Use NAN_INDEX_GETTER to declare your V8 accessible index getters. You get a uint32_t index and an appropriately typed args object that can act similar to the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_GETTER.

[bookmark: api_nan_index_setter]

NAN_INDEX_SETTER(cbname)

Use NAN_INDEX_SETTER to declare your V8 accessible index setters. Same as NAN_INDEX_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_index_enumerator]

NAN_INDEX_ENUMERATOR(cbname)

Use NAN_INDEX_ENUMERATOR to declare your V8 accessible index enumerators. You get an appropriately typed args object like the args argument to a NAN_INDEX_GETTER call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_ENUMERATOR.

[bookmark: api_nan_index_deleter]

NAN_INDEX_DELETER(cbname)

Use NAN_INDEX_DELETER to declare your V8 accessible index deleters. Same as NAN_INDEX_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_DELETER.

[bookmark: api_nan_index_query]

NAN_INDEX_QUERY(cbname)

Use NAN_INDEX_QUERY to declare your V8 accessible index queries. Same as NAN_INDEX_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_QUERY.

[bookmark: api_nan_weak_callback]

NAN_WEAK_CALLBACK(cbname)

Use NAN_WEAK_CALLBACK to define your V8 WeakReference callbacks. There is an argument object const _NanWeakCallbackData<T, P> &data allowing access to the weak object and the supplied parameter through its GetValue and GetParameter methods. You can even access the weak callback info object through the GetCallbackInfo()method, but you probably should not. Revive() keeps the weak object alive until the next GC round.

NAN_WEAK_CALLBACK(weakCallback) {
 int *parameter = data.GetParameter();
 NanMakeCallback(NanGetCurrentContext()->Global(), data.GetValue(), 0, NULL);
 if ((*parameter)++ == 0) {
 data.Revive();
 } else {
 delete parameter;
 }
}

[bookmark: api_nan_deprecated]

NAN_DEPRECATED

Declares a function as deprecated.

static NAN_DEPRECATED NAN_METHOD(foo) {
 ...
}

[bookmark: api_nan_inline]

NAN_INLINE

Inlines a function.

NAN_INLINE int foo(int bar) {
 ...
}

[bookmark: api_nan_new]

Local<

T>

 NanNew<

T>

(...)

Use NanNew to construct almost all v8 objects and make new local handles.

Note: Using NanNew with an std::string is possible, however, you should ensure
to use the overload version (NanNew(stdString)) rather than the template
version (NanNew<v8::String>(stdString)) as there is an unnecessary
performance penalty to using the template version because of the inability for
compilers to appropriately deduce to reference types on template specialization.

Local<String> s = NanNew<String>("value");

...

Persistent<Object> o;

...

Local<Object> lo = NanNew(o);

[bookmark: api_nan_undefined]

Local<

Primitive>

 NanUndefined()

Use instead of Undefined()

[bookmark: api_nan_null]

Local<

Primitive>

 NanNull()

Use instead of Null()

[bookmark: api_nan_true]

Local<

Boolean>

 NanTrue()

Use instead of True()

[bookmark: api_nan_false]

Local<

Boolean>

 NanFalse()

Use instead of False()

[bookmark: api_nan_return_value]

NanReturnValue(Handle<

Value>

)

Use NanReturnValue when you want to return a value from your V8 accessible method:

NAN_METHOD(Foo::Bar) {
 ...

 NanReturnValue(NanNew<String>("FooBar!"));
}

No return statement required.

[bookmark: api_nan_return_undefined]

NanReturnUndefined()

Use NanReturnUndefined when you don’t want to return anything from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnUndefined();
}

[bookmark: api_nan_return_null]

NanReturnNull()

Use NanReturnNull when you want to return Null from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnNull();
}

[bookmark: api_nan_return_empty_string]

NanReturnEmptyString()

Use NanReturnEmptyString when you want to return an empty String from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnEmptyString();
}

[bookmark: api_nan_scope]

NanScope()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanScope() necessary, use it in place of HandleScope scope when you do not wish to return handles (Handle or Local) to the surrounding scope (or in functions directly exposed to V8, as they do not return values in the normal sense):

NAN_METHOD(Foo::Bar) {
 NanScope();

 NanReturnValue(NanNew<String>("FooBar!"));
}

This method is not directly exposed to V8, nor does it return a handle, so it uses an unescapable scope:

bool Foo::Bar() {
 NanScope();

 Local<Boolean> val = NanFalse();
 ...
 return val->Value();
}

[bookmark: api_nan_escapable_scope]

NanEscapableScope()

The separation of handle scopes into escapable and inescapable scopes makes NanEscapableScope() necessary, use it in place of HandleScope scope when you later wish to return a handle (Handle or Local) from the scope, this is for internal functions not directly exposed to V8:

Handle<String> Foo::Bar() {
 NanEscapableScope();

 return NanEscapeScope(NanNew<String>("FooBar!"));
}

[bookmark: api_nan_escape_scope]

Local<

T>

 NanEscapeScope(Handle<

T>

 value);

Use together with NanEscapableScope to escape the scope. Corresponds to HandleScope::Close or EscapableHandleScope::Escape.

[bookmark: api_nan_locker]

NanLocker()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanLocker() necessary, use it in place of Locker locker:

NAN_METHOD(Foo::Bar) {
 NanLocker();
 ...
 NanUnlocker();
}

[bookmark: api_nan_unlocker]

NanUnlocker()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanUnlocker() necessary, use it in place of Unlocker unlocker:

NAN_METHOD(Foo::Bar) {
 NanLocker();
 ...
 NanUnlocker();
}

[bookmark: api_nan_get_internal_field_pointer]

void * NanGetInternalFieldPointer(Handle<

Object>

, int)

Gets a pointer to the internal field with at index from a V8 Object handle.

Local<Object> obj;
...
NanGetInternalFieldPointer(obj, 0);

[bookmark: api_nan_set_internal_field_pointer]

void NanSetInternalFieldPointer(Handle<

Object>

, int, void *)

Sets the value of the internal field at index on a V8 Object handle.

static Persistent<Function> dataWrapperCtor;
...
Local<Object> wrapper = NanNew(dataWrapperCtor)->NewInstance();
NanSetInternalFieldPointer(wrapper, 0, this);

[bookmark: api_nan_object_wrap_handle]

Local<

Object>

 NanObjectWrapHandle(Object)

When you want to fetch the V8 object handle from a native object you’ve wrapped with Node’s ObjectWrap, you should use NanObjectWrapHandle:

NanObjectWrapHandle(iterator)->Get(NanNew<String>("end"))

[bookmark: api_nan_symbol]

Local<

String>

 NanSymbol(const char *)

Deprecated. Use NanNew<String> instead.
Use to create string symbol objects (i.e. v8::String::NewSymbol(x)), for getting and setting object properties, or names of objects.

bool foo = false;
if (obj->Has(NanNew<String>("foo")))
 foo = optionsObj->Get(NanNew<String>("foo"))->BooleanValue()

[bookmark: api_nan_get_pointer_safe]

Type NanGetPointerSafe(Type *[, Type])

A helper for getting values from optional pointers. If the pointer is NULL, the function returns the optional default value, which defaults to 0. Otherwise, the function returns the value the pointer points to.

char *plugh(uint32_t *optional) {
 char res[] = "xyzzy";
 uint32_t param = NanGetPointerSafe<uint32_t>(optional, 0x1337);
 switch (param) {
 ...
 }
 NanSetPointerSafe<uint32_t>(optional, 0xDEADBEEF);
}

[bookmark: api_nan_set_pointer_safe]

bool NanSetPointerSafe(Type *, Type)

A helper for setting optional argument pointers. If the pointer is NULL, the function simply returns false. Otherwise, the value is assigned to the variable the pointer points to.

const char *plugh(size_t *outputsize) {
 char res[] = "xyzzy";
 if !(NanSetPointerSafe<size_t>(outputsize, strlen(res) + 1)) {
 ...
 }

 ...
}

[bookmark: api_nan_raw_string]

void* NanRawString(Handle<

Value>

, enum Nan::Encoding, size_t *, void *, size_t, int)

Deprecated. Use something else.

When you want to convert a V8 String to a char* buffer, use NanRawString. You have to supply an encoding as well as a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows setting String::WriteOptions.
Just remember that you’ll end up with an object that you’ll need to delete[] at some point unless you supply your own buffer:

size_t count;
void* decoded = NanRawString(args[1], Nan::BASE64, &count, NULL, 0, String::HINT_MANY_WRITES_EXPECTED);
...
delete[] reinterpret_cast<char*>(decoded);

[bookmark: api_nan_c_string]

char* NanCString(Handle<

Value>

, size_t *[, char *, size_t, int])

Deprecated. Use NanUtf8String instead.

When you want to convert a V8 String to a null-terminated C char* use NanCString. The resulting char* will be UTF-8-encoded, and you need to supply a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows optionally setting String::WriteOptions, which default to v8::String::NO_OPTIONS.
Just remember that you’ll end up with an object that you’ll need to delete[] at some point unless you supply your own buffer:

size_t count;
char* name = NanCString(args[0], &count);
...
delete[] name;

[bookmark: api_nan_ascii_string]

NanAsciiString

Convert a String to zero-terminated, Ascii-encoded char *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanAsciiString(arg[0])));
}

[bookmark: api_nan_utf8_string]

NanUtf8String

Convert a String to zero-terminated, Utf8-encoded char *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanUtf8String(arg[0])));
}

[bookmark: api_nan_ucs2_string]

NanUcs2String

Convert a String to zero-terminated, Ucs2-encoded uint16_t *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanUcs2String(arg[0])));
}

[bookmark: api_nan_boolean_option_value]

bool NanBooleanOptionValue(Handle<

Value>

, Handle<

String>

[, bool])

When you have an “options” object that you need to fetch properties from, boolean options can be fetched with this pair. They check first if the object exists (IsEmpty), then if the object has the given property (Has) then they get and convert/coerce the property to a bool.

The optional last parameter is the default value, which is false if left off:

// `foo` is false unless the user supplies a truthy value for it
bool foo = NanBooleanOptionValue(optionsObj, NanNew<String>("foo"));
// `bar` is true unless the user supplies a falsy value for it
bool bar = NanBooleanOptionValueDefTrue(optionsObj, NanNew<String>("bar"), true);

[bookmark: api_nan_uint32_option_value]

uint32_t NanUInt32OptionValue(Handle<

Value>

, Handle<

String>

, uint32_t)

Similar to NanBooleanOptionValue, use NanUInt32OptionValue to fetch an integer option from your options object. Can be any kind of JavaScript Number and it will be coerced to an unsigned 32-bit integer.

Requires all 3 arguments as a default is not optional:

uint32_t count = NanUInt32OptionValue(optionsObj, NanNew<String>("count"), 1024);

[bookmark: api_nan_error]

NanError(message), NanTypeError(message), NanRangeError(message)

For making Error, TypeError and RangeError objects.

Local<Value> res = NanError("you must supply a callback argument");

[bookmark: api_nan_throw_error]

NanThrowError(message), NanThrowTypeError(message), NanThrowRangeError(message), NanThrowError(Local<

Value>

), NanThrowError(Local<

Value>

, int)

For throwing Error, TypeError and RangeError objects.

NanThrowError("you must supply a callback argument");

Can also handle any custom object you may want to throw. If used with the error code argument, it will add the supplied error code to the error object as a property called code.

[bookmark: api_nan_new_buffer_handle]

Local<

Object>

 NanNewBufferHandle(char *, uint32_t), Local<

Object>

 NanNewBufferHandle(uint32_t)

The Buffer API has changed a little in Node 0.11, this helper provides consistent access to Buffer creation:

NanNewBufferHandle((char*)value.data(), value.size());

Can also be used to initialize a Buffer with just a size argument.

Can also be supplied with a NanFreeCallback and a hint for the garbage collector.

[bookmark: api_nan_buffer_use]

Local<

Object>

 NanBufferUse(char*, uint32_t)

Buffer::New(char*, uint32_t) prior to 0.11 would make a copy of the data.
While it was possible to get around this, it required a shim by passing a
callback. So the new API Buffer::Use(char*, uint32_t) was introduced to remove
needing to use this shim.

NanBufferUse uses the char* passed as the backing data, and will free the
memory automatically when the weak callback is called. Keep this in mind, as
careless use can lead to “double free or corruption” and other cryptic failures.

[bookmark: api_nan_has_instance]

bool NanHasInstance(Persistent<

FunctionTemplate>

&, Handle<

Value>

)

Can be used to check the type of an object to determine it is of a particular class you have already defined and have a Persistent<FunctionTemplate> handle for.

[bookmark: api_nan_new_context_handle]

Local<

Context>

 NanNewContextHandle([ExtensionConfiguration*, Handle<

ObjectTemplate>

, Handle<

Value>

])

Creates a new Local<Context> handle.

Local<FunctionTemplate> ftmpl = NanNew<FunctionTemplate>();
Local<ObjectTemplate> otmpl = ftmpl->InstanceTemplate();
Local<Context> ctx = NanNewContextHandle(NULL, otmpl);

[bookmark: api_nan_get_current_context]

Local<

Context>

 NanGetCurrentContext()

Gets the current context.

Local<Context> ctx = NanGetCurrentContext();

[bookmark: api_nan_dispose_persistent]

void NanDisposePersistent(Persistent<

T>

 &)

Use NanDisposePersistent to dispose a Persistent handle.

NanDisposePersistent(persistentHandle);

[bookmark: api_nan_assign_persistent]

NanAssignPersistent(handle, object)

Use NanAssignPersistent to assign a non-Persistent handle to a Persistent one. You can no longer just declare a Persistent handle and assign directly to it later, you have to Reset it in Node 0.11, so this makes it easier.

In general it is now better to place anything you want to protect from V8’s garbage collector as properties of a generic Object and then assign that to a Persistent. This works in older versions of Node also if you use NanAssignPersistent:

Persistent<Object> persistentHandle;

...

Local<Object> obj = NanNew<Object>();
obj->Set(NanNew<String>("key"), keyHandle); // where keyHandle might be a Local<String>
NanAssignPersistent(persistentHandle, obj)

[bookmark: api_nan_make_weak_persistent]

_NanWeakCallbackInfo<

T, P>

* NanMakeWeakPersistent(Handle<

T>

, P*, _NanWeakCallbackInfo<

T, P>

::Callback)

Creates a weak persistent handle with the supplied parameter and NAN_WEAK_CALLBACK.

NAN_WEAK_CALLBACK(weakCallback) {

...

}

Local<Function> func;

...

int *parameter = new int(0);
NanMakeWeakPersistent(func, parameter, &weakCallback);

[bookmark: api_nan_set_template]

NanSetTemplate(templ, name, value [, attributes])

Use to add properties on object and function templates.

[bookmark: api_nan_set_prototype_template]

NanSetPrototypeTemplate(templ, name, value [, attributes])

Use to add prototype properties on function templates.

[bookmark: api_nan_set_instance_template]

NanSetInstanceTemplate(templ, name, value [, attributes])

Use to add instance properties on function templates.

[bookmark: api_nan_make_callback]

NanMakeCallback(target, func, argc, argv)

Use instead of node::MakeCallback to call javascript functions. This is the only proper way of calling functions.

[bookmark: api_nan_compile_script]

NanCompileScript(Handle s [, const ScriptOrigin&

 origin])

Use to create new scripts bound to the current context.

[bookmark: api_nan_run_script]

NanRunScript(script)

Use to run both bound and unbound scripts.

[bookmark: api_nan_adjust_external_memory]

NanAdjustExternalMemory(int change_in_bytes)

Simply does AdjustAmountOfExternalAllocatedMemory, note that the argument and returned value have type int.

[bookmark: api_nan_add_gc_epilogue_callback]

NanAddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type_filter=kGCTypeAll)

Simply does AddGCEpilogueCallback

[bookmark: api_nan_add_gc_prologue_callback]

NanAddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type_filter=kGCTypeAll)

Simply does AddGCPrologueCallback

[bookmark: api_nan_remove_gc_epilogue_callback]

NanRemoveGCEpilogueCallback(GCEpilogueCallback callback)

Simply does RemoveGCEpilogueCallback

[bookmark: api_nan_remove_gc_prologue_callback]

NanRemoveGCPrologueCallback(GCPrologueCallback callback)

Simply does RemoveGCPrologueCallback

[bookmark: api_nan_get_heap_statistics]

NanGetHeapStatistics(HeapStatistics *heap_statistics)

Simply does GetHeapStatistics

[bookmark: api_nan_callback]

NanCallback

Because of the difficulties imposed by the changes to Persistent handles in V8 in Node 0.11, creating Persistent versions of your Handle<Function> is annoyingly tricky. NanCallback makes it easier by taking your handle, making it persistent until the NanCallback is deleted and even providing a handy Call() method to fetch and execute the callback Function.

Local<Function> callbackHandle = args[0].As<Function>();
NanCallback *callback = new NanCallback(callbackHandle);
// pass `callback` around and it's safe from GC until you:
delete callback;

You can execute the callback like so:

// no arguments:
callback->Call(0, NULL);

// an error argument:
Handle<Value> argv[] = {
 NanError(NanNew<String>("fail!"))
};
callback->Call(1, argv);

// a success argument:
Handle<Value> argv[] = {
 NanNull(),
 NanNew<String>("w00t!")
};
callback->Call(2, argv);

NanCallback also has a Local<Function> GetCallback() method that you can use
to fetch a local handle to the underlying callback function, as well as a
void SetFunction(Handle<Function>) for setting the callback on the
NanCallback. You can check if a NanCallback is empty with the bool IsEmpty() method. Additionally a generic constructor is available for using
NanCallback without performing heap allocations.

[bookmark: api_nan_async_worker]

NanAsyncWorker

NanAsyncWorker is an abstract class that you can subclass to have much of the annoying async queuing and handling taken care of for you. It can even store arbitrary V8 objects for you and have them persist while the async work is in progress.

See a rough outline of the implementation:

class NanAsyncWorker {
public:
 NanAsyncWorker (NanCallback *callback);

 // Clean up persistent handles and delete the *callback
 virtual ~NanAsyncWorker ();

 // Check the `ErrorMessage()` and call HandleOKCallback()
 // or HandleErrorCallback depending on whether it has been set or not
 virtual void WorkComplete ();

 // You must implement this to do some async work. If there is an
 // error then use `SetErrorMessage()` to set an error message and the callback will
 // be passed that string in an Error object
 virtual void Execute ();

 // Save a V8 object in a Persistent handle to protect it from GC
 void SaveToPersistent(const char *key, Local<Object> &obj);

 // Fetch a stored V8 object (don't call from within `Execute()`)
 Local<Object> GetFromPersistent(const char *key);

 // Get the error message (or NULL)
 const char *ErrorMessage();

 // Set an error message
 void SetErrorMessage(const char *msg);

protected:
 // Default implementation calls the callback function with no arguments.
 // Override this to return meaningful data
 virtual void HandleOKCallback ();

 // Default implementation calls the callback function with an Error object
 // wrapping the `errmsg` string
 virtual void HandleErrorCallback ();
};

[bookmark: api_nan_async_queue_worker]

NanAsyncQueueWorker(NanAsyncWorker *)

NanAsyncQueueWorker will run a NanAsyncWorker asynchronously via libuv. Both the execute and after_work steps are taken care of for you

—

most of the logic for this is embedded in NanAsyncWorker.

Contributors

NAN is only possible due to the excellent work of the following contributors:

		Rod Vagg		GitHub/rvagg		Twitter/@rvagg

		Benjamin Byholm		GitHub/kkoopa		-

		Trevor Norris		GitHub/trevnorris		Twitter/@trevnorris

		Nathan Rajlich		GitHub/TooTallNate		Twitter/@TooTallNate

		Brett Lawson		GitHub/brett19		Twitter/@brett19x

		Ben Noordhuis		GitHub/bnoordhuis		Twitter/@bnoordhuis

Licence &

 copyright

Copyright (c) 2014 NAN contributors (listed above).

Native Abstractions for Node.js is licensed under an MIT +no-false-attribs license. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE file for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/bl/node_modules/readable-stream/node_modules/core-util-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

core-util-is

The util.is* functions introduced in Node v0.12.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

MongoDB Node.JS Driver

what	where
—————	————————————————
documentation	http://mongodb.github.io/node-mongodb-native/
apidoc	http://mongodb.github.io/node-mongodb-native/
source	https://github.com/mongodb/node-mongodb-native
mongodb	http://www.mongodb.org/

Blogs of Engineers involved in the driver

		Christian Kvalheim @christkv [https://twitter.com/christkv] http://christiankvalheim.com

		Valeri Karpov @code_barbarian [https://twitter.com/code_barbarian] http://thecodebarbarian.wordpress.com/

Bugs / Feature Requests

Think you’ve found a bug? Want to see a new feature in node-mongodb-native? Please open a
case in our issue management tool, JIRA:

		Create an account and login https://jira.mongodb.org.

		Navigate to the NODE project https://jira.mongodb.org/browse/NODE.

		Click Create Issue - Please provide as much information as possible about the issue type and how to reproduce it.

Bug reports in JIRA for all driver projects (i.e. NODE, PYTHON, CSHARP, JAVA) and the
Core Server (i.e. SERVER) project are public.

Questions and Bug Reports

		mailing list: https://groups.google.com/forum/#!forum/node-mongodb-native

		jira: http://jira.mongodb.org/

Change Log

http://jira.mongodb.org/browse/NODE

Install

To install the most recent release from npm, run:

npm install mongodb

That may give you a warning telling you that bugs[‘web’] should be bugs[‘url’], it would be safe to ignore it (this has been fixed in the development version)

To install the latest from the repository, run::

npm install path/to/node-mongodb-native

Live Examples

[image:]

Introduction

This is a node.js driver for MongoDB. It’s a port (or close to a port) of the library for ruby at http://github.com/mongodb/mongo-ruby-driver/.

A simple example of inserting a document.

 var MongoClient = require('mongodb').MongoClient
 , format = require('util').format;

 MongoClient.connect('mongodb://127.0.0.1:27017/test', function(err, db) {
 if(err) throw err;

 var collection = db.collection('test_insert');
 collection.insert({a:2}, function(err, docs) {

 collection.count(function(err, count) {
 console.log(format("count = %s", count));
 });

 // Locate all the entries using find
 collection.find().toArray(function(err, results) {
 console.dir(results);
 // Let's close the db
 db.close();
 });
 });
 })

Data types

To store and retrieve the non-JSON MongoDb primitives (ObjectID [http://www.mongodb.org/display/DOCS/Object+IDs], Long, Binary, Timestamp [http://www.mongodb.org/display/DOCS/Timestamp+data+type], DBRef [http://www.mongodb.org/display/DOCS/Database+References#DatabaseReferences-DBRef], Code).

In particular, every document has a unique _id which can be almost any type, and by default a 12-byte ObjectID is created. ObjectIDs can be represented as 24-digit hexadecimal strings, but you must convert the string back into an ObjectID before you can use it in the database. For example:

 // Get the objectID type
 var ObjectID = require('mongodb').ObjectID;

 var idString = '4e4e1638c85e808431000003';
 collection.findOne({_id: new ObjectID(idString)}, console.log) // ok
 collection.findOne({_id: idString}, console.log) // wrong! callback gets undefined

Here are the constructors the non-Javascript BSON primitive types:

 // Fetch the library
 var mongo = require('mongodb');
 // Create new instances of BSON types
 new mongo.Long(numberString)
 new mongo.ObjectID(hexString)
 new mongo.Timestamp() // the actual unique number is generated on insert.
 new mongo.DBRef(collectionName, id, dbName)
 new mongo.Binary(buffer) // takes a string or Buffer
 new mongo.Code(code, [context])
 new mongo.Symbol(string)
 new mongo.MinKey()
 new mongo.MaxKey()
 new mongo.Double(number) // Force double storage

The C/C++ bson parser/serializer

If you are running a version of this library has the C/C++ parser compiled, to enable the driver to use the C/C++ bson parser pass it the option native_parser:true like below

 // using native_parser:
 MongoClient.connect('mongodb://127.0.0.1:27017/test'
 , {db: {native_parser: true}}, function(err, db) {})

The C++ parser uses the js objects both for serialization and deserialization.

GitHub information

The source code is available at http://github.com/mongodb/node-mongodb-native.
You can either clone the repository or download a tarball of the latest release.

Once you have the source you can test the driver by running

$ make test

in the main directory. You will need to have a mongo instance running on localhost for the integration tests to pass.

Examples

For examples look in the examples/ directory. You can execute the examples using node.

$ cd examples
$ node queries.js

GridStore

The GridStore class allows for storage of binary files in mongoDB using the mongoDB defined files and chunks collection definition.

For more information have a look at Gridstore [https://github.com/mongodb/node-mongodb-native/blob/master/docs/gridfs.md]

Replicasets

For more information about how to connect to a replicaset have a look at the extensive documentation Documentation [http://mongodb.github.com/node-mongodb-native/]

Primary Key Factories

Defining your own primary key factory allows you to generate your own series of id’s
(this could f.ex be to use something like ISBN numbers). The generated the id needs to be a 12 byte long “string”.

Simple example below

 var MongoClient = require('mongodb').MongoClient
 , format = require('util').format;

 // Custom factory (need to provide a 12 byte array);
 CustomPKFactory = function() {}
 CustomPKFactory.prototype = new Object();
 CustomPKFactory.createPk = function() {
 return new ObjectID("aaaaaaaaaaaa");
 }

 MongoClient.connect('mongodb://127.0.0.1:27017/test', {'pkFactory':CustomPKFactory}, function(err, db) {
 if(err) throw err;

 db.dropDatabase(function(err, done) {

 db.createCollection('test_custom_key', function(err, collection) {

 collection.insert({'a':1}, function(err, docs) {

 collection.find({'_id':new ObjectID("aaaaaaaaaaaa")}).toArray(function(err, items) {
 console.dir(items);
 // Let's close the db
 db.close();
 });
 });
 });
 });
 });

Documentation

If this document doesn’t answer your questions, see the source of
Collection [https://github.com/mongodb/node-mongodb-native/blob/master/lib/mongodb/collection.js]
or Cursor [https://github.com/mongodb/node-mongodb-native/blob/master/lib/mongodb/cursor.js],
or the documentation at MongoDB for query and update formats.

Find

The find method is actually a factory method to create
Cursor objects. A Cursor lazily uses the connection the first time
you call nextObject, each, or toArray.

The basic operation on a cursor is the nextObject method
that fetches the next matching document from the database. The convenience
methods each and toArray call nextObject until the cursor is exhausted.

Signatures:

 var cursor = collection.find(query, [fields], options);
 cursor.sort(fields).limit(n).skip(m).

 cursor.nextObject(function(err, doc) {});
 cursor.each(function(err, doc) {});
 cursor.toArray(function(err, docs) {});

 cursor.rewind() // reset the cursor to its initial state.

Useful chainable methods of cursor. These can optionally be options of find instead of method calls:

		.limit(n).skip(m) to control paging.

		.sort(fields) Order by the given fields. There are several equivalent syntaxes:

		.sort({field1: -1, field2: 1}) descending by field1, then ascending by field2.

		.sort([['field1', 'desc'], ['field2', 'asc']]) same as above

		.sort([['field1', 'desc'], 'field2']) same as above

		.sort('field1') ascending by field1

Other options of find:

		fields the fields to fetch (to avoid transferring the entire document)

		tailable if true, makes the cursor tailable [http://www.mongodb.org/display/DOCS/Tailable+Cursors].

		batchSize The number of the subset of results to request the database
to return for every request. This should initially be greater than 1 otherwise
the database will automatically close the cursor. The batch size can be set to 1
with batchSize(n, function(err){}) after performing the initial query to the database.

		hint See Optimization: hint [http://www.mongodb.org/display/DOCS/Optimization#Optimization-Hint].

		explain turns this into an explain query. You can also call
explain() on any cursor to fetch the explanation.

		snapshot prevents documents that are updated while the query is active
from being returned multiple times. See more
details about query snapshots [http://www.mongodb.org/display/DOCS/How+to+do+Snapshotted+Queries+in+the+Mongo+Database].

		timeout if false, asks MongoDb not to time out this cursor after an
inactivity period.

For information on how to create queries, see the
MongoDB section on querying [http://www.mongodb.org/display/DOCS/Querying].

 var MongoClient = require('mongodb').MongoClient
 , format = require('util').format;

 MongoClient.connect('mongodb://127.0.0.1:27017/test', function(err, db) {
 if(err) throw err;

 var collection = db
 .collection('test')
 .find({})
 .limit(10)
 .toArray(function(err, docs) {
 console.dir(docs);
 });
 });

Insert

Signature:

 collection.insert(docs, options, [callback]);

where docs can be a single document or an array of documents.

Useful options:

		w:1 Should always set if you have a callback.

See also: MongoDB docs for insert [http://www.mongodb.org/display/DOCS/Inserting].

 var MongoClient = require('mongodb').MongoClient
 , format = require('util').format;

 MongoClient.connect('mongodb://127.0.0.1:27017/test', function(err, db) {
 if(err) throw err;

 db.collection('test').insert({hello: 'world'}, {w:1}, function(err, objects) {
 if (err) console.warn(err.message);
 if (err && err.message.indexOf('E11000 ') !== -1) {
 // this _id was already inserted in the database
 }
 });
 });

Note that there’s no reason to pass a callback to the insert or update commands
unless you use the w:1 option. If you don’t specify w:1, then
your callback will be called immediately.

Update: update and insert (upsert)

The update operation will update the first document that matches your query
(or all documents that match if you use multi:true).
If w:1, upsert is not set, and no documents match, your callback will return 0 documents updated.

See the MongoDB docs [http://www.mongodb.org/display/DOCS/Updating] for
the modifier ($inc, $set, $push, etc.) formats.

Signature:

 collection.update(criteria, objNew, options, [callback]);

Useful options:

		w:1 Should always set if you have a callback.

		multi:true If set, all matching documents are updated, not just the first.

		upsert:true Atomically inserts the document if no documents matched.

Example for update:

 var MongoClient = require('mongodb').MongoClient
 , format = require('util').format;

 MongoClient.connect('mongodb://127.0.0.1:27017/test', function(err, db) {
 if(err) throw err;

 db.collection('test').update({hi: 'here'}, {$set: {hi: 'there'}}, {w:1}, function(err) {
 if (err) console.warn(err.message);
 else console.log('successfully updated');
 });
 });

Find and modify

findAndModify is like update, but it also gives the updated document to
your callback. But there are a few key differences between findAndModify and
update:

		The signatures differ.

		You can only findAndModify a single item, not multiple items.

Signature:

 collection.findAndModify(query, sort, update, options, callback)

The sort parameter is used to specify which object to operate on, if more than
one document matches. It takes the same format as the cursor sort (see
Connection.find above).

See the
MongoDB docs for findAndModify [http://www.mongodb.org/display/DOCS/findAndModify+Command]
for more details.

Useful options:

		remove:true set to a true to remove the object before returning

		new:true set to true if you want to return the modified object rather than the original. Ignored for remove.

		upsert:true Atomically inserts the document if no documents matched.

Example for findAndModify:

 var MongoClient = require('mongodb').MongoClient
 , format = require('util').format;

 MongoClient.connect('mongodb://127.0.0.1:27017/test', function(err, db) {
 if(err) throw err;
 db.collection('test').findAndModify({hello: 'world'}, [['_id','asc']], {$set: {hi: 'there'}}, {}, function(err, object) {
 if (err) console.warn(err.message);
 else console.dir(object); // undefined if no matching object exists.
 });
 });

Save

The save method is a shorthand for upsert if the document contains an
_id, or an insert if there is no _id.

Release Notes

See HISTORY

Credits

		10gen [http://github.com/mongodb/mongo-ruby-driver/]

		Google Closure Library [http://code.google.com/closure/library/]

		Jonas Raoni Soares Silva [http://jsfromhell.com/classes/binary-parser]

Contributors

Aaron Heckmann, Christoph Pojer, Pau Ramon Revilla, Nathan White, Emmerman, Seth LaForge, Boris Filipov, Stefan Schärmeli, Tedde Lundgren, renctan, Sergey Ukustov, Ciaran Jessup, kuno, srimonti, Erik Abele, Pratik Daga, Slobodan Utvic, Kristina Chodorow, Yonathan Randolph, Brian Noguchi, Sam Epstein, James Harrison Fisher, Vladimir Dronnikov, Ben Hockey, Henrik Johansson, Simon Weare, Alex Gorbatchev, Shimon Doodkin, Kyle Mueller, Eran Hammer-Lahav, Marcin Ciszak, François de Metz, Vinay Pulim, nstielau, Adam Wiggins, entrinzikyl, Jeremy Selier, Ian Millington, Public Keating, andrewjstone, Christopher Stott, Corey Jewett, brettkiefer, Rob Holland, Senmiao Liu, heroic, gitfy

License

Copyright 2009 - 2013 MongoDb Inc.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/bl/node_modules/readable-stream/node_modules/string_decoder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 string_decoder.js (require('string_decoder')) from Node.js core

Copyright Joyent, Inc. and other Node contributors. See LICENCE file for details.

Version numbers match the versions found in Node core, e.g. 0.10.24 matches Node 0.10.24, likewise 0.11.10 matches Node 0.11.10. Prefer the stable version over the unstable.

The build/ directory contains a build script that will scrape the source from the joyent/node [https://github.com/joyent/node] repo given a specific Node version.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/bl/node_modules/readable-stream/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/tunnel-agent/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

tunnel-agent

HTTP proxy tunneling agent. Formerly part of mikeal/request, now a standalone module.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/json-stringify-safe/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

json-stringify-safe

Like JSON.stringify, but doesn’t throw on circular references.

Usage

Takes the same arguments as JSON.stringify.

var stringify = require('json-stringify-safe');
var circularObj = {};
circularObj.circularRef = circularObj;
circularObj.list = [circularObj, circularObj];
console.log(stringify(circularObj, null, 2));

Output:

{
 "circularRef": "[Circular]",
 "list": [
 "[Circular]",
 "[Circular]"
]
}

Details

stringify(obj, serializer, indent, decycler)

The first three arguments are the same as to JSON.stringify. The last
is an argument that’s only used when the object has been seen already.

The default decycler function returns the string '[Circular]'.
If, for example, you pass in function(k,v){} (return nothing) then it
will prune cycles. If you pass in function(k,v){ return {foo: 'bar'}},
then cyclical objects will always be represented as {"foo":"bar"} in
the result.

stringify.getSerialize(serializer, decycler)

Returns a serializer that can be used elsewhere. This is the actual
function that’s passed to JSON.stringify.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

[image: NPM version] [https://badge.fury.io/js/mime-types] [image: Build Status] [https://travis-ci.org/expressjs/mime-types]

The ultimate javascript content-type utility.

Install

$ npm install mime-types

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false, so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus. Feel free to add more!

		Browser support via Browserify and Component by converting lists to JSON files.

Otherwise, the API is compatible.

Adding Types

If you’d like to add additional types,
simply create a PR adding the type to custom.json and
a reference link to the sources.

Do NOT edit mime.json or node.json.
Those are pulled using build.js.
You should only touch custom.json.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

mime.types[extension] = type

A map of content-types by extension.

mime.extensions[type] = [extensions]

A map of extensions by content-type.

mime.define(types)

Globally add definitions.
types must be an object of the form:

{
 "<content-type>": [extensions...],
 "<content-type>": [extensions...]
}

See the .json files in lib/ for examples.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/mime-types/SOURCES.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Sources for custom types

This is a list of sources for any custom mime types.
When adding custom mime types, please link to where you found the mime type,
even if it’s from an unofficial source.

		text/coffeescript - http://coffeescript.org/#scripts

		text/x-handlebars-template - https://handlebarsjs.com/#getting-started

		text/x-sass & text/x-scss - https://github.com/janlelis/rubybuntu-mime/blob/master/sass.xml

		text.jsx - http://facebook.github.io/react/docs/getting-started.html [2] [https://github.com/facebook/react/blob/f230e0a03154e6f8a616e0da1fb3d97ffa1a6472/vendor/browser-transforms.js#L210]

Sources for node.json types [https://github.com/broofa/node-mime/blob/master/types/node.types]

Notes on weird types

		font/opentype - This type is technically invalid according to the spec. No valid types begin with font/. No-one uses the official type of application/vnd.ms-opentype as the community standardized application/x-font-otf. However, chrome logs nonsense warnings unless opentype fonts are served with font/opentype. [1] [http://stackoverflow.com/questions/2871655/proper-mime-type-for-fonts]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/bl/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

bl (BufferList)

A Node.js Buffer list collector, reader and streamer thingy.

[image: NPM] [https://nodei.co/npm/bl/]
[image: NPM] [https://nodei.co/npm/bl/]

bl is a storage object for collections of Node Buffers, exposing them with the main Buffer readable API. Also works as a duplex stream so you can collect buffers from a stream that emits them and emit buffers to a stream that consumes them!

The original buffers are kept intact and copies are only done as necessary. Any reads that require the use of a single original buffer will return a slice of that buffer only (which references the same memory as the original buffer). Reads that span buffers perform concatenation as required and return the results transparently.

const BufferList = require('bl')

var bl = new BufferList()
bl.append(new Buffer('abcd'))
bl.append(new Buffer('efg'))
bl.append('hi') // bl will also accept & convert Strings
bl.append(new Buffer('j'))
bl.append(new Buffer([0x3, 0x4]))

console.log(bl.length) // 12

console.log(bl.slice(0, 10).toString('ascii')) // 'abcdefghij'
console.log(bl.slice(3, 10).toString('ascii')) // 'defghij'
console.log(bl.slice(3, 6).toString('ascii')) // 'def'
console.log(bl.slice(3, 8).toString('ascii')) // 'defgh'
console.log(bl.slice(5, 10).toString('ascii')) // 'fghij'

// or just use toString!
console.log(bl.toString()) // 'abcdefghij\u0003\u0004'
console.log(bl.toString('ascii', 3, 8)) // 'defgh'
console.log(bl.toString('ascii', 5, 10)) // 'fghij'

// other standard Buffer readables
console.log(bl.readUInt16BE(10)) // 0x0304
console.log(bl.readUInt16LE(10)) // 0x0403

Give it a callback in the constructor and use it just like concat-stream [https://github.com/maxogden/node-concat-stream]:

const bl = require('bl')
 , fs = require('fs')

fs.createReadStream('README.md')
 .pipe(bl(function (err, data) { // note 'new' isn't strictly required
 // `data` is a complete Buffer object containing the full data
 console.log(data.toString())
 }))

Note that when you use the callback method like this, the resulting data parameter is a concatenation of all Buffer objects in the list. If you want to avoid the overhead of this concatenation (in cases of extreme performance consciousness), then avoid the callback method and just listen to 'end' instead, like a standard Stream.

Or to fetch a URL using hyperquest [https://github.com/substack/hyperquest] (should work with request [http://github.com/mikeal/request] and even plain Node http too!):

const hyperquest = require('hyperquest')
 , bl = require('bl')
 , url = 'https://raw.github.com/rvagg/bl/master/README.md'

hyperquest(url).pipe(bl(function (err, data) {
 console.log(data.toString())
}))

Or, use it as a readable stream to recompose a list of Buffers to an output source:

const BufferList = require('bl')
 , fs = require('fs')

var bl = new BufferList()
bl.append(new Buffer('abcd'))
bl.append(new Buffer('efg'))
bl.append(new Buffer('hi'))
bl.append(new Buffer('j'))

bl.pipe(fs.createWriteStream('gibberish.txt'))

API

		new BufferList([callback])

		bl.length

		bl.append(buffer)

		bl.get(index)

		bl.slice([start[, end]])

		bl.copy(dest, [destStart, [srcStart [, srcEnd]]])

		bl.duplicate()

		bl.consume(bytes)

		bl.toString([encoding, [start, [end]]])

		bl.readDoubleBE(), bl.readDoubleLE(), bl.readFloatBE(), bl.readFloatLE(), bl.readInt32BE(), bl.readInt32LE(), bl.readUInt32BE(), bl.readUInt32LE(), bl.readInt16BE(), bl.readInt16LE(), bl.readUInt16BE(), bl.readUInt16LE(), bl.readInt8(), bl.readUInt8()

		Streams

[bookmark: ctor]

new BufferList([callback | buffer | buffer array])

The constructor takes an optional callback, if supplied, the callback will be called with an error argument followed by a reference to the bl instance, when bl.end() is called (i.e. from a piped stream). This is a convenient method of collecting the entire contents of a stream, particularly when the stream is chunky, such as a network stream.

Normally, no arguments are required for the constructor, but you can initialise the list by passing in a single Buffer object or an array of Buffer object.

new is not strictly required, if you don’t instantiate a new object, it will be done automatically for you so you can create a new instance simply with:

var bl = require('bl')
var myinstance = bl()

// equivilant to:

var BufferList = require('bl')
var myinstance = new BufferList()

[bookmark: length]

bl.length

Get the length of the list in bytes. This is the sum of the lengths of all of the buffers contained in the list, minus any initial offset for a semi-consumed buffer at the beginning. Should accurately represent the total number of bytes that can be read from the list.

[bookmark: append]

bl.append(buffer)

append(buffer) adds an additional buffer or BufferList to the internal list.

[bookmark: get]

bl.get(index)

get() will return the byte at the specified index.

[bookmark: slice]

bl.slice([start, [end]])

slice() returns a new Buffer object containing the bytes within the range specified. Both start and end are optional and will default to the beginning and end of the list respectively.

If the requested range spans a single internal buffer then a slice of that buffer will be returned which shares the original memory range of that Buffer. If the range spans multiple buffers then copy operations will likely occur to give you a uniform Buffer.

[bookmark: copy]

bl.copy(dest, [destStart, [srcStart [, srcEnd]]])

copy() copies the content of the list in the dest buffer, starting from destStart and containing the bytes within the range specified with srcStart to srcEnd. destStart, start and end are optional and will default to the beginning of the dest buffer, and the beginning and end of the list respectively.

[bookmark: duplicate]

bl.duplicate()

duplicate() performs a shallow-copy of the list. The internal Buffers remains the same, so if you change the underlying Buffers, the change will be reflected in both the original and the duplicate. This method is needed if you want to call consume() or pipe() and still keep the original list.Example:

var bl = new BufferList()

bl.append('hello')
bl.append(' world')
bl.append('\n')

bl.duplicate().pipe(process.stdout, { end: false })

console.log(bl.toString())

[bookmark: consume]

bl.consume(bytes)

consume() will shift bytes off the start of the list. The number of bytes consumed don’t need to line up with the sizes of the internal Buffers

—

initial offsets will be calculated accordingly in order to give you a consistent view of the data.

[bookmark: toString]

bl.toString([encoding, [start, [end]]])

toString() will return a string representation of the buffer. The optional start and end arguments are passed on to slice(), while the encoding is passed on to toString() of the resulting Buffer. See the Buffer#toString() [http://nodejs.org/docs/latest/api/buffer.html#buffer_buf_tostring_encoding_start_end] documentation for more information.

[bookmark: readXX]

bl.readDoubleBE(), bl.readDoubleLE(), bl.readFloatBE(), bl.readFloatLE(), bl.readInt32BE(), bl.readInt32LE(), bl.readUInt32BE(), bl.readUInt32LE(), bl.readInt16BE(), bl.readInt16LE(), bl.readUInt16BE(), bl.readUInt16LE(), bl.readInt8(), bl.readUInt8()

All of the standard byte-reading methods of the Buffer interface are implemented and will operate across internal Buffer boundaries transparently.

See the Buffer [http://nodejs.org/docs/latest/api/buffer.html] documentation for how these work.

[bookmark: streams]

Streams

bl is a Node Duplex Stream [http://nodejs.org/docs/latest/api/stream.html#stream_class_stream_duplex], so it can be read from and written to like a standard Node stream. You can also pipe() to and from a bl instance.

Contributors

bl is brought to you by the following hackers:

		Rod Vagg [https://github.com/rvagg]

		Matteo Collina [https://github.com/mcollina]

		Jarett Cruger [https://github.com/jcrugzz]

=======

License

bl is Copyright (c) 2013 Rod Vagg @rvagg [https://twitter.com/rvagg] and licenced under the MIT licence. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE.md file for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/bl/LICENSE.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

The MIT License (MIT)

Copyright (c) 2014 bl contributors

bl contributors listed at https://github.com/rvagg/bl#contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/bl/node_modules/readable-stream/node_modules/isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

isarray

Array#isArray for older browsers.

Usage

var isArray = require('isarray');

console.log(isArray([])); // => true
console.log(isArray({})); // => false

Installation

With npm [http://npmjs.org] do

$ npm install isarray

Then bundle for the browser with
browserify [https://github.com/substack/browserify].

With component [http://component.io] do

$ component install juliangruber/isarray

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/request/node_modules/bl/node_modules/readable-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readable-stream

Node-core streams for userland

[image: NPM] [https://nodei.co/npm/readable-stream/]
[image: NPM] [https://nodei.co/npm/readable-stream/]

This package is a mirror of the Streams2 and Streams3 implementations in Node-core.

If you want to guarantee a stable streams base, regardless of what version of Node you, or the users of your libraries are using, use readable-stream only and avoid the “stream” module in Node-core.

readable-stream comes in two major versions, v1.0.x and v1.1.x. The former tracks the Streams2 implementation in Node 0.10, including bug-fixes and minor improvements as they are added. The latter tracks Streams3 as it develops in Node 0.11; we will likely see a v1.2.x branch for Node 0.12.

readable-stream uses proper patch-level versioning so if you pin to "~1.0.0" you’ll get the latest Node 0.10 Streams2 implementation, including any fixes and minor non-breaking improvements. The patch-level versions of 1.0.x and 1.1.x should mirror the patch-level versions of Node-core releases. You should prefer the 1.0.x releases for now and when you’re ready to start using Streams3, pin to "~1.1.0"

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/uglify-js/node_modules/source-map/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Change Log

0.1.40

		Performance improvements for parsing source maps in SourceMapConsumer.

0.1.39

		Fix a bug where setting a source’s contents to null before any source content
had been set before threw a TypeError. See issue #131.

0.1.38

		Fix a bug where finding relative paths from an empty path were creating
absolute paths. See issue #129.

0.1.37

		Fix a bug where if the source root was an empty string, relative source paths
would turn into absolute source paths. Issue #124.

0.1.36

		Allow the names mapping property to be an empty string. Issue #121.

0.1.35

		A third optional parameter was added to SourceNode.fromStringWithSourceMap
to specify a path that relative sources in the second parameter should be
relative to. Issue #105.

		If no file property is given to a SourceMapGenerator, then the resulting
source map will no longer have a null file property. The property will
simply not exist. Issue #104.

		Fixed a bug where consecutive newlines were ignored in SourceNodes.
Issue #116.

0.1.34

		Make SourceNode work with windows style (“\r\n”) newlines. Issue #103.

		Fix bug involving source contents and the
SourceMapGenerator.prototype.applySourceMap. Issue #100.

0.1.33

		Fix some edge cases surrounding path joining and URL resolution.

		Add a third parameter for relative path to
SourceMapGenerator.prototype.applySourceMap.

		Fix issues with mappings and EOLs.

0.1.32

		Fixed a bug where SourceMapConsumer couldn’t handle negative relative columns
(issue 92).

		Fixed test runner to actually report number of failed tests as its process
exit code.

		Fixed a typo when reporting bad mappings (issue 87).

0.1.31

		Delay parsing the mappings in SourceMapConsumer until queried for a source
location.

		Support Sass source maps (which at the time of writing deviate from the spec
in small ways) in SourceMapConsumer.

0.1.30

		Do not join source root with a source, when the source is a data URI.

		Extend the test runner to allow running single specific test files at a time.

		Performance improvements in SourceNode.prototype.walk and
SourceMapConsumer.prototype.eachMapping.

		Source map browser builds will now work inside Workers.

		Better error messages when attempting to add an invalid mapping to a
SourceMapGenerator.

0.1.29

		Allow duplicate entries in the names and sources arrays of source maps
(usually from TypeScript) we are parsing. Fixes github issue 72.

0.1.28

		Skip duplicate mappings when creating source maps from SourceNode; github
issue 75.

0.1.27

		Don’t throw an error when the file property is missing in SourceMapConsumer,
we don’t use it anyway.

0.1.26

		Fix SourceNode.fromStringWithSourceMap for empty maps. Fixes github issue 70.

0.1.25

		Make compatible with browserify

0.1.24

		Fix issue with absolute paths and file:// URIs. See
https://bugzilla.mozilla.org/show_bug.cgi?id=885597

0.1.23

		Fix issue with absolute paths and sourcesContent, github issue 64.

0.1.22

		Ignore duplicate mappings in SourceMapGenerator. Fixes github issue 21.

0.1.21

		Fixed handling of sources that start with a slash so that they are relative to
the source root’s host.

0.1.20

		Fixed github issue #43: absolute URLs aren’t joined with the source root
anymore.

0.1.19

		Using Travis CI to run tests.

0.1.18

		Fixed a bug in the handling of sourceRoot.

0.1.17

		Added SourceNode.fromStringWithSourceMap.

0.1.16

		Added missing documentation.

		Fixed the generating of empty mappings in SourceNode.

0.1.15

		Added SourceMapGenerator.applySourceMap.

0.1.14

		The sourceRoot is now handled consistently.

0.1.13

		Added SourceMapGenerator.fromSourceMap.

0.1.12

		SourceNode now generates empty mappings too.

0.1.11

		Added name support to SourceNode.

0.1.10

		Added sourcesContent support to the customer and generator.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/uglify-js/node_modules/source-map/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Source Map

This is a library to generate and consume the source map format
described here [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit].

This library is written in the Asynchronous Module Definition format, and works
in the following environments:

		Modern Browsers supporting ECMAScript 5 (either after the build, or with an
AMD loader such as RequireJS)

		Inside Firefox (as a JSM file, after the build)

		With NodeJS versions 0.8.X and higher

Node

$ npm install source-map

Building from Source (for everywhere else)

Install Node and then run

$ git clone https://fitzgen@github.com/mozilla/source-map.git
$ cd source-map
$ npm link .

Next, run

$ node Makefile.dryice.js

This should spew a bunch of stuff to stdout, and create the following files:

		dist/source-map.js - The unminified browser version.

		dist/source-map.min.js - The minified browser version.

		dist/SourceMap.jsm - The JavaScript Module for inclusion in Firefox source.

Examples

Consuming a source map

var rawSourceMap = {
 version: 3,
 file: 'min.js',
 names: ['bar', 'baz', 'n'],
 sources: ['one.js', 'two.js'],
 sourceRoot: 'http://example.com/www/js/',
 mappings: 'CAAC,IAAI,IAAM,SAAUA,GAClB,OAAOC,IAAID;CCDb,IAAI,IAAM,SAAUE,GAClB,OAAOA'
};

var smc = new SourceMapConsumer(rawSourceMap);

console.log(smc.sources);
// ['http://example.com/www/js/one.js',
// 'http://example.com/www/js/two.js']

console.log(smc.originalPositionFor({
 line: 2,
 column: 28
}));
// { source: 'http://example.com/www/js/two.js',
// line: 2,
// column: 10,
// name: 'n' }

console.log(smc.generatedPositionFor({
 source: 'http://example.com/www/js/two.js',
 line: 2,
 column: 10
}));
// { line: 2, column: 28 }

smc.eachMapping(function (m) {
 // ...
});

Generating a source map

In depth guide:
Compiling to JavaScript, and Debugging with Source Maps [https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/]

With SourceNode (high level API)

function compile(ast) {
 switch (ast.type) {
 case 'BinaryExpression':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 [compile(ast.left), " + ", compile(ast.right)]
);
 case 'Literal':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 String(ast.value)
);
 // ...
 default:
 throw new Error("Bad AST");
 }
}

var ast = parse("40 + 2", "add.js");
console.log(compile(ast).toStringWithSourceMap({
 file: 'add.js'
}));
// { code: '40 + 2',
// map: [object SourceMapGenerator] }

With SourceMapGenerator (low level API)

var map = new SourceMapGenerator({
 file: "source-mapped.js"
});

map.addMapping({
 generated: {
 line: 10,
 column: 35
 },
 source: "foo.js",
 original: {
 line: 33,
 column: 2
 },
 name: "christopher"
});

console.log(map.toString());
// '{"version":3,"file":"source-mapped.js","sources":["foo.js"],"names":["christopher"],"mappings":";;;;;;;;;mCAgCEA"}'

API

Get a reference to the module:

// NodeJS
var sourceMap = require('source-map');

// Browser builds
var sourceMap = window.sourceMap;

// Inside Firefox
let sourceMap = {};
Components.utils.import('resource:///modules/devtools/SourceMap.jsm', sourceMap);

SourceMapConsumer

A SourceMapConsumer instance represents a parsed source map which we can query
for information about the original file positions by giving it a file position
in the generated source.

new SourceMapConsumer(rawSourceMap)

The only parameter is the raw source map (either as a string which can be
JSON.parse‘d, or an object). According to the spec, source maps have the
following attributes:

		version: Which version of the source map spec this map is following.

		sources: An array of URLs to the original source files.

		names: An array of identifiers which can be referrenced by individual
mappings.

		sourceRoot: Optional. The URL root from which all sources are relative.

		sourcesContent: Optional. An array of contents of the original source files.

		mappings: A string of base64 VLQs which contain the actual mappings.

		file: Optional. The generated filename this source map is associated with.

SourceMapConsumer.prototype.originalPositionFor(generatedPosition)

Returns the original source, line, and column information for the generated
source’s line and column positions provided. The only argument is an object with
the following properties:

		line: The line number in the generated source.

		column: The column number in the generated source.

and an object is returned with the following properties:

		source: The original source file, or null if this information is not
available.

		line: The line number in the original source, or null if this information is
not available.

		column: The column number in the original source, or null or null if this
information is not available.

		name: The original identifier, or null if this information is not available.

SourceMapConsumer.prototype.generatedPositionFor(originalPosition)

Returns the generated line and column information for the original source,
line, and column positions provided. The only argument is an object with
the following properties:

		source: The filename of the original source.

		line: The line number in the original source.

		column: The column number in the original source.

and an object is returned with the following properties:

		line: The line number in the generated source, or null.

		column: The column number in the generated source, or null.

SourceMapConsumer.prototype.sourceContentFor(source)

Returns the original source content for the source provided. The only
argument is the URL of the original source file.

SourceMapConsumer.prototype.eachMapping(callback, context, order)

Iterate over each mapping between an original source/line/column and a
generated line/column in this source map.

		callback: The function that is called with each mapping. Mappings have the
form { source, generatedLine, generatedColumn, originalLine, originalColumn, name }

		context: Optional. If specified, this object will be the value of this
every time that callback is called.

		order: Either SourceMapConsumer.GENERATED_ORDER or
SourceMapConsumer.ORIGINAL_ORDER. Specifies whether you want to iterate over
the mappings sorted by the generated file’s line/column order or the
original’s source/line/column order, respectively. Defaults to
SourceMapConsumer.GENERATED_ORDER.

SourceMapGenerator

An instance of the SourceMapGenerator represents a source map which is being
built incrementally.

new SourceMapGenerator([startOfSourceMap])

You may pass an object with the following properties:

		file: The filename of the generated source that this source map is
associated with.

		sourceRoot: A root for all relative URLs in this source map.

SourceMapGenerator.fromSourceMap(sourceMapConsumer)

Creates a new SourceMapGenerator based on a SourceMapConsumer

		sourceMapConsumer The SourceMap.

SourceMapGenerator.prototype.addMapping(mapping)

Add a single mapping from original source line and column to the generated
source’s line and column for this source map being created. The mapping object
should have the following properties:

		generated: An object with the generated line and column positions.

		original: An object with the original line and column positions.

		source: The original source file (relative to the sourceRoot).

		name: An optional original token name for this mapping.

SourceMapGenerator.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for an original source file.

		sourceFile the URL of the original source file.

		sourceContent the content of the source file.

SourceMapGenerator.prototype.applySourceMap(sourceMapConsumer[, sourceFile[, sourceMapPath]])

Applies a SourceMap for a source file to the SourceMap.
Each mapping to the supplied source file is rewritten using the
supplied SourceMap. Note: The resolution for the resulting mappings
is the minimium of this map and the supplied map.

		sourceMapConsumer: The SourceMap to be applied.

		sourceFile: Optional. The filename of the source file.
If omitted, sourceMapConsumer.file will be used, if it exists.
Otherwise an error will be thrown.

		sourceMapPath: Optional. The dirname of the path to the SourceMap
to be applied. If relative, it is relative to the SourceMap.

This parameter is needed when the two SourceMaps aren’t in the same
directory, and the SourceMap to be applied contains relative source
paths. If so, those relative source paths need to be rewritten
relative to the SourceMap.

If omitted, it is assumed that both SourceMaps are in the same directory,
thus not needing any rewriting. (Supplying '.' has the same effect.)

SourceMapGenerator.prototype.toString()

Renders the source map being generated to a string.

SourceNode

SourceNodes provide a way to abstract over interpolating and/or concatenating
snippets of generated JavaScript source code, while maintaining the line and
column information associated between those snippets and the original source
code. This is useful as the final intermediate representation a compiler might
use before outputting the generated JS and source map.

new SourceNode([line, column, source[, chunk[, name]]])

		line: The original line number associated with this source node, or null if
it isn’t associated with an original line.

		column: The original column number associated with this source node, or null
if it isn’t associated with an original column.

		source: The original source’s filename; null if no filename is provided.

		chunk: Optional. Is immediately passed to SourceNode.prototype.add, see
below.

		name: Optional. The original identifier.

SourceNode.fromStringWithSourceMap(code, sourceMapConsumer[, relativePath])

Creates a SourceNode from generated code and a SourceMapConsumer.

		code: The generated code

		sourceMapConsumer The SourceMap for the generated code

		relativePath The optional path that relative sources in sourceMapConsumer
should be relative to.

SourceNode.prototype.add(chunk)

Add a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.prepend(chunk)

Prepend a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for a source file. This will be added to the
SourceMap in the sourcesContent field.

		sourceFile: The filename of the source file

		sourceContent: The content of the source file

SourceNode.prototype.walk(fn)

Walk over the tree of JS snippets in this node and its children. The walking
function is called once for each snippet of JS and is passed that snippet and
the its original associated source’s line/column location.

		fn: The traversal function.

SourceNode.prototype.walkSourceContents(fn)

Walk over the tree of SourceNodes. The walking function is called for each
source file content and is passed the filename and source content.

		fn: The traversal function.

SourceNode.prototype.join(sep)

Like Array.prototype.join except for SourceNodes. Inserts the separator
between each of this source node’s children.

		sep: The separator.

SourceNode.prototype.replaceRight(pattern, replacement)

Call String.prototype.replace on the very right-most source snippet. Useful
for trimming whitespace from the end of a source node, etc.

		pattern: The pattern to replace.

		replacement: The thing to replace the pattern with.

SourceNode.prototype.toString()

Return the string representation of this source node. Walks over the tree and
concatenates all the various snippets together to one string.

SourceNode.prototype.toStringWithSourceMap([startOfSourceMap])

Returns the string representation of this tree of source nodes, plus a
SourceMapGenerator which contains all the mappings between the generated and
original sources.

The arguments are the same as those to new SourceMapGenerator.

Tests

[image: Build Status] [https://travis-ci.org/mozilla/source-map]

Install NodeJS version 0.8.0 or greater, then run node test/run-tests.js.

To add new tests, create a new file named test/test-<your new test name>.js
and export your test functions with names that start with “test”, for example

exports["test doing the foo bar"] = function (assert, util) {
 ...
};

The new test will be located automatically when you run the suite.

The util argument is the test utility module located at test/source-map/util.

The assert argument is a cut down version of node’s assert module. You have
access to the following assertion functions:

		doesNotThrow

		equal

		ok

		strictEqual

		throws

(The reason for the restricted set of test functions is because we need the
tests to run inside Firefox’s test suite as well and so the assert module is
shimmed in that environment. See build/assert-shim.js.)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/promise/node_modules/is-promise/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image:]

is-promise

Test whether an object looks like a promises-a+ promise

[image: Build Status] [https://travis-ci.org/then/is-promise]
[image: Dependency Status] [https://gemnasium.com/then/is-promise]
[image: NPM version] [https://www.npmjs.org/package/is-promise]

Installation

$ npm install is-promise

You can also use it client side via npm.

API

var isPromise = require('is-promise');

isPromise({then:function () {...}});//=>true
isPromise(null);//=>false
isPromise({});//=>false
isPromise({then: true})//=>false

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/uglify-js/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

UglifyJS 2

UglifyJS is a JavaScript parser, minifier, compressor or beautifier toolkit.

This page documents the command line utility. For
API and internals documentation see my website [http://lisperator.net/uglifyjs/].
There’s also an
in-browser online demo [http://lisperator.net/uglifyjs/#demo] (for Firefox,
Chrome and probably Safari).

Install

First make sure you have installed the latest version of node.js [http://nodejs.org/]
(You may need to restart your computer after this step).

From NPM for use as a command line app:

npm install uglify-js -g

From NPM for programmatic use:

npm install uglify-js

From Git:

git clone git://github.com/mishoo/UglifyJS2.git
cd UglifyJS2
npm link .

Usage

uglifyjs [input files] [options]

UglifyJS2 can take multiple input files. It’s recommended that you pass the
input files first, then pass the options. UglifyJS will parse input files
in sequence and apply any compression options. The files are parsed in the
same global scope, that is, a reference from a file to some
variable/function declared in another file will be matched properly.

If you want to read from STDIN instead, pass a single dash instead of input
files.

The available options are:

--source-map Specify an output file where to generate source map.
 [string]
--source-map-root The path to the original source to be included in the
 source map. [string]
--source-map-url The path to the source map to be added in //@
 sourceMappingURL. Defaults to the value passed with
 --source-map. [string]
--in-source-map Input source map, useful if you're compressing JS that was
 generated from some other original code.
-p, --prefix Skip prefix for original filenames that appear in source
 maps. For example -p 3 will drop 3 directories from file
 names and ensure they are relative paths.
-o, --output Output file (default STDOUT).
-b, --beautify Beautify output/specify output options. [string]
-m, --mangle Mangle names/pass mangler options. [string]
-r, --reserved Reserved names to exclude from mangling.
-c, --compress Enable compressor/pass compressor options. Pass options
 like -c hoist_vars=false,if_return=false. Use -c with no
 argument to use the default compression options. [string]
-d, --define Global definitions [string]
--comments Preserve copyright comments in the output. By default this
 works like Google Closure, keeping JSDoc-style comments
 that contain "@license" or "@preserve". You can optionally
 pass one of the following arguments to this flag:
 - "all" to keep all comments
 - a valid JS regexp (needs to start with a slash) to keep
 only comments that match.
 Note that currently not *all* comments can be kept when
 compression is on, because of dead code removal or
 cascading statements into sequences. [string]
--stats Display operations run time on STDERR. [boolean]
--acorn Use Acorn for parsing. [boolean]
--spidermonkey Assume input fles are SpiderMonkey AST format (as JSON).
 [boolean]
--self Build itself (UglifyJS2) as a library (implies
 --wrap=UglifyJS --export-all) [boolean]
--wrap Embed everything in a big function, making the “exports”
 and “global” variables available. You need to pass an
 argument to this option to specify the name that your
 module will take when included in, say, a browser.
 [string]
--export-all Only used when --wrap, this tells UglifyJS to add code to
 automatically export all globals. [boolean]
--lint Display some scope warnings [boolean]
-v, --verbose Verbose [boolean]
-V, --version Print version number and exit. [boolean]

Specify --output (-o) to declare the output file. Otherwise the output
goes to STDOUT.

Source map options

UglifyJS2 can generate a source map file, which is highly useful for
debugging your compressed JavaScript. To get a source map, pass
--source-map output.js.map (full path to the file where you want the
source map dumped).

Additionally you might need --source-map-root to pass the URL where the
original files can be found. In case you are passing full paths to input
files to UglifyJS, you can use --prefix (-p) to specify the number of
directories to drop from the path prefix when declaring files in the source
map.

For example:

uglifyjs /home/doe/work/foo/src/js/file1.js \
 /home/doe/work/foo/src/js/file2.js \
 -o foo.min.js \
 --source-map foo.min.js.map \
 --source-map-root http://foo.com/src \
 -p 5 -c -m

The above will compress and mangle file1.js and file2.js, will drop the
output in foo.min.js and the source map in foo.min.js.map. The source
mapping will refer to http://foo.com/src/js/file1.js and
http://foo.com/src/js/file2.js (in fact it will list http://foo.com/src
as the source map root, and the original files as js/file1.js and
js/file2.js).

Composed source map

When you’re compressing JS code that was output by a compiler such as
CoffeeScript, mapping to the JS code won’t be too helpful. Instead, you’d
like to map back to the original code (i.e. CoffeeScript). UglifyJS has an
option to take an input source map. Assuming you have a mapping from
CoffeeScript → compiled JS, UglifyJS can generate a map from CoffeeScript →
compressed JS by mapping every token in the compiled JS to its original
location.

To use this feature you need to pass --in-source-map /path/to/input/source.map. Normally the input source map should also point
to the file containing the generated JS, so if that’s correct you can omit
input files from the command line.

Mangler options

To enable the mangler you need to pass --mangle (-m). Optionally you
can pass -m sort=true (we’ll possibly have other flags in the future) in order
to assign shorter names to most frequently used variables. This saves a few
hundred bytes on jQuery before gzip, but the output is bigger after gzip
(and seems to happen for other libraries I tried it on) therefore it’s not
enabled by default.

When mangling is enabled but you want to prevent certain names from being
mangled, you can declare those names with --reserved (-r) — pass a
comma-separated list of names. For example:

uglifyjs ... -m -r '$,require,exports'

to prevent the require, exports and $ names from being changed.

Compressor options

You need to pass --compress (-c) to enable the compressor. Optionally
you can pass a comma-separated list of options. Options are in the form
foo=bar, or just foo (the latter implies a boolean option that you want
to set true; it’s effectively a shortcut for foo=true).

The defaults should be tuned for maximum compression on most code. Here are
the available options (all are true by default, except hoist_vars):

		sequences – join consecutive simple statements using the comma operator

		properties – rewrite property access using the dot notation, for
example foo["bar"] → foo.bar

		dead_code – remove unreachable code

		drop_debugger – remove debugger; statements

		unsafe – apply “unsafe” transformations (discussion below)

		conditionals – apply optimizations for if-s and conditional
expressions

		comparisons – apply certain optimizations to binary nodes, for example:
!(a <= b) → a > b (only when unsafe), attempts to negate binary nodes,
e.g. a = !b && !c && !d && !e → a=!(b||c||d||e) etc.

		evaluate – attempt to evaluate constant expressions

		booleans – various optimizations for boolean context, for example !!a ? b : c → a ? b : c

		loops – optimizations for do, while and for loops when we can
statically determine the condition

		unused – drop unreferenced functions and variables

		hoist_funs – hoist function declarations

		hoist_vars – hoist var declarations (this is false by default
because it seems to increase the size of the output in general)

		if_return – optimizations for if/return and if/continue

		join_vars – join consecutive var statements

		cascade – small optimization for sequences, transform x, x into x
and x = something(), x into x = something()

		warnings – display warnings when dropping unreachable code or unused
declarations etc.

Conditional compilation

You can use the --define (-d) switch in order to declare global
variables that UglifyJS will assume to be constants (unless defined in
scope). For example if you pass --define DEBUG=false then, coupled with
dead code removal UglifyJS will discard the following from the output:

if (DEBUG) {
 console.log("debug stuff");
}

UglifyJS will warn about the condition being always false and about dropping
unreachable code; for now there is no option to turn off only this specific
warning, you can pass warnings=false to turn off all warnings.

Another way of doing that is to declare your globals as constants in a
separate file and include it into the build. For example you can have a
build/defines.js file with the following:

const DEBUG = false;
const PRODUCTION = true;
// etc.

and build your code like this:

uglifyjs build/defines.js js/foo.js js/bar.js... -c

UglifyJS will notice the constants and, since they cannot be altered, it
will evaluate references to them to the value itself and drop unreachable
code as usual. The possible downside of this approach is that the build
will contain the const declarations.

[bookmark: codegen-options]

Beautifier options

The code generator tries to output shortest code possible by default. In
case you want beautified output, pass --beautify (-b). Optionally you
can pass additional arguments that control the code output:

		beautify (default true) – whether to actually beautify the output.
Passing -b will set this to true, but you might need to pass -b even
when you want to generate minified code, in order to specify additional
arguments, so you can use -b beautify=false to override it.

		indent-level (default 4)

		indent-start (default 0) – prefix all lines by that many spaces

		quote-keys (default false) – pass true to quote all keys in literal
objects

		space-colon (default true) – insert a space after the colon signs

		ascii-only (default false) – escape Unicode characters in strings and
regexps

		inline-script (default false) – escape the slash in occurrences of
</script in strings

		width (default 80) – only takes effect when beautification is on, this
specifies an (orientative) line width that the beautifier will try to
obey. It refers to the width of the line text (excluding indentation).
It doesn’t work very well currently, but it does make the code generated
by UglifyJS more readable.

		max-line-len (default 32000) – maximum line length (for uglified code)

		ie-proof (default true) – generate “IE-proof” code (for now this
means add brackets around the do/while in code like this: if (foo) do something(); while (bar); else

		bracketize (default false) – always insert brackets in if, for,
do, while or with statements, even if their body is a single
statement.

		semicolons (default true) – separate statements with semicolons. If
you pass false then whenever possible we will use a newline instead of a
semicolon, leading to more readable output of uglified code (size before
gzip could be smaller; size after gzip insignificantly larger).

Keeping copyright notices or other comments

You can pass --comments to retain certain comments in the output. By
default it will keep JSDoc-style comments that contain “@preserve”,
“@license” or “@cc_on” (conditional compilation for IE). You can pass
--comments all to keep all the comments, or a valid JavaScript regexp to
keep only comments that match this regexp. For example --comments '/foo|bar/' will keep only comments that contain “foo” or “bar”.

Note, however, that there might be situations where comments are lost. For
example:

function f() {
 /** @preserve Foo Bar */
 function g() {
 // this function is never called
 }
 return something();
}

Even though it has “@preserve”, the comment will be lost because the inner
function g (which is the AST node to which the comment is attached to) is
discarded by the compressor as not referenced.

The safest comments where to place copyright information (or other info that
needs to be kept in the output) are comments attached to toplevel nodes.

Support for the SpiderMonkey AST

UglifyJS2 has its own abstract syntax tree format; for
practical reasons [http://lisperator.net/blog/uglifyjs-why-not-switching-to-spidermonkey-ast/]
we can’t easily change to using the SpiderMonkey AST internally. However,
UglifyJS now has a converter which can import a SpiderMonkey AST.

For example Acorn [https://github.com/marijnh/acorn] is a super-fast parser that produces a
SpiderMonkey AST. It has a small CLI utility that parses one file and dumps
the AST in JSON on the standard output. To use UglifyJS to mangle and
compress that:

acorn file.js | uglifyjs --spidermonkey -m -c

The --spidermonkey option tells UglifyJS that all input files are not
JavaScript, but JS code described in SpiderMonkey AST in JSON. Therefore we
don’t use our own parser in this case, but just transform that AST into our
internal AST.

Use Acorn for parsing

More for fun, I added the --acorn option which will use Acorn to do all
the parsing. If you pass this option, UglifyJS will require("acorn").

Acorn is really fast (e.g. 250ms instead of 380ms on some 650K code), but
converting the SpiderMonkey tree that Acorn produces takes another 150ms so
in total it’s a bit more than just using UglifyJS’s own parser.

API Reference

Assuming installation via NPM, you can load UglifyJS in your application
like this:

var UglifyJS = require("uglify-js");

It exports a lot of names, but I’ll discuss here the basics that are needed
for parsing, mangling and compressing a piece of code. The sequence is (1)
parse, (2) compress, (3) mangle, (4) generate output code.

The simple way

There’s a single toplevel function which combines all the steps. If you
don’t need additional customization, you might want to go with minify.
Example:

var result = UglifyJS.minify("/path/to/file.js");
console.log(result.code); // minified output
// if you need to pass code instead of file name
var result = UglifyJS.minify("var b = function () {};", {fromString: true});

You can also compress multiple files:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"]);
console.log(result.code);

To generate a source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map"
});
console.log(result.code); // minified output
console.log(result.map);

Note that the source map is not saved in a file, it’s just returned in
result.map. The value passed for outSourceMap is only used to set the
file attribute in the source map (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit]).

You can also specify sourceRoot property to be included in source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map",
 sourceRoot: "http://example.com/src"
});

If you’re compressing compiled JavaScript and have a source map for it, you
can use the inSourceMap argument:

var result = UglifyJS.minify("compiled.js", {
 inSourceMap: "compiled.js.map",
 outSourceMap: "minified.js.map"
});
// same as before, it returns `code` and `map`

The inSourceMap is only used if you also request outSourceMap (it makes
no sense otherwise).

Other options:

		warnings (default false) — pass true to display compressor warnings.

		fromString (default false) — if you pass true then you can pass
JavaScript source code, rather than file names.

		mangle — pass false to skip mangling names.

		output (default null) — pass an object if you wish to specify
additional output options [http://lisperator.net/uglifyjs/codegen]. The defaults are optimized
for best compression.

		compress (default {}) — pass false to skip compressing entirely.
Pass an object to specify custom compressor options [http://lisperator.net/uglifyjs/compress].

We could add more options to UglifyJS.minify — if you need additional
functionality please suggest!

The hard way

Following there’s more detailed API info, in case the minify function is
too simple for your needs.

The parser

var toplevel_ast = UglifyJS.parse(code, options);

options is optional and if present it must be an object. The following
properties are available:

		strict — disable automatic semicolon insertion and support for trailing
comma in arrays and objects

		filename — the name of the file where this code is coming from

		toplevel — a toplevel node (as returned by a previous invocation of
parse)

The last two options are useful when you’d like to minify multiple files and
get a single file as the output and a proper source map. Our CLI tool does
something like this:

var toplevel = null;
files.forEach(function(file){
 var code = fs.readFileSync(file);
 toplevel = UglifyJS.parse(code, {
 filename: file,
 toplevel: toplevel
 });
});

After this, we have in toplevel a big AST containing all our files, with
each token having proper information about where it came from.

Scope information

UglifyJS contains a scope analyzer that you need to call manually before
compressing or mangling. Basically it augments various nodes in the AST
with information about where is a name defined, how many times is a name
referenced, if it is a global or not, if a function is using eval or the
with statement etc. I will discuss this some place else, for now what’s
important to know is that you need to call the following before doing
anything with the tree:

toplevel.figure_out_scope()

Compression

Like this:

var compressor = UglifyJS.Compressor(options);
var compressed_ast = toplevel.transform(compressor);

The options can be missing. Available options are discussed above in
“Compressor options”. Defaults should lead to best compression in most
scripts.

The compressor is destructive, so don’t rely that toplevel remains the
original tree.

Mangling

After compression it is a good idea to call again figure_out_scope (since
the compressor might drop unused variables / unreachable code and this might
change the number of identifiers or their position). Optionally, you can
call a trick that helps after Gzip (counting character frequency in
non-mangleable words). Example:

compressed_ast.figure_out_scope();
compressed_ast.compute_char_frequency();
compressed_ast.mangle_names();

Generating output

AST nodes have a print method that takes an output stream. Essentially,
to generate code you do this:

var stream = UglifyJS.OutputStream(options);
compressed_ast.print(stream);
var code = stream.toString(); // this is your minified code

or, for a shortcut you can do:

var code = compressed_ast.print_to_string(options);

As usual, options is optional. The output stream accepts a lot of otions,
most of them documented above in section “Beautifier options”. The two
which we care about here are source_map and comments.

Keeping comments in the output

In order to keep certain comments in the output you need to pass the
comments option. Pass a RegExp or a function. If you pass a RegExp, only
those comments whose body matches the regexp will be kept. Note that body
means without the initial // or /*. If you pass a function, it will be
called for every comment in the tree and will receive two arguments: the
node that the comment is attached to, and the comment token itself.

The comment token has these properties:

		type: “comment1” for single-line comments or “comment2” for multi-line
comments

		value: the comment body

		pos and endpos: the start/end positions (zero-based indexes) in the
original code where this comment appears

		line and col: the line and column where this comment appears in the
original code

		file — the file name of the original file

		nlb — true if there was a newline before this comment in the original
code, or if this comment contains a newline.

Your function should return true to keep the comment, or a falsy value
otherwise.

Generating a source mapping

You need to pass the source_map argument when calling print. It needs
to be a SourceMap object (which is a thin wrapper on top of the
source-map [https://github.com/mozilla/source-map] library).

Example:

var source_map = UglifyJS.SourceMap(source_map_options);
var stream = UglifyJS.OutputStream({
 ...
 source_map: source_map
});
compressed_ast.print(stream);

var code = stream.toString();
var map = source_map.toString(); // json output for your source map

The source_map_options (optional) can contain the following properties:

		file: the name of the JavaScript output file that this mapping refers to

		root: the sourceRoot property (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit])

		orig: the “original source map”, handy when you compress generated JS
and want to map the minified output back to the original code where it
came from. It can be simply a string in JSON, or a JSON object containing
the original source map.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/uglify-js/node_modules/source-map/node_modules/amdefine/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

amdefine

A module that can be used to implement AMD’s define() in Node. This allows you
to code to the AMD API and have the module work in node programs without
requiring those other programs to use AMD.

Usage

1) Update your package.json to indicate amdefine as a dependency:

 "dependencies": {
 "amdefine": ">=0.1.0"
 }

Then run npm install to get amdefine into your project.

2) At the top of each module that uses define(), place this code:

if (typeof define !== 'function') { var define = require('amdefine')(module) }

Only use these snippets when loading amdefine. If you preserve the basic structure,
with the braces, it will be stripped out when using the RequireJS optimizer.

You can add spaces, line breaks and even require amdefine with a local path, but
keep the rest of the structure to get the stripping behavior.

As you may know, because if statements in JavaScript don’t have their own scope, the var
declaration in the above snippet is made whether the if expression is truthy or not. If
RequireJS is loaded then the declaration is superfluous because define is already already
declared in the same scope in RequireJS. Fortunately JavaScript handles multiple var
declarations of the same variable in the same scope gracefully.

If you want to deliver amdefine.js with your code rather than specifying it as a dependency
with npm, then just download the latest release and refer to it using a relative path:

Latest Version [https://github.com/jrburke/amdefine/raw/latest/amdefine.js]

amdefine/intercept

Consider this very experimental.

Instead of pasting the piece of text for the amdefine setup of a define
variable in each module you create or consume, you can use amdefine/intercept
instead. It will automatically insert the above snippet in each .js file loaded
by Node.

Warning: you should only use this if you are creating an application that
is consuming AMD style defined()’d modules that are distributed via npm and want
to run that code in Node.

For library code where you are not sure if it will be used by others in Node or
in the browser, then explicitly depending on amdefine and placing the code
snippet above is suggested path, instead of using amdefine/intercept. The
intercept module affects all .js files loaded in the Node app, and it is
inconsiderate to modify global state like that unless you are also controlling
the top level app.

Why distribute AMD-style nodes via npm?

npm has a lot of weaknesses for front-end use (installed layout is not great,
should have better support for the `baseUrl + moduleID + ‘.js’ style of loading,
single file JS installs), but some people want a JS package manager and are
willing to live with those constraints. If that is you, but still want to author
in AMD style modules to get dynamic require([]), better direct source usage and
powerful loader plugin support in the browser, then this tool can help.

amdefine/intercept usage

Just require it in your top level app module (for example index.js, server.js):

require('amdefine/intercept');

The module does not return a value, so no need to assign the result to a local
variable.

Then just require() code as you normally would with Node’s require(). Any .js
loaded after the intercept require will have the amdefine check injected in
the .js source as it is loaded. It does not modify the source on disk, just
prepends some content to the text of the module as it is loaded by Node.

How amdefine/intercept works

It overrides the Module._extensions['.js'] in Node to automatically prepend
the amdefine snippet above. So, it will affect any .js file loaded by your
app.

define() usage

It is best if you use the anonymous forms of define() in your module:

define(function (require) {
 var dependency = require('dependency');
});

or

define(['dependency'], function (dependency) {

});

RequireJS optimizer integration. [bookmark: optimizer]

[bookmark: optimizer]
[bookmark: optimizer]Version 1.0.3 of the RequireJS optimizer [http://requirejs.org/docs/optimization.html]
will have support for stripping the if (typeof define !== 'function') check
mentioned above, so you can include this snippet for code that runs in the
browser, but avoid taking the cost of the if() statement once the code is
optimized for deployment.

Node 0.4 Support

If you want to support Node 0.4, then add require as the second parameter to amdefine:

//Only if you want Node 0.4. If using 0.5 or later, use the above snippet.
if (typeof define !== 'function') { var define = require('amdefine')(module, require) }

Limitations

Synchronous vs Asynchronous

amdefine creates a define() function that is callable by your code. It will
execute and trace dependencies and call the factory function synchronously,
to keep the behavior in line with Node’s synchronous dependency tracing.

The exception: calling AMD’s callback-style require() from inside a factory
function. The require callback is called on process.nextTick():

define(function (require) {
 require(['a'], function(a) {
 //'a' is loaded synchronously, but
 //this callback is called on process.nextTick().
 });
});

Loader Plugins

Loader plugins are supported as long as they call their load() callbacks
synchronously. So ones that do network requests will not work. However plugins
like text [http://requirejs.org/docs/api.html#text] can load text files locally.

The plugin API’s load.fromText() is not supported in amdefine, so this means
transpiler plugins like the CoffeeScript loader plugin [https://github.com/jrburke/require-cs]
will not work. This may be fixable, but it is a bit complex, and I do not have
enough node-fu to figure it out yet. See the source for amdefine.js if you want
to get an idea of the issues involved.

Tests

To run the tests, cd to tests and run:

node all.js
node all-intercept.js

License

New BSD and MIT. Check the LICENSE file for all the details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/void-elements/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

void-elements

Array of “void elements” defined by the HTML specification

Exports an Array of “void element” node names as defined by the HTML spec.

The list is programatically generated from SPEC [http://www.w3.org/html/wg/drafts/html/master/syntax.html#void-elements].

[image: Build Status] [https://travis-ci.org/hemanth/void-elements]
[image: Dependency Status] [https://gemnasium.com/hemanth/void-elements]
[image: NPM version] [https://www.npmjs.org/package/void-elements]

Usage

var voidElements = require('void-elements');

assert(voidElements.indexOf('span') === -1, ' is not a void element');
assert(voidElements.indexOf('img') !== -1, ' is a void element');

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/countrycodes/node_modules/collections/LICENSE.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Copyright 2012 Kristopher Michael Kowal. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/countrycodes/node_modules/collections/FUTURE.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Future work

Goals

		make array dispatch length property changes between range changes to
be consistent with List.

		comprehensive specs and spec coverage tests

		fast list splicing

		revise map changes to use separate handlers for add/delete

		revise tokens for range and map changes to specify complete alternate
delegate methods, particularly for forwarding directly to dispatch

		Make it easier to created a SortedSet with a criterion like
Function.by(Function.get(‘name’))

		evaluate exposing observeProperty, observeRangeChange, and observeMapChange
instead of the aEL/rEL inspired API FRB exposes today, to minimize
book-keeping and garbage collection

		possibly refactor to make shimming more opt-in

More possible collections

		sorted-list (sorted, can contain duplicates, perhaps backed by splay
tree with relaxation on the uniqueness invariant, or a skip list)

		sorted-multi-map (sorted, can contain duplicate entries)

		buffer (backed by a circular array, emits cull events)

		trie-set

		trie-map

		immutable-* (mutation functions return new objects that largely share
the previous version’s internal state, some perhaps backed by a hash
trie)

		array set (a set, for fast lookup, backed by an array for meaningful
range changes)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/countrycodes/node_modules/collections/CHANGES.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

v1.2.0

		Trevor Dixon fixed bugs in SortedSet find methods.

		Adds toJSON method to all collections.

		Adds deleteAll to some collections.

		Eliminate some extra work in change listener registration and dispatch by
using namespaced properties instead of a weak map, precomputing event
handler method names, and reusing an array to capture a snapshot of active
change listeners during dispatch.

		Fix SortedArrayMap isSorted flag.

		Fix Array find such that the sought value may be a wild card.

		MultiMap provides the key to the bucket maker

		Improve support for strings, maps, and arguments across implementations of
addEach

		Fix a bug in the generic join method

		Dict uses $ in mangled names instead of ~, so names are more frequently
valid identifiers. May have a performance win.

		Ignore property changes in non-configurable objects.

v1.1.0

		Adds an LfuSet, a set useful as a cache with a least-frequently-used
eviction strategy.

		Fixes array set and swap for indexes outside the bounds of the existing
array, for both observed and unobserved arrays.

v1.0.2

		Refinements on Object.equals and Object.compare. These are not
necessarily backward compatible, but should be a strict improvement:

		Object.compare will now return +/- Infinity for inequal strings,
rather than +/- 1 which imply that the distance between any two inequal
strings is always 1. Object.compare for numbers is suitable for finding
the magnitude of the difference as well as the direction.

		Object.compare and Object.equals will now delegate to either non-null,
non-undefined argument if the other argument is null or undefined.
This allows objects to be constructed that will identify themselves
as equivalent to null or undefined, for example Any types, useful for
testing.

		Object.equals will only compare object literals derrived directly from the
Object.prototype. All other objects that do not implement compare are
incomparable.

		First attempt at fixing set, swap, and splice, later fixed in v1.0.3.
splice must truncate the start index to the array length. swap and
set should not.

v1.0.1

		Bug fix for filter on map-like collections.

v1.0.0 :cake:

		Adds a Deque type based on a circular buffer of exponential
capacity. (@petkaantonov)

		Implements peek, peekBack, poke, and pokeBack on array
shim for Deque “isomorphism”.

		Fixes the cases where a change listener is added or removed during
change dispatch. Neither listener will be informed until the next
change. (@asolove)

		The property change listener system has been altered such that
once a thunk has been installed on an object, it will not be
removed, in order to avoid churn. Once a property has been
observed, it is likely to be observed again.

		Fixes Object.equals for comparing NaN to itself, which should
report true such that collections that use Object.equals to
identify values are able to find NaN. Previously, NaN could
get stuck in a collection permanently.

		In abstract, Collections previously identified duck types by
looking only at the prototype chain, ignoring owned properties.
Thus, an object could distinguish a property name that was being
used as a key of a record, from the same property name that was
being used as a method name. To improve performance and to face
the reality that oftentimes an owned property is in fact a method,
Collections no longer observe this distinction. That is, if an
object has a function by the appropriate name, either by ownership
or inheritance, it will be recognized as a method of a duck type.
This particularly affects Object.equals, which should be much
faster now.

		Fixes Object.equals such that property for property comparison
between objects only happens if they both descend directly from
Object.prototype. Previously, objects would be thus compared if
they both descended from the same prototype.

		Accommodate very large arrays with the swap shim. Previously,
the size of an array swap was limited by the size of the
JavaScript run-time stack. (@francoisfrisch)

		Fixes splice on an array when given a negative start index.
(@stuk)

		Some methods accept an optional equals or index argument
that may or may not be supported by certain collections, like
find on a SortedSet versus a List. Collections that do not
support this argument will now throw an error instead of silently
ignoring the argument.

		Fixes Array#clone cycle detection.

v0.2.2

		one now returns a consistent value between changes of a sorted
set.

		All collections can now be required using the MontageJS style, as
well as the Node.js style. I reserve the right to withdraw support
for the current MontageJS style if in a future,
backward-incompatible release of Montage migrated to the Node.js
style.

v0.2.1

		Identify Maps with isMap property instead of keys, as ES6
proposes keys, values, and entries methods for arrays.

v0.2.0

		Fixes the enumerability of dispatchesRangeChanges and
dispatchesMapChanges on observable arrays (and others,
incidentally).

		List and Set now dispatch valid range changes, at the penalty of
making updates linear when they are made observable.

		Adds join method to generic collections.

		Fixes a bug in Object.has(object, value), where it would not
delegate polymorphically to object.has(value)

		Fixes Object.addEach(object, undefined), such that it tolerates
the case without throwing an error, like addEach on other
collections.

		Fixes change dispatch on LruSet (Paul Koppen) such that a single
change event gets dispatched for both augmentation and truncation.

		Fixes change dispatch on Dict, such that the value gets sent on
addition.

v0.1.24

		Factored out WeakMap into separately maintained package.

v0.1.23

		Introduces entries and deprecates items on all map collections.

		Fixes Map clear change dispatch.

v0.1.22

		Fixes Set clear change dispatch.

v0.1.21

		Fixes a bug when the plus argument of swap is not an array.

v0.1.20

		Fixes generic map change dispatch on clear.

		Adds map change dispatch to Dict.

v0.1.18, v0.1.19

		Require total order on SortedSet

		Remove Node v0.6 from supported versions

		Add Node v0.10 to supported versions

		Fixes hrtime handling (Alexy Kupershtokh)

v0.1.17

...

v0.0.5

		The observable-array and observable-object modules have been
moved to the Functional Reactive Bindings (frb) package as array
and object.

		List, Set, and SortedSet now support content change
notifications compatibly with frb.

		The observable module provides generics methods for observables.
New collections need only call the appropriate dispatch functions if
isObservable is true.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/countrycodes/node_modules/collections/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [http://travis-ci.org/montagejs/collections]

Collections

This package contains JavaScript implementations of common data
structures with idiomatic iterfaces, including extensions for Array and
Object.

You can use these Node Packaged Modules with Node.js, Browserify [https://github.com/substack/node-browserify],
Mr [https://github.com/montagejs/mr], or any compatible CommonJS module loader. Using a module loader
or bundler when using Collections in web browsers has the advantage of
only incorporating the modules you need. However, you can just embed
<script src="collections/collections.min.js"> and all of the
collections will be introduced as globals. :warning:
require("collections") is not supported.

npm install collections --save

Documentation can be found at http://collectionsjs.com which in turn can be
updated at https://github.com/montagejs/collectionsjs.com.

[image: Analytics] [https://github.com/igrigorik/ga-beacon]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/async/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Async.js

[image: Build Status via Travis CI] [https://travis-ci.org/caolan/async]

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with Node.js [http://nodejs.org], it can also be used directly in the
browser. Also supports component [https://github.com/component/component].

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, each…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the Node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Common Pitfalls

Binding a context to an iterator

This section is really about bind, not about async. If you are wondering how to
make async execute your iterators in a given context, or are confused as to why
a method of another library isn’t working as an iterator, study this example:

// Here is a simple object with an (unnecessarily roundabout) squaring method
var AsyncSquaringLibrary = {
 squareExponent: 2,
 square: function(number, callback){
 var result = Math.pow(number, this.squareExponent);
 setTimeout(function(){
 callback(null, result);
 }, 200);
 }
};

async.map([1, 2, 3], AsyncSquaringLibrary.square, function(err, result){
 // result is [NaN, NaN, NaN]
 // This fails because the `this.squareExponent` expression in the square
 // function is not evaluated in the context of AsyncSquaringLibrary, and is
 // therefore undefined.
});

async.map([1, 2, 3], AsyncSquaringLibrary.square.bind(AsyncSquaringLibrary), function(err, result){
 // result is [1, 4, 9]
 // With the help of bind we can attach a context to the iterator before
 // passing it to async. Now the square function will be executed in its
 // 'home' AsyncSquaringLibrary context and the value of `this.squareExponent`
 // will be as expected.
});

Download

The source is available for download from
GitHub [http://github.com/caolan/async].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 29.6kb Uncompressed

In the Browser

So far it’s been tested in IE6, IE7, IE8, FF3.6 and Chrome 5.

Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

		each

		eachSeries

		eachLimit

		map

		mapSeries

		mapLimit

		filter

		filterSeries

		reject

		rejectSeries

		reduce

		reduceRight

		detect

		detectSeries

		sortBy

		some

		every

		concat

		concatSeries

Control Flow

		series

		parallel

		parallelLimit

		whilst

		doWhilst

		until

		doUntil

		forever

		waterfall

		compose

		seq

		applyEach

		applyEachSeries

		queue

		priorityQueue

		cargo

		auto

		retry

		iterator

		apply

		nextTick

		times

		timesSeries

Utils

		memoize

		unmemoize

		log

		dir

		noConflict

Collections

[bookmark: forEach]
[bookmark: each]

each(arr, iterator, callback)

Applies the function iterator to each item in arr, in parallel.
The iterator is called with an item from the list, and a callback for when it
has finished. If the iterator passes an error to its callback, the main
callback (for the each function) is immediately called with the error.

Note, that since this function applies iterator to each item in parallel,
there is no guarantee that the iterator functions will complete in order.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called when all iterator functions
have finished, or an error occurs.

Examples

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.each(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

// assuming openFiles is an array of file names

async.each(openFiles, function(file, callback) {

 // Perform operation on file here.
 console.log('Processing file ' + file);

 if(file.length > 32) {
 console.log('This file name is too long');
 callback('File name too long');
 } else {
 // Do work to process file here
 console.log('File processed');
 callback();
 }
}, function(err){
 // if any of the file processing produced an error, err would equal that error
 if(err) {
 // One of the iterations produced an error.
 // All processing will now stop.
 console.log('A file failed to process');
 } else {
 console.log('All files have been processed successfully');
 }
});

[bookmark: forEachSeries]
[bookmark: eachSeries]

eachSeries(arr, iterator, callback)

The same as each, only iterator is applied to each item in arr in
series. The next iterator is only called once the current one has completed.
This means the iterator functions will complete in order.

[bookmark: forEachLimit]
[bookmark: eachLimit]

eachLimit(arr, limit, iterator, callback)

The same as each, only no more than limit iterators will be simultaneously
running at any time.

Note that the items in arr are not processed in batches, so there is no guarantee that
the first limit iterator functions will complete before any others are started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called when all iterator functions
have finished, or an error occurs.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.eachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in arr through
the iterator function. The iterator is called with an item from arr and a
callback for when it has finished processing. Each of these callback takes 2 arguments:
an error, and the transformed item from arr. If iterator passes an error to this
callback, the main callback (for the map function) is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel,
there is no guarantee that the iterator functions will complete in order.
However, the results array will be in the same order as the original arr.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called when all iterator
functions have finished, or an error occurs. Results is an array of the
transformed items from the arr.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map, only the iterator is applied to each item in arr in
series. The next iterator is only called once the current one has completed.
The results array will be in the same order as the original.

[bookmark: mapLimit]

mapLimit(arr, limit, iterator, callback)

The same as map, only no more than limit iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first limit iterator functions will complete before any others are started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called when all iterator
calls have finished, or an error occurs. The result is an array of the
transformed items from the original arr.

Example

async.mapLimit(['file1','file2','file3'], 1, fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: select]
[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values in arr which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false; it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in arr.
The iterator is passed a callback(truthValue), which must be called with a
boolean argument once it has completed.

		callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: selectSeries]
[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

Alias: selectSeries

The same as filter only the iterator is applied to each item in arr in
series. The next iterator is only called once the current one has completed.
The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as reject, only the iterator is applied to each item in arr
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

Aliases: inject, foldl

Reduces arr into a single value using an async iterator to return
each successive step. memo is the initial state of the reduction.
This function only operates in series.

For performance reasons, it may make sense to split a call to this function into
a parallel map, and then use the normal Array.prototype.reduce on the results.
This function is for situations where each step in the reduction needs to be async;
if you can get the data before reducing it, then it’s probably a good idea to do so.

Arguments

		arr - An array to iterate over.

		memo - The initial state of the reduction.

		iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback(err, reduction) which accepts an optional error as its first
argument, and the state of the reduction as the second. If an error is
passed to the callback, the reduction is stopped and the main callback is
immediately called with the error.

		callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on arr in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in arr that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original arr (in terms of order) that passes the test.

If order within the original arr is important, then look at detectSeries.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in arr.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], fs.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in arr
in series. This means the result is always the first in the original arr (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each arr value through an async iterator.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err, sortValue) which must be called once it
has completed with an error (which can be null) and a value to use as the sort
criteria.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error occurs. Results is the items from
the original arr sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

Sort Order

By modifying the callback parameter the sorting order can be influenced:

//ascending order
async.sortBy([1,9,3,5], function(x, callback){
 callback(err, x);
}, function(err,result){
 //result callback
});

//descending order
async.sortBy([1,9,3,5], function(x, callback){
 callback(err, x*-1); //<- x*-1 instead of x, turns the order around
}, function(err,result){
 //result callback
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the arr satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false; it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array
in parallel. The iterator is passed a callback(truthValue) which must be
called with a boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in arr satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false; it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array
in parallel. The iterator is passed a callback(truthValue) which must be
called with a boolean argument once it has completed.

		callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies iterator to each item in arr, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of arr passed to the iterator function.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in arr.
The iterator is passed a callback(err, results) which must be called once it
has completed with an error (which can be null) and an array of results.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error occurs. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run the functions in the tasks array in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run, and callback is immediately called with the value of the error.
Otherwise, callback receives an array of results when tasks have completed.

It is also possible to use an object instead of an array. Each property will be
run as a function, and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
series.

Note that while many implementations preserve the order of object properties, the
ECMAScript Language Specifcation [http://www.ecma-international.org/ecma-262/5.1/#sec-8.6]
explicitly states that

The mechanics and order of enumerating the properties is not specified.

So if you rely on the order in which your series of functions are executed, and want
this to work on all platforms, consider using an array.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error err (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 }
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run the tasks array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
parallel.

Arguments

		tasks - An array or object containing functions to run. Each function is passed
a callback(err, result) which it must call on completion with an error err
(which can be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 }
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: parallelLimit]

parallelLimit(tasks, limit, [callback])

The same as parallel, only tasks are executed in parallel
with a maximum of limit tasks executing at any time.

Note that the tasks are not executed in batches, so there is no guarantee that
the first limit tasks will complete before any others are started.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error err (which can
be null) and an optional result value.

		limit - The maximum number of tasks to run at any time.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls callback when stopped,
or an error occurs.

Arguments

		test() - synchronous truth test to perform before each execution of fn.

		fn(callback) - A function which is called each time test passes. The function is
passed a callback(err), which must be called once it has completed with an
optional err argument.

		callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: doWhilst]

doWhilst(fn, test, callback)

The post-check version of whilst. To reflect the difference in
the order of operations, the arguments test and fn are switched.

doWhilst is to whilst as do while is to while in plain JavaScript.

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn until test returns true. Calls callback when stopped,
or an error occurs.

The inverse of whilst.

[bookmark: doUntil]

doUntil(fn, test, callback)

Like doWhilst, except the test is inverted. Note the argument ordering differs from until.

[bookmark: forever]

forever(fn, errback)

Calls the asynchronous function fn with a callback parameter that allows it to
call itself again, in series, indefinitely.

If an error is passed to the callback then errback is called with the
error, and execution stops, otherwise it will never be called.

async.forever(
 function(next) {
 // next is suitable for passing to things that need a callback(err [, whatever]);
 // it will result in this function being called again.
 },
 function(err) {
 // if next is called with a value in its first parameter, it will appear
 // in here as 'err', and execution will stop.
 }
);

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs the tasks array of functions in series, each passing their results to the next in
the array. However, if any of the tasks pass an error to their own callback, the
next function is not executed, and the main callback is immediately called with
the error.

Arguments

		tasks - An array of functions to run, each function is passed a
callback(err, result1, result2, ...) it must call on completion. The first
argument is an error (which can be null) and any further arguments will be
passed as arguments in order to the next task.

		callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 // arg1 now equals 'one' and arg2 now equals 'two'
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: compose]

compose(fn1, fn2...)

Creates a function which is a composition of the passed asynchronous
functions. Each function consumes the return value of the function that
follows. Composing functions f(), g(), and h() would produce the result of
f(g(h())), only this version uses callbacks to obtain the return values.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

function add1(n, callback) {
 setTimeout(function () {
 callback(null, n + 1);
 }, 10);
}

function mul3(n, callback) {
 setTimeout(function () {
 callback(null, n * 3);
 }, 10);
}

var add1mul3 = async.compose(mul3, add1);

add1mul3(4, function (err, result) {
 // result now equals 15
});

[bookmark: seq]

seq(fn1, fn2...)

Version of the compose function that is more natural to read.
Each following function consumes the return value of the latter function.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

// Requires lodash (or underscore), express3 and dresende's orm2.
// Part of an app, that fetches cats of the logged user.
// This example uses `seq` function to avoid overnesting and error
// handling clutter.
app.get('/cats', function(request, response) {
 function handleError(err, data, callback) {
 if (err) {
 console.error(err);
 response.json({ status: 'error', message: err.message });
 }
 else {
 callback(data);
 }
 }
 var User = request.models.User;
 async.seq(
 _.bind(User.get, User), // 'User.get' has signature (id, callback(err, data))
 handleError,
 function(user, fn) {
 user.getCats(fn); // 'getCats' has signature (callback(err, data))
 },
 handleError,
 function(cats) {
 response.json({ status: 'ok', message: 'Cats found', data: cats });
 }
)(req.session.user_id);
 }
});

[bookmark: applyEach]

applyEach(fns, args..., callback)

Applies the provided arguments to each function in the array, calling
callback after all functions have completed. If you only provide the first
argument, then it will return a function which lets you pass in the
arguments as if it were a single function call.

Arguments

		fns - the asynchronous functions to all call with the same arguments

		args... - any number of separate arguments to pass to the function

		callback - the final argument should be the callback, called when all
functions have completed processing

Example

async.applyEach([enableSearch, updateSchema], 'bucket', callback);

// partial application example:
async.each(
 buckets,
 async.applyEach([enableSearch, updateSchema]),
 callback
);

[bookmark: applyEachSeries]

applyEachSeries(arr, iterator, callback)

The same as applyEach only the functions are applied in series.

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue are processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one becomes available.
Once a worker completes a task, that task‘s callback is called.

Arguments

		worker(task, callback) - An asynchronous function for processing a queued
task, which must call its callback(err) argument when finished, with an
optional error as an argument.

		concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		started - a function returning whether or not any items have been pushed and processed by the queue

		running() - a function returning the number of items currently being processed.

		idle() - a function returning false if there are items waiting or being processed, or true if not.

		concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

		push(task, [callback]) - add a new task to the queue. Calls callback once
the worker has finished processing the task. Instead of a single task, a tasks array
can be submitted. The respective callback is used for every task in the list.

		unshift(task, [callback]) - add a new task to the front of the queue.

		saturated - a callback that is called when the queue length hits the concurrency limit,
and further tasks will be queued.

		empty - a callback that is called when the last item from the queue is given to a worker.

		drain - a callback that is called when the last item from the queue has returned from the worker.

		paused - a boolean for determining whether the queue is in a paused state

		pause() - a function that pauses the processing of tasks until resume() is called.

		resume() - a function that resumes the processing of queued tasks when the queue is paused.

		kill() - a function that empties remaining tasks from the queue forcing it to go idle.

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

// add some items to the front of the queue

q.unshift({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

[bookmark: priorityQueue]

priorityQueue(worker, concurrency)

The same as queue only tasks are assigned a priority and completed in ascending priority order. There are two differences between queue and priorityQueue objects:

		push(task, priority, [callback]) - priority should be a number. If an array of
tasks is given, all tasks will be assigned the same priority.

		The unshift method was removed.

[bookmark: cargo]

cargo(worker, [payload])

Creates a cargo object with the specified payload. Tasks added to the
cargo will be processed altogether (up to the payload limit). If the
worker is in progress, the task is queued until it becomes available. Once
the worker has completed some tasks, each callback of those tasks is called.
Check out this animation [https://camo.githubusercontent.com/6bbd36f4cf5b35a0f11a96dcd2e97711ffc2fb37/68747470733a2f2f662e636c6f75642e6769746875622e636f6d2f6173736574732f313637363837312f36383130382f62626330636662302d356632392d313165322d393734662d3333393763363464633835382e676966] for how cargo and queue work.

While queue passes only one task to one of a group of workers
at a time, cargo passes an array of tasks to a single worker, repeating
when the worker is finished.

Arguments

		worker(tasks, callback) - An asynchronous function for processing an array of
queued tasks, which must call its callback(err) argument when finished, with
an optional err argument.

		payload - An optional integer for determining how many tasks should be
processed per round; if omitted, the default is unlimited.

Cargo objects

The cargo object returned by this function has the following properties and
methods:

		length() - A function returning the number of items waiting to be processed.

		payload - An integer for determining how many tasks should be
process per round. This property can be changed after a cargo is created to
alter the payload on-the-fly.

		push(task, [callback]) - Adds task to the queue. The callback is called
once the worker has finished processing the task. Instead of a single task, an array of tasks
can be submitted. The respective callback is used for every task in the list.

		saturated - A callback that is called when the queue.length() hits the concurrency and further tasks will be queued.

		empty - A callback that is called when the last item from the queue is given to a worker.

		drain - A callback that is called when the last item from the queue has returned from the worker.

Example

// create a cargo object with payload 2

var cargo = async.cargo(function (tasks, callback) {
 for(var i=0; i<tasks.length; i++){
 console.log('hello ' + tasks[i].name);
 }
 callback();
}, 2);

// add some items

cargo.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
cargo.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});
cargo.push({name: 'baz'}, function (err) {
 console.log('finished processing baz');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running the functions in tasks, based on their
requirements. Each function can optionally depend on other functions being completed
first, and each function is run as soon as its requirements are satisfied.

If any of the functions pass an error to their callback, it will not
complete (so any other functions depending on it will not run), and the main
callback is immediately called with the error. Functions also receive an
object containing the results of functions which have completed so far.

Note, all functions are called with a results object as a second argument,
so it is unsafe to pass functions in the tasks object which cannot handle the
extra argument.

For example, this snippet of code:

async.auto({
 readData: async.apply(fs.readFile, 'data.txt', 'utf-8')
}, callback);

will have the effect of calling readFile with the results object as the last
argument, which will fail:

fs.readFile('data.txt', 'utf-8', cb, {});

Instead, wrap the call to readFile in a function which does not forward the
results object:

async.auto({
 readData: function(cb, results){
 fs.readFile('data.txt', 'utf-8', cb);
 }
}, callback);

Arguments

		tasks - An object. Each of its properties is either a function or an array of
requirements, with the function itself the last item in the array. The object’s key
of a property serves as the name of the task defined by that property,
i.e. can be used when specifying requirements for other tasks.
The function receives two arguments: (1) a callback(err, result) which must be
called when finished, passing an error (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions.

		callback(err, results) - An optional callback which is called when all the
tasks have been completed. It receives the err argument if any tasks
pass an error to their callback. Results are always returned; however, if
an error occurs, no further tasks will be performed, and the results
object will only contain partial results.

Example

async.auto({
 get_data: function(callback){
 console.log('in get_data');
 // async code to get some data
 callback(null, 'data', 'converted to array');
 },
 make_folder: function(callback){
 console.log('in make_folder');
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 callback(null, 'folder');
 },
 write_file: ['get_data', 'make_folder', function(callback, results){
 console.log('in write_file', JSON.stringify(results));
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, 'filename');
 }],
 email_link: ['write_file', function(callback, results){
 console.log('in email_link', JSON.stringify(results));
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 callback(null, {'file':results.write_file, 'email':'user@example.com'});
 }]
}, function(err, results) {
 console.log('err = ', err);
 console.log('results = ', results);
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 console.log('in get_data');
 // async code to get some data
 callback(null, 'data', 'converted to array');
 },
 function(callback){
 console.log('in make_folder');
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 callback(null, 'folder');
 }
],
function(err, results){
 async.series([
 function(callback){
 console.log('in write_file', JSON.stringify(results));
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 results.push('filename');
 callback(null);
 },
 function(callback){
 console.log('in email_link', JSON.stringify(results));
 // once the file is written let's email a link to it...
 callback(null, {'file':results.pop(), 'email':'user@example.com'});
 }
]);
});

For a complicated series of async tasks, using the auto function makes adding
new tasks much easier (and the code more readable).

[bookmark: retry]

retry([times = 5], task, [callback])

Attempts to get a successful response from task no more than times times before
returning an error. If the task is successful, the callback will be passed the result
of the successfull task. If all attemps fail, the callback will be passed the error and
result (if any) of the final attempt.

Arguments

		times - An integer indicating how many times to attempt the task before giving up. Defaults to 5.

		task(callback, results) - A function which receives two arguments: (1) a callback(err, result)
which must be called when finished, passing err (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions (if nested inside another control flow).

		callback(err, results) - An optional callback which is called when the
task has succeeded, or after the final failed attempt. It receives the err and result arguments of the last attempt at completing the task.

The retry function can be used as a stand-alone control flow by passing a
callback, as shown below:

async.retry(3, apiMethod, function(err, result) {
 // do something with the result
});

It can also be embeded within other control flow functions to retry individual methods
that are not as reliable, like this:

async.auto({
 users: api.getUsers.bind(api),
 payments: async.retry(3, api.getPayments.bind(api))
}, function(err, results) {
 // do something with the results
});

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the tasks array,
returning a continuation to call the next one after that. It’s also possible to
“peek” at the next iterator with iterator.next().

This function is used internally by the async module, but can be useful when
you want to manually control the flow of functions in series.

Arguments

		tasks - An array of functions to run.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied.

Useful as a shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 }
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls callback on a later loop around the event loop. In Node.js this just
calls process.nextTick; in the browser it falls back to setImmediate(callback)
if available, otherwise setTimeout(callback, 0), which means other higher priority
events may precede the execution of callback.

This is used internally for browser-compatibility purposes.

Arguments

		callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two']
});
call_order.push('one')

[bookmark: times]

times(n, callback)

Calls the callback function n times, and accumulates results in the same manner
you would use with map.

Arguments

		n - The number of times to run the function.

		callback - The function to call n times.

Example

// Pretend this is some complicated async factory
var createUser = function(id, callback) {
 callback(null, {
 id: 'user' + id
 })
}
// generate 5 users
async.times(5, function(n, next){
 createUser(n, function(err, user) {
 next(err, user)
 })
}, function(err, users) {
 // we should now have 5 users
});

[bookmark: timesSeries]

timesSeries(n, callback)

The same as times, only the iterator is applied to each item in arr in
series. The next iterator is only called once the current one has completed.
The results array will be in the same order as the original.

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

The cache of results is exposed as the memo property of the function returned
by memoize.

Arguments

		fn - The function to proxy and cache results from.

		hasher - Tn optional function for generating a custom hash for storing
results. It has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Handy for testing.

Arguments

		fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in Node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in Node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

save - A simple CRUD based persistence abstraction for storing objects to any backend data store. eg. Memory, MongoDB, Redis, CouchDB, Postgres, Punch Card etc.

save comes with a fully featured in memory engine which is super handy for testing your models.
For real world use you’ll need to get one of the database powered engines:

		MongoDB [https://github.com/serby/save-mongodb]

If your data store of choice isn’t listed here please create an engine and send me a pull request.
To see an example of how to create an engine, please see save-mongodb [https://github.com/serby/save-mongodb].

[image: build status] [http://travis-ci.org/serby/save]

Installation

npm install save

Example

var save = require('save')
 , s = save('person')

s.on('create', function() {
 console.log('New person created!')
})

s.create({ name: 'Dom' }, function(err, person) {
 // Outputs { name: 'Dom', _id: 1 }
 console.log(person)
})

Usage

var save = require('save')

var s = save(name, [options])

Save by default returns an in memory engine which means you can unit test your models independently from your database. name is the name of your model.

Possible options are:

		idProperty. Defaults to _id for mongodb

		logger. Defaults to console logging: { info: console.info, verbose: console.info }

		engine. Persistence engine to use, defaults to memory engine: require(./memory-engine)

s.create(object, [cb])

Creates a new entity.
cb called with cb(err, savedObject).

s.read(id, [cb])

Reads a single entity with an idProperty of id.
cb called with cb(err, readObject).

s.update(object, overwrite, [cb])

Updates a single entity. Optionally overwrites the entire entity, by default just extends it with the new values.
cb called with cb(err, readObject).

s.delete(id, [cb])

Deletes one entity.
Returns an error if the object can not be found.
cb called with cb(err).

s.deleteMany(query, [cb])

Deletes entities based on a query.
Performs a find by query, then calls delete for each item returned
Returns an error if no items match the query.
cb called with cb(err).

s.find(query, options, cb)

Performs a find on the data.
cb called with cb(err, foundObjectsArray).

s.findOne(query, options, cb)

Performs a find on the data and limits the result set to 1.
cb called with cb(err, foundObject).

s.count(query, cb)

Performs a count by query.
cb called with cb(err, count).

s.idProperty

Provides access to the idProperty. Mostly used for testing.

Events

s.on(‘create’, cb)

This event fires with cb(object) where object is the item that will be created.

s.on(‘afterCreate’, cb)

This event fires with cb(object) where object is the item that has been created.

s.on(‘update’, cb)

This event fires with cb(object, overwrite) where object is the item that will be updated and overwrite is whether the object is to be overwritten or extended.

s.on(‘afterUpdate’, cb)

This event fires with cb(object, overwrite) where object is the item that has been updated and overwrite is whether the object is to be overwritten or extended.

s.on(‘delete’, cb)

This event fires with cb(id) where id is the item that will be deleted.

s.on(‘afterDelete’, cb)

This event fires with cb(id) where id is the item that has been deleted.

s.on(‘deleteMany’, cb)

This event fires with cb(query) where query is the query used to deleteMany.

s.on(‘afterDeleteMany’, cb)

This event fires with cb(query) where query is the query that has used deleteMany.

s.on(‘read’, cb)

This event fires with cb(id) where id is the item that has been read.

s.on(‘find’, cb)

This event fires with cb(query) where query is the query used to find.

s.on(‘findOne’, cb)

This event fires with cb(query) where query is the query used to findOne.

s.on(‘count’, cb)

This event fires with cb(query) where query is the query used to count.

s.on(‘error’, cb)

This event fires with cb(err) where err is any error that may have occured.

Credits

Paul Serby [https://github.com/serby/] follow me on twitter @serby [http://twitter.com/serby]

Dom Harrington [https://github.com/domharrington/]

Licence

Licenced under the New BSD License [http://opensource.org/licenses/bsd-license.php]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._baseassign/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash._baseassign v3.0.0

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] internal baseAssign exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash._baseassign

In Node.js/io.js:

var baseAssign = require('lodash._baseassign');

See the package source [https://github.com/lodash/lodash/blob/3.0.0-npm-packages/lodash._baseassign] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash.assign v3.0.0

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] _.assign exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash.assign

In Node.js/io.js:

var assign = require('lodash.assign');

See the documentation [https://lodash.com/docs#assign] or package source [https://github.com/lodash/lodash/blob/3.0.0-npm-packages/lodash.assign] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._baseassign/node_modules/lodash.keys/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash.keys v3.0.2

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] _.keys exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash.keys

In Node.js/io.js:

var keys = require('lodash.keys');

See the documentation [https://lodash.com/docs#keys] or package source [https://github.com/lodash/lodash/blob/3.0.2-npm-packages/lodash.keys] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._baseassign/node_modules/lodash._basecopy/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash._basecopy v3.0.0

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] internal baseCopy exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash._basecopy

In Node.js/io.js:

var baseCopy = require('lodash._basecopy');

See the package source [https://github.com/lodash/lodash/blob/3.0.0-npm-packages/lodash._basecopy] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/css/node_modules/css-stringify/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.5 / 2013-03-15

		fix indentation of multiple selectors in @media. Closes #11

1.0.4 / 2012-11-15

		fix indentation

1.0.3 / 2012-09-04

		add @charset support [rstacruz]

1.0.2 / 2012-09-01

		add component support

1.0.1 / 2012-07-26

		add “selectors” array support

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/promise/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [https://travis-ci.org/then/promise]
[image:]

promise

This a bare bones Promises/A+ [http://promises-aplus.github.com/promises-spec/] implementation.

It is designed to get the basics spot on correct, so that you can build extended promise implementations on top of it.

Installation

Server:

$ npm install promise

Client:

$ component install then/promise

API

In the example below shows how you can load the promise library (in a way that works on both client and server). It then demonstrates creating a promise from scratch. You simply call new Promise(fn). There is a complete specification for what is returned by this method in Promises/A+ [http://promises-aplus.github.com/promises-spec/].

var Promise = require('promise');

var promise = new Promise(function (resolve, reject) {
 get('http://www.google.com', function (err, res) {
 if (err) reject(err);
 else resolve(res);
 });
 });

Extending Promises

There are three options for extending the promises created by this library.

Inheritance

You can use inheritance if you want to create your own complete promise library with this as your basic starting point, perfect if you have lots of cool features you want to add. Here is an example of a promise library called Awesome, which is built on top of Promise correctly.

var Promise = require('promise');
function Awesome(fn) {
 if (!(this instanceof Awesome)) return new Awesome(fn);
 Promise.call(this, fn);
}
Awesome.prototype = Object.create(Promise.prototype);
Awesome.prototype.constructor = Awesome;

//Awesome extension
Awesome.prototype.spread = function (cb) {
 return this.then(function (arr) {
 return cb.apply(this, arr);
 })
};

N.B. if you fail to set the prototype and constructor properly or fail to do Promise.call, things can fail in really subtle ways.

Wrap

This is the nuclear option, for when you want to start from scratch. It ensures you won’t be impacted by anyone who is extending the prototype (see below).

function Uber(fn) {
 if (!(this instanceof Uber)) return new Uber(fn);
 var _prom = new Promise(fn);
 this.then = _prom.then;
}

Uber.prototype.spread = function (cb) {
 return this.then(function (arr) {
 return cb.apply(this, arr);
 })
};

Extending the Prototype

In general, you should never extend the prototype of this promise implimenation because your extensions could easily conflict with someone elses extensions. However, this organisation will host a library of extensions which do not conflict with each other, so you can safely enable any of those. If you think of an extension that we don’t provide and you want to write it, submit an issue on this repository and (if I agree) I’ll set you up with a repository and give you permission to commit to it.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/css/node_modules/css-parse/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.4 / 2012-09-17

		fix keyframes float percentages

		fix an issue with comments containing slashes.

1.0.3 / 2012-09-01

		add component support

		fix unquoted data uris [rstacruz]

		fix keyframe names with no whitespace [rstacruz]

		fix excess semicolon support [rstacruz]

1.0.2 / 2012-09-01

		fix IE property hack support [rstacruz]

		fix quoted strings in declarations [rstacruz]

1.0.1 / 2012-07-26

		change “selector” to “selectors” array

1.0.0 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/css/node_modules/css-stringify/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

css-stringify

CSS compiler using the AST provided by css-parse [https://github.com/visionmedia/css-parse].

Performance

Formats 15,000 lines of CSS (2mb) in 23ms on my macbook air.

License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/readable-stream/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

JSHint, A Static Code Analysis Tool for JavaScript

[Use it online [http://jshint.com/] • About [http://jshint.com/about/] •
Docs [http://jshint.com/docs/] • FAQ [http://jshint.com/docs/faq] •
Install [http://jshint.com/install/] • Hack [http://jshint.com/hack/] •
Blog [http://jshint.com/blog/] • Twitter [https://twitter.com/jshint/]]

[image: Build Status] [https://travis-ci.org/jshint/jshint]
[image: NPM version] [http://badge.fury.io/js/jshint]

JSHint is a community-driven tool to detect errors and potential problems
in JavaScript code. It is very flexible so you can easily adjust it to your
particular coding guidelines and the environment you expect your code to
execute in.

Reporting a bug

To report a bug simply create a
new GitHub Issue [https://github.com/jshint/jshint/issues/new] and describe
your problem or suggestion. We welcome all kind of feedback regarding
JSHint including but not limited to:

		When JSHint doesn’t work as expected

		When JSHint complains about valid JavaScript code that works in all browsers

		When you simply want a new option or feature

Before reporting a bug look around to see if there are any open or closed tickets
that cover your issue. And remember the wisdom: pull request > bug report > tweet.

Issue Priority

		P1: Something is throwing exceptions; broken JSHint backward compatibility.

		P2: Something is not being parsed correctly.

		P3: Features that the core team will work on once P2s and P1s are done.

		P4: Patches welcome; The request is good, but low priority.

License

JSHint is distributed under the MIT License. One file and one file only
(src/stable/jshint.js) is distributed under the slightly modified MIT License.

Thank you!

We really appreciate all kind of feedback and contributions. Thanks for using and supporting JSHint!

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

grunt-contrib-jshint v0.10.0 [image: Build Status] [https://travis-ci.org/gruntjs/grunt-contrib-jshint]

Validate files with JSHint.

Getting Started

This plugin requires Grunt ~0.4.0

If you haven’t used Grunt [http://gruntjs.com/] before, be sure to check out the Getting Started [http://gruntjs.com/getting-started] guide, as it explains how to create a Gruntfile [http://gruntjs.com/sample-gruntfile] as well as install and use Grunt plugins. Once you’re familiar with that process, you may install this plugin with this command:

npm install grunt-contrib-jshint --save-dev

Once the plugin has been installed, it may be enabled inside your Gruntfile with this line of JavaScript:

grunt.loadNpmTasks('grunt-contrib-jshint');

Jshint task

Run this task with the grunt jshint command.

Task targets, files and options may be specified according to the grunt Configuring tasks [http://gruntjs.com/configuring-tasks] guide.

For more explanations of the lint errors JSHint will throw at you please visit jslinterrors.com [http://jslinterrors.com/].

Options

Any specified option will be passed through directly to JSHint [http://www.jshint.com/], thus you can specify any option that JSHint supports. See the JSHint documentation [http://www.jshint.com/docs/] for a list of supported options.

A few additional options are supported:

globals

Type: ObjectDefault: null

A map of global variables, with keys as names and a boolean value to determine if they are assignable. This is not a standard JSHint option, but is passed into the JSHINT function as its third argument. See the JSHint documentation [http://www.jshint.com/docs/] for more information.

jshintrc

Type: String or trueDefault: null

If set to true, no config will be sent to jshint and jshint will search for .jshintrc files relative to the files being linted.

If a filename is specified, options and globals defined therein will be used. The jshintrc file must be valid JSON and looks something like this:

{
 "curly": true,
 "eqnull": true,
 "eqeqeq": true,
 "undef": true,
 "globals": {
 "jQuery": true
 }
}

Be aware that jshintrc settings are not merged with your Grunt options.

extensions

Type: StringDefault: ''

A list of non-dot-js extensions to check.

ignores

Type: ArrayDefault: null

A list of files and dirs to ignore. This will override your .jshintignore file if set and does not merge.

force

Type: BooleanDefault: false

Set force to true to report JSHint errors but not fail the task.

reporter

Type: StringDefault: null

Allows you to modify this plugins output. By default it will use a built-in Grunt reporter. Set the path to your own custom reporter or to one of the built-in JSHint reporters: jslint or checkstyle.

See also: Writing your own JSHint reporter. [http://jshint.com/docs/reporters/]

You can also use an external reporter. For example jshint-stylish [https://github.com/sindresorhus/jshint-stylish]:

$ npm install --save-dev jshint-stylish

options: {
 reporter: require('jshint-stylish')
}

reporterOutput

Type: StringDefault: null

Specify a filepath to output the results of a reporter. If reporterOutput is specified then all output will be written to the given filepath instead of printed to stdout.

Usage examples

Wildcards

In this example, running grunt jshint:all (or grunt jshint because jshint is a multi task [http://gruntjs.com/configuring-tasks#task-configuration-and-targets]) will lint the project’s Gruntfile as well as all JavaScript files in the lib and test directories and their subdirectores, using the default JSHint options.

// Project configuration.
grunt.initConfig({
 jshint: {
 all: ['Gruntfile.js', 'lib/**/*.js', 'test/**/*.js']
 }
});

Linting before and after concatenating

In this example, running grunt jshint will lint both the “beforeconcat” set and “afterconcat” sets of files. This is not ideal, because dist/output.js may get linted before it gets created via the grunt-contrib-concat plugin [https://github.com/gruntjs/grunt-contrib-concat] concat task.

In this case, you should lint the “beforeconcat” files first, then concat, then lint the “afterconcat” files, by running grunt jshint:beforeconcat concat jshint:afterconcat.

// Project configuration.
grunt.initConfig({
 concat: {
 dist: {
 src: ['src/foo.js', 'src/bar.js'],
 dest: 'dist/output.js'
 }
 },
 jshint: {
 beforeconcat: ['src/foo.js', 'src/bar.js'],
 afterconcat: ['dist/output.js']
 }
});

Specifying JSHint options and globals

In this example, custom JSHint options are specified. Note that when grunt jshint:uses_defaults is run, those files are linted using the default options, but when grunt jshint:with_overrides is run, those files are linted using merged task/target options.

// Project configuration.
grunt.initConfig({
 jshint: {
 options: {
 curly: true,
 eqeqeq: true,
 eqnull: true,
 browser: true,
 globals: {
 jQuery: true
 },
 },
 uses_defaults: ['dir1/**/*.js', 'dir2/**/*.js'],
 with_overrides: {
 options: {
 curly: false,
 undef: true,
 },
 files: {
 src: ['dir3/**/*.js', 'dir4/**/*.js']
 },
 }
 },
});

Ignoring specific warnings

If you would like to ignore a specific warning:

[L24:C9] W015: Expected '}' to have an indentation at 11 instead at 9.

You can toggle it by prepending - to the warning id as an option:

grunt.initConfig({
 jshint: {
 ignore_warning: {
 options: {
 '-W015': true,
 },
 src: ['**/*.js'],
 },
 },
});

Release History

		2014-04-02   v0.10.0   Update to JSHint 2.5.0.

		2014-03-12   v0.9.2   Fixes a bug where reporterOutput was still passed to jshint.

		2014-03-12   v0.9.1   Don’t pass reporterOutput option to jshint.

		2014-03-12   v0.9.0   Replace deprecated grunt.util._.clone with Object.create() Replace deprecated grunt.util.hooker with hooker lib Enhancing the readability of the output. Reporter output is relative to the output file. Pass jshint options to the external reporter.

		2013-12-25   v0.8.0   Update to jshint 2.4.0.

		2013-11-16   v0.7.2   Only print file name once per error.

		2013-10-31   v0.7.1   Ability to set jshintrc option to true to use jshint’s native ability for finding .jshintrc files relative to the linted files.

		2013-10-23   v0.7.0   Update to jshint 2.3.0.

		2013-10-23   v0.6.5   Fix output when maxerr is low.

		2013-08-29   v0.6.4   jshintrc now loaded by jshint allowing comments.

		2013-08-15   v0.6.3   Fix module location for jshint 2.1.10.

		2013-07-29   v0.6.2   Update to jshint 2.1.7.

		2013-07-27   v0.6.1   Peg jshint to 2.1.4 until breaking changes in 2.1.5 are fixed.

		2013-06-02   v0.6.0   Dont always succeed the task when using a custom reporter. Bump jshint to 2.1.3.

		2013-05-22   v0.5.4   Fix default reporter to show offending file.

		2013-05-19   v0.5.3   Performance: Execute the reporter once rather than per file.

		2013-05-18   v0.5.2   Fix printing too many erroneous ignored file errors.

		2013-05-17   v0.5.1   Fix for when only 1 file is lint free.

		2013-05-17   v0.5.0   Bump to jshint 2.0. Add support for .jshintignore files and ignores option Add support for extensions option. Add support for custom reporters and output report to a file.

		2013-04-08   v0.4.3   Fix evaluation of predef option when it’s an object.

		2013-04-08   v0.4.2   Avoid wiping force option when jshintrc is used.

		2013-04-06   v0.4.1   Fix to allow object type for deprecated predef.

		2013-04-04   v0.4.0   Revert task level options to override jshintrc files.

		2013-03-13   v0.3.0   Bump to JSHint 1.1.0. Add force option to report JSHint errors but not fail the task. Add error/warning code to message. Allow task level options to override jshintrc file.

		2013-02-26   v0.2.0   Bump to JSHint 1.0

		2013-02-15   v0.1.1   First official release for Grunt 0.4.0.

		2013-01-18   v0.1.1rc6   Updating grunt/gruntplugin dependencies to rc6. Changing in-development grunt/gruntplugin dependency versions from tilde version ranges to specific versions.

		2013-01-09   v0.1.1rc5   Updating to work with grunt v0.4.0rc5. Switching to this.filesSrc api.

		2012-10-18   v0.1.0   Work in progress, not yet officially released.

Task submitted by “Cowboy” Ben Alman [http://benalman.com/]

This file was generated on Wed Apr 02 2014 09:05:43.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #htmlparser2

[image: NPM version] [https://npmjs.org/package/htmlparser2]
[image: Downloads] [https://npmjs.org/package/htmlparser2]
[image: Build Status] [http://travis-ci.org/fb55/htmlparser2]
[image: Coverage] [https://coveralls.io/r/fb55/htmlparser2]

A forgiving HTML/XML/RSS parser written in JS for NodeJS. The parser can handle streams (chunked data) and supports custom handlers for writing custom DOMs/output.

##Installing
npm install htmlparser2

A live demo of htmlparser2 is available at http://demos.forbeslindesay.co.uk/htmlparser2/

##Usage

var htmlparser = require("htmlparser2");
var parser = new htmlparser.Parser({
 onopentag: function(name, attribs){
 if(name === "script" && attribs.type === "text/javascript"){
 console.log("JS! Hooray!");
 }
 },
 ontext: function(text){
 console.log("-->", text);
 },
 onclosetag: function(tagname){
 if(tagname === "script"){
 console.log("That's it?!");
 }
 }
});
parser.write("Xyz <script type='text/javascript'>var foo = '<<bar>>';</ script>");
parser.end();

Output (simplified):

--> Xyz
JS! Hooray!
--> var foo = '<<bar>>';
That's it?!

Read more about the parser in the wiki [https://github.com/fb55/htmlparser2/wiki/Parser-options].

##Get a DOM
The DomHandler (known as DefaultHandler in the original htmlparser module) produces a DOM (document object model) that can be manipulated using the DomUtils [https://github.com/fb55/DomUtils] helper.

The DomHandler, while still bundled with this module, was moved to its own module [https://github.com/fb55/domhandler]. Have a look at it for further information.

##Parsing RSS/RDF/Atom Feeds

new htmlparser.FeedHandler(function(<error> error, <object> feed){
 ...
});

##Performance

After having some artificial benchmarks for some time, @AndreasMadsen published his htmlparser-benchmark [https://github.com/AndreasMadsen/htmlparser-benchmark], which benchmarks HTML parses based on real-world websites.

At the time of writing, the latest versions of all supported parsers show the following performance characteristics on Travis CI [https://travis-ci.org/AndreasMadsen/htmlparser-benchmark/builds/10805007] (please note that Travis doesn’t guarantee equal conditions for all tests):

gumbo-parser : 34.9208 ms/file ± 21.4238
html-parser : 24.8224 ms/file ± 15.8703
html5 : 419.597 ms/file ± 264.265
htmlparser : 60.0722 ms/file ± 384.844
htmlparser2-dom: 12.0749 ms/file ± 6.49474
htmlparser2 : 7.49130 ms/file ± 5.74368
hubbub : 30.4980 ms/file ± 16.4682
libxmljs : 14.1338 ms/file ± 18.6541
parse5 : 22.0439 ms/file ± 15.3743
sax : 49.6513 ms/file ± 26.6032

##How is this different from node-htmlparser [https://github.com/tautologistics/node-htmlparser]?
This is a fork of the htmlparser module. The main difference is that this is intended to be used only with node (it runs on other platforms using browserify [https://github.com/substack/node-browserify]). htmlparser2 was rewritten multiple times and, while it maintains an API that’s compatible with htmlparser in most cases, the projects don’t share any code anymore.

The parser now provides a callback interface close to sax.js [https://github.com/isaacs/sax-js] (originally targeted at readabilitySAX [https://github.com/fb55/readabilitysax]). As a result, old handlers won’t work anymore.

The DefaultHandler and the RssHandler were renamed to clarify their purpose (to DomHandler and FeedHandler). The old names are still available when requiring htmlparser2, so your code should work as expected.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/exit/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

exit [image: Build Status] [http://travis-ci.org/cowboy/node-exit]

A replacement for process.exit that ensures stdio are fully drained before exiting.

To make a long story short, if process.exit is called on Windows, script output is often truncated when pipe-redirecting stdout or stderr. This module attempts to work around this issue by waiting until those streams have been completely drained before actually calling process.exit.

See Node.js issue #3584 [https://github.com/joyent/node/issues/3584] for further reference.

Tested in OS X 10.8, Windows 7 on Node.js 0.8.25 and 0.10.18.

Based on some code by @vladikoff [https://github.com/vladikoff].

Getting Started

Install the module with: npm install exit

var exit = require('exit');

// These lines should appear in the output, EVEN ON WINDOWS.
console.log("omg");
console.error("yay");

// process.exit(5);
exit(5);

// These lines shouldn't appear in the output.
console.log("wtf");
console.error("bro");

Don’t believe me? Try it for yourself.

In Windows, clone the repo and cd to the test\fixtures directory. The only difference between log.js and log-broken.js is that the former uses exit while the latter calls process.exit directly.

This test was done using cmd.exe, but you can see the same results using | grep "std" in either PowerShell or git-bash.

C:\node-exit\test\fixtures>node log.js 0 10 stdout stderr 2>&1 | find "std"
stdout 0
stderr 0
stdout 1
stderr 1
stdout 2
stderr 2
stdout 3
stderr 3
stdout 4
stderr 4
stdout 5
stderr 5
stdout 6
stderr 6
stdout 7
stderr 7
stdout 8
stderr 8
stdout 9
stderr 9

C:\node-exit\test\fixtures>node log-broken.js 0 10 stdout stderr 2>&1 | find "std"

C:\node-exit\test\fixtures>

Contributing

In lieu of a formal styleguide, take care to maintain the existing coding style. Add unit tests for any new or changed functionality. Lint and test your code using Grunt [http://gruntjs.com/].

Release History

2013-11-26 - v0.1.2 - Fixed a bug with hanging processes.2013-09-26 - v0.1.1 - Fixed some bugs. It seems to actually work now!2013-09-20 - v0.1.0 - Initial release.

License

Copyright (c) 2013 “Cowboy” Ben AlmanLicensed under the MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/domhandler/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #DOMHandler [image: Build Status] [http://travis-ci.org/fb55/DomHandler]

The DOM handler (formally known as DefaultHandler) creates a tree containing all nodes of a page. The tree may be manipulated using the DOMUtils library.

##Usage

var handler = new DomHandler([<func> callback(err, dom),] [<obj> options]);
// var parser = new Parser(handler[, options]);

##Example

var htmlparser = require("htmlparser2");
var rawHtml = "Xyz <script language= javascript>var foo = '<<bar>>';< / script><!--<!-- Waah! -- -->";
var handler = new htmlparser.DomHandler(function (error, dom) {
 if (error)
 [...do something for errors...]
 else
 [...parsing done, do something...]
 console.log(dom);
});
var parser = new htmlparser.Parser(handler);
parser.write(rawHtml);
parser.done();

Output:

[{
 data: 'Xyz ',
 type: 'text'
}, {
 type: 'script',
 name: 'script',
 attribs: {
 language: 'javascript'
 },
 children: [{
 data: 'var foo = \'<bar>\';<',
 type: 'text'
 }]
}, {
 data: '<!-- Waah! -- ',
 type: 'comment'
}]

##Option: normalizeWhitespace
Indicates whether the whitespace in text nodes should be normalized (= all whitespace should be replaced with single spaces). The default value is “false”.

The following HTML will be used:

this is the text

###Example: true

[{
 type: 'tag',
 name: 'font',
 children: [{
 data: ' ',
 type: 'text'
 }, {
 type: 'tag',
 name: 'br'
 }, {
 data: 'this is the text ',
 type: 'text'
 }, {
 type: 'tag',
 name: 'font'
 }]
}]

###Example: false

[{
 type: 'tag',
 name: 'font',
 children: [{
 data: '\n\t',
 type: 'text'
 }, {
 type: 'tag',
 name: 'br'
 }, {
 data: 'this is the text\n',
 type: 'text'
 }, {
 type: 'tag',
 name: 'font'
 }]
}]

##Option: withStartIndices
Indicates whether a startIndex property will be added to nodes. When the parser is used in a non-streaming fashion, startIndex is an integer indicating the position of the start of the node in the document. The default value is “false”.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/domelementtype/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 all the types of nodes in htmlparser2’s dom

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/readable-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readable-stream

Node-core streams for userland

[image: NPM] [https://nodei.co/npm/readable-stream/]
[image: NPM] [https://nodei.co/npm/readable-stream/]

This package is a mirror of the Streams2 and Streams3 implementations in Node-core.

If you want to guarantee a stable streams base, regardless of what version of Node you, or the users of your libraries are using, use readable-stream only and avoid the “stream” module in Node-core.

readable-stream comes in two major versions, v1.0.x and v1.1.x. The former tracks the Streams2 implementation in Node 0.10, including bug-fixes and minor improvements as they are added. The latter tracks Streams3 as it develops in Node 0.11; we will likely see a v1.2.x branch for Node 0.12.

readable-stream uses proper patch-level versioning so if you pin to "~1.0.0" you’ll get the latest Node 0.10 Streams2 implementation, including any fixes and minor non-breaking improvements. The patch-level versions of 1.0.x and 1.1.x should mirror the patch-level versions of Node-core releases. You should prefer the 1.0.x releases for now and when you’re ready to start using Streams3, pin to "~1.1.0"

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/domutils/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 utilities for working with htmlparser2’s dom

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/readable-stream/node_modules/core-util-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

core-util-is

The util.is* functions introduced in Node v0.12.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/readable-stream/node_modules/isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

isarray

Array#isArray for older browsers.

Usage

var isArray = require('isarray');

console.log(isArray([])); // => true
console.log(isArray({})); // => false

Installation

With npm [http://npmjs.org] do

$ npm install isarray

Then bundle for the browser with
browserify [https://github.com/substack/browserify].

With component [http://component.io] do

$ component install juliangruber/isarray

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._baseassign/node_modules/lodash.keys/node_modules/lodash.isnative/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash.isnative v3.0.0

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] _.isNative exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash.isnative

In Node.js/io.js:

var isNative = require('lodash.isnative');

See the documentation [https://lodash.com/docs#isNative] or package source [https://github.com/lodash/lodash/blob/3.0.0-npm-packages/lodash.isnative] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._baseassign/node_modules/lodash.keys/node_modules/lodash.isarguments/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash.isarguments v3.0.0

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] _.isArguments exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash.isarguments

In Node.js/io.js:

var isArguments = require('lodash.isarguments');

See the documentation [https://lodash.com/docs#isArguments] or package source [https://github.com/lodash/lodash/blob/3.0.0-npm-packages/lodash.isarguments] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._baseassign/node_modules/lodash.keys/node_modules/lodash.isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash.isarray v3.0.0

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] _.isArray exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash.isarray

In Node.js/io.js:

var isArray = require('lodash.isarray');

See the documentation [https://lodash.com/docs#isArray] or package source [https://github.com/lodash/lodash/blob/3.0.0-npm-packages/lodash.isarray] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._createassigner/node_modules/lodash._bindcallback/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash._bindcallback v3.0.0

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] internal bindCallback exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash._bindcallback

In Node.js/io.js:

var bindCallback = require('lodash._bindcallback');

See the package source [https://github.com/lodash/lodash/blob/3.0.0-npm-packages/lodash._bindcallback] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._createassigner/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash._createassigner v3.0.0

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] internal createAssigner exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash._createassigner

In Node.js/io.js:

var createAssigner = require('lodash._createassigner');

See the package source [https://github.com/lodash/lodash/blob/3.0.0-npm-packages/lodash._createassigner] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/event-stream/node_modules/duplexer/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

duplexer

![build status][1] [https://travis-ci.org/Raynos/duplexer] ![dependency status][3] [https://david-dm.org/Raynos/duplexer]

![browser support][5] [https://ci.testling.com/Raynos/duplexer]

Creates a duplex stream

Taken from event-stream [https://github.com/dominictarr/event-stream#duplex-writestream-readstream]

duplex (writeStream, readStream)

Takes a writable stream and a readable stream and makes them appear as a readable writable stream.

It is assumed that the two streams are connected to each other in some way.

Example

var grep = cp.exec('grep Stream')

duplex(grep.stdin, grep.stdout)

Installation

npm install duplexer

Tests

npm test

Contributors

		Dominictarr

		Raynos

		samccone

MIT Licenced

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/lodash.assign/node_modules/lodash._createassigner/node_modules/lodash._isiterateecall/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lodash._isiterateecall v3.0.1

The modern build [https://github.com/lodash/lodash/wiki/Build-Differences] of lodash’s [https://lodash.com/] internal isIterateeCall exported as a Node.js [http://nodejs.org/]/io.js [https://iojs.org/] module.

Installation

Using npm:

$ {sudo -H} npm i -g npm
$ npm i --save lodash._isiterateecall

In Node.js/io.js:

var isIterateeCall = require('lodash._isiterateecall');

See the package source [https://github.com/lodash/lodash/blob/3.0.1-npm-packages/lodash._isiterateecall] for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/mingo/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Mingo

JavaScript implementation of MongoDB query language

Mingo harnesses the power of MongoDB-style queries and allows direct querying of in-memory
javascript objects in both client and server-side environments.

[image: build status] [http://travis-ci.org/kofrasa/mingo]

Dependencies

underscore [https://github.com/jashkenas/underscore]

Installing

$ npm install mingo

In browser

<!-- DO NOT FORGET Underscore -->
<script type="text/javascript" src="./underscore-min.js"></script>
<script type="text/javascript" src="./mingo-min.js"></script>

Features

		Comparisons Operators ($gt, $gte, $lt, $lte, $ne, $nin, $in)

		Logical Operators ($and, $or, $nor, $not)

		Evaluation Operators ($regex, $mod, $where)

		Array Operators ($all, $elemMatch, $size)

		Element Operators ($exists, $type)

		Aggregation Pipeline Operators ($group, $match, $project, $sort, $limit, $unwind, $skip)

		Conditional Operators ($cond, $ifNull)

		Group Operators ($addToSet, $sum, $max, $min, $avg, $push, $first, $last)

		Arithmetic Operators ($add, $divide, $mod, $multiply, $subtract)

		String Operators ($cmp, $strcasecmp, $concat, $substr, $toLower, $toUpper)

		Set Operators ($setEquals, $setIntersection, $setDifference, $setUnion, $setIsSubset, $anyElementTrue, $allElementsTrue)

		Projection Operators ($elemMatch, $slice)

		JSON stream filtering and projection. NodeJS only

Usage

var Mingo = require('mingo');
// or just access *Mingo* global in browser

// setup the key field for your collection
Mingo.setup({
 key: '_id' // default
});

// create a query with criteria
// find all grades for homework with score >= 50
var query = new Mingo.Query({
 type: "homework",
 score: { $gte: 50 }
});

Searching and Filtering

// filter collection with find()
var cursor = query.find(collection);

// shorthand with query criteria
// cursor = Mingo.find(collection, criteria);

// sort, skip and limit by chaining
cursor.sort({student_id: 1, score: -1})
 .skip(100)
 .limit(100);

// count matches
cursor.count();

// iterate cursor
// iteration is forward only
while (cursor.hasNext()) {
 console.log(cursor.next());
}

// use first(), last() and all() to retrieve matched objects
cursor.first();
cursor.last();
cursor.all();

// Filter non-matched objects (
var result = query.remove(collection);

Aggregation Pipeline

var agg = new Mingo.Aggregator([
 {'$match': { "type": "homework"}},
 {'$group':{'_id':'$student_id', 'score':{$min:'$score'}}},
 {'$sort':{'_id': 1, 'score': 1}}
]);

var result = agg.run(collection);

// shorthand
result = Mingo.aggregate(
 collection,
 [
 {'$match': { "type": "homework"}},
 {'$group':{'_id':'$student_id', 'score':{$min:'$score'}}},
 {'$sort':{'_id': 1, 'score': 1}}
]
);

Stream Filtering

var JSONStream = require('JSONStream'),
 fs = require('fs'),
 Mingo = require('mingo');

var query = new Mingo.Query({
 scores: { $elemMatch: {type: "exam", score: {$gt: 90}} }
}, {name: 1});

// ex. [
// { "_id" : 11, "name" : "Marcus Blohm", "scores" : [
// { "type" : "exam", "score" : 78.42617835651868 },
// { "type" : "quiz", "score" : 82.58372817930675 },
// { "type" : "homework", "score" : 87.49924733328717 },
// { "type" : "homework", "score" : 15.81264595052612 }]
// },
// ...
//]
file = fs.createReadStream('./students.json');

var qs = query.stream();
qs.on('data', function (data) {
 console.log(data); // log filtered outputs
 // ex. { name: 'Dinah Sauve', _id: 49 }
});

file.pipe(JSONStream.parse("*")).pipe(qs);

Backbone Integration

// using with Backbone
var Grades = Backbone.Collection.extend(Mingo.CollectionMixin);

var grades = new Grades(collection);

// find students with grades less than 50 in homework or quiz
// sort by score ascending and type descending
cursor = grades.query({
 $or: [{type: "quiz", score: {$lt: 50}}, {type: "homework", score: {$lt: 50}}]
}).sort({score: 1, type: -1}).limit(10);

// print grade with the lowest score
cursor.first();

For documentation on using query operators see mongodb [http://docs.mongodb.org/manual/reference/operator/query/]

API

Mingo.Query(criteria, [projection])

Creates a Mingo.Query object with the given query criteria

		test(obj) Returns true if the object passes the query criteria, otherwise false.

		find(collection, [projection]) Performs a query on a collection and returns a Mingo.Cursor object.

		remove(collection) Remove matching documents from the collection and return the remainder

		stream() Return a Mingo.Stream to filter and transform JSON objects from a readable stream. NodeJS only

Mingo.Aggregator(expressions)

Creates a Mingo.Aggregator object with a collection of aggregation pipeline expressions

		run() Apply the pipeline operations over the collection by order of the sequence added

Mingo.Cursor(collection, query, [projection])

Creates a Mingo.Cursor object which holds the result of applying the query over the collection

		all() Returns all the matched documents in a cursor as a collection.

		first() Returns the first documents in a cursor.

		last() Returns the last document in a cursor

		count() Returns a count of the documents in a cursor.

		limit(n) Constrains the size of a cursor’s result set.

		skip(n) Returns a cursor that begins returning results only after passing or skipping a number of documents.

		sort(modifier) Returns results ordered according to a sort specification.

		next() Returns the next document in a cursor.

		hasNext() Returns true if the cursor has documents and can be iterated.

		max(expression) Specifies an exclusive upper index bound for a cursor

		min(expression) Specifies an inclusive lower index bound for a cursor.

		map(callback) Applies a function to each document in a cursor and collects the return values in an array.

		forEach(callback) Applies a JavaScript function for every document in a cursor.

Mingo.Stream(query, [options]) - NodeJS only

A Transform stream that can be piped from/to any readable/writable JSON stream.

Mingo.CollectionMixin

A mixin object for Backbone.Collection which adds query() and aggregate() methods

		query(criteria) Performs a query on the collection and returns a Mingo.Cursor object.

		aggregate(expressions) Performs aggregation operation using the aggregation pipeline.

Mingo.find(collection, criteria, [projection])

Performs a query on a collection and returns a Mingo.Cursor object.

Mingo.remove(collection, criteria)

Returns the non-matched objects as a collection from executing a Mingo.Query with the given criteria

Mingo.aggregate(collection, expressions)

Performs aggregation operation using the aggregation pipeline.

TODO

		Geospatial Query Operators ($geoWithin, $geoIntersects, $near, $nearSphere)

		Geometry Specifiers ($geometry, $maxDistance, $center, $centerSphere, $box, $polygon)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/event-stream/node_modules/stream-combiner/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

stream-combiner

Combine (stream1,...,streamN)

Turn a pipeline into a single stream. pipeline returns a stream that writes to the first stream
and reads from the last stream.

Listening for ‘error’ will recieve errors from all streams inside the pipe.

 var Combine = require('stream-combiner')
 var es = require('event-stream')

 Combine(//connect streams together with `pipe`
 process.openStdin(), //open stdin
 es.split(), //split stream to break on newlines
 es.map(function (data, callback) {//turn this async function into a stream
 callback(null
 , inspect(JSON.parse(data))) //render it nicely
 }),
 process.stdout // pipe it to stdout !
)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/save/node_modules/mingo/node_modules/underscore/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 __
 /\ \ __
 __ __ ___ _\ \ __ _ __ ____ ___ ___ _ __ __ /_\ ____
/\ \/\ \ /' _ `\ /'_ \ /'__`\/\ __\/ ,__\ / ___\ / __`\/\ __\/'__`\ \/\ \ /',__\
\ \ _\ \/\ \/\ \/\ \ \ \/\ __/\ \ \//__, `\/\ __//\ \ \ \ \ \//\ __/ __ \ \ \/__, `\
 \ ____/\ _\ _\ ___,_\ ____\\ _\\/____/\ ____\ ____/\ _\\ ____\/_\ _\ \ \/____/
 \/___/ \/_/\/_/\/__,_ /\/____/ \/_/ \/___/ \/____/\/___/ \/_/ \/____/\/_//\ _\ \/___/
 \ ____/
 \/___/

Underscore.js is a utility-belt library for JavaScript that provides
support for the usual functional suspects (each, map, reduce, filter...)
without extending any core JavaScript objects.

For Docs, License, Tests, and pre-packed downloads, see:
http://underscorejs.org

Underscore is an open-sourced component of DocumentCloud:
https://github.com/documentcloud

Many thanks to our contributors:
https://github.com/jashkenas/underscore/contributors

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/uglify-js/node_modules/source-map/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Change Log

0.1.34

		Make SourceNode work with windows style (“\r\n”) newlines. Issue #103.

		Fix bug involving source contents and the
SourceMapGenerator.prototype.applySourceMap. Issue #100.

0.1.33

		Fix some edge cases surrounding path joining and URL resolution.

		Add a third parameter for relative path to
SourceMapGenerator.prototype.applySourceMap.

		Fix issues with mappings and EOLs.

0.1.32

		Fixed a bug where SourceMapConsumer couldn’t handle negative relative columns
(issue 92).

		Fixed test runner to actually report number of failed tests as its process
exit code.

		Fixed a typo when reporting bad mappings (issue 87).

0.1.31

		Delay parsing the mappings in SourceMapConsumer until queried for a source
location.

		Support Sass source maps (which at the time of writing deviate from the spec
in small ways) in SourceMapConsumer.

0.1.30

		Do not join source root with a source, when the source is a data URI.

		Extend the test runner to allow running single specific test files at a time.

		Performance improvements in SourceNode.prototype.walk and
SourceMapConsumer.prototype.eachMapping.

		Source map browser builds will now work inside Workers.

		Better error messages when attempting to add an invalid mapping to a
SourceMapGenerator.

0.1.29

		Allow duplicate entries in the names and sources arrays of source maps
(usually from TypeScript) we are parsing. Fixes github issue 72.

0.1.28

		Skip duplicate mappings when creating source maps from SourceNode; github
issue 75.

0.1.27

		Don’t throw an error when the file property is missing in SourceMapConsumer,
we don’t use it anyway.

0.1.26

		Fix SourceNode.fromStringWithSourceMap for empty maps. Fixes github issue 70.

0.1.25

		Make compatible with browserify

0.1.24

		Fix issue with absolute paths and file:// URIs. See
https://bugzilla.mozilla.org/show_bug.cgi?id=885597

0.1.23

		Fix issue with absolute paths and sourcesContent, github issue 64.

0.1.22

		Ignore duplicate mappings in SourceMapGenerator. Fixes github issue 21.

0.1.21

		Fixed handling of sources that start with a slash so that they are relative to
the source root’s host.

0.1.20

		Fixed github issue #43: absolute URLs aren’t joined with the source root
anymore.

0.1.19

		Using Travis CI to run tests.

0.1.18

		Fixed a bug in the handling of sourceRoot.

0.1.17

		Added SourceNode.fromStringWithSourceMap.

0.1.16

		Added missing documentation.

		Fixed the generating of empty mappings in SourceNode.

0.1.15

		Added SourceMapGenerator.applySourceMap.

0.1.14

		The sourceRoot is now handled consistently.

0.1.13

		Added SourceMapGenerator.fromSourceMap.

0.1.12

		SourceNode now generates empty mappings too.

0.1.11

		Added name support to SourceNode.

0.1.10

		Added sourcesContent support to the customer and generator.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/uglify-js/node_modules/source-map/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Source Map

This is a library to generate and consume the source map format
described here [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit].

This library is written in the Asynchronous Module Definition format, and works
in the following environments:

		Modern Browsers supporting ECMAScript 5 (either after the build, or with an
AMD loader such as RequireJS)

		Inside Firefox (as a JSM file, after the build)

		With NodeJS versions 0.8.X and higher

Node

$ npm install source-map

Building from Source (for everywhere else)

Install Node and then run

$ git clone https://fitzgen@github.com/mozilla/source-map.git
$ cd source-map
$ npm link .

Next, run

$ node Makefile.dryice.js

This should spew a bunch of stuff to stdout, and create the following files:

		dist/source-map.js - The unminified browser version.

		dist/source-map.min.js - The minified browser version.

		dist/SourceMap.jsm - The JavaScript Module for inclusion in Firefox source.

Examples

Consuming a source map

var rawSourceMap = {
 version: 3,
 file: 'min.js',
 names: ['bar', 'baz', 'n'],
 sources: ['one.js', 'two.js'],
 sourceRoot: 'http://example.com/www/js/',
 mappings: 'CAAC,IAAI,IAAM,SAAUA,GAClB,OAAOC,IAAID;CCDb,IAAI,IAAM,SAAUE,GAClB,OAAOA'
};

var smc = new SourceMapConsumer(rawSourceMap);

console.log(smc.sources);
// ['http://example.com/www/js/one.js',
// 'http://example.com/www/js/two.js']

console.log(smc.originalPositionFor({
 line: 2,
 column: 28
}));
// { source: 'http://example.com/www/js/two.js',
// line: 2,
// column: 10,
// name: 'n' }

console.log(smc.generatedPositionFor({
 source: 'http://example.com/www/js/two.js',
 line: 2,
 column: 10
}));
// { line: 2, column: 28 }

smc.eachMapping(function (m) {
 // ...
});

Generating a source map

In depth guide:
Compiling to JavaScript, and Debugging with Source Maps [https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/]

With SourceNode (high level API)

function compile(ast) {
 switch (ast.type) {
 case 'BinaryExpression':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 [compile(ast.left), " + ", compile(ast.right)]
);
 case 'Literal':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 String(ast.value)
);
 // ...
 default:
 throw new Error("Bad AST");
 }
}

var ast = parse("40 + 2", "add.js");
console.log(compile(ast).toStringWithSourceMap({
 file: 'add.js'
}));
// { code: '40 + 2',
// map: [object SourceMapGenerator] }

With SourceMapGenerator (low level API)

var map = new SourceMapGenerator({
 file: "source-mapped.js"
});

map.addMapping({
 generated: {
 line: 10,
 column: 35
 },
 source: "foo.js",
 original: {
 line: 33,
 column: 2
 },
 name: "christopher"
});

console.log(map.toString());
// '{"version":3,"file":"source-mapped.js","sources":["foo.js"],"names":["christopher"],"mappings":";;;;;;;;;mCAgCEA"}'

API

Get a reference to the module:

// NodeJS
var sourceMap = require('source-map');

// Browser builds
var sourceMap = window.sourceMap;

// Inside Firefox
let sourceMap = {};
Components.utils.import('resource:///modules/devtools/SourceMap.jsm', sourceMap);

SourceMapConsumer

A SourceMapConsumer instance represents a parsed source map which we can query
for information about the original file positions by giving it a file position
in the generated source.

new SourceMapConsumer(rawSourceMap)

The only parameter is the raw source map (either as a string which can be
JSON.parse‘d, or an object). According to the spec, source maps have the
following attributes:

		version: Which version of the source map spec this map is following.

		sources: An array of URLs to the original source files.

		names: An array of identifiers which can be referrenced by individual
mappings.

		sourceRoot: Optional. The URL root from which all sources are relative.

		sourcesContent: Optional. An array of contents of the original source files.

		mappings: A string of base64 VLQs which contain the actual mappings.

		file: Optional. The generated filename this source map is associated with.

SourceMapConsumer.prototype.originalPositionFor(generatedPosition)

Returns the original source, line, and column information for the generated
source’s line and column positions provided. The only argument is an object with
the following properties:

		line: The line number in the generated source.

		column: The column number in the generated source.

and an object is returned with the following properties:

		source: The original source file, or null if this information is not
available.

		line: The line number in the original source, or null if this information is
not available.

		column: The column number in the original source, or null or null if this
information is not available.

		name: The original identifier, or null if this information is not available.

SourceMapConsumer.prototype.generatedPositionFor(originalPosition)

Returns the generated line and column information for the original source,
line, and column positions provided. The only argument is an object with
the following properties:

		source: The filename of the original source.

		line: The line number in the original source.

		column: The column number in the original source.

and an object is returned with the following properties:

		line: The line number in the generated source, or null.

		column: The column number in the generated source, or null.

SourceMapConsumer.prototype.sourceContentFor(source)

Returns the original source content for the source provided. The only
argument is the URL of the original source file.

SourceMapConsumer.prototype.eachMapping(callback, context, order)

Iterate over each mapping between an original source/line/column and a
generated line/column in this source map.

		callback: The function that is called with each mapping. Mappings have the
form { source, generatedLine, generatedColumn, originalLine, originalColumn, name }

		context: Optional. If specified, this object will be the value of this
every time that callback is called.

		order: Either SourceMapConsumer.GENERATED_ORDER or
SourceMapConsumer.ORIGINAL_ORDER. Specifies whether you want to iterate over
the mappings sorted by the generated file’s line/column order or the
original’s source/line/column order, respectively. Defaults to
SourceMapConsumer.GENERATED_ORDER.

SourceMapGenerator

An instance of the SourceMapGenerator represents a source map which is being
built incrementally.

new SourceMapGenerator([startOfSourceMap])

You may pass an object with the following properties:

		file: The filename of the generated source that this source map is
associated with.

		sourceRoot: A root for all relative URLs in this source map.

SourceMapGenerator.fromSourceMap(sourceMapConsumer)

Creates a new SourceMapGenerator based on a SourceMapConsumer

		sourceMapConsumer The SourceMap.

SourceMapGenerator.prototype.addMapping(mapping)

Add a single mapping from original source line and column to the generated
source’s line and column for this source map being created. The mapping object
should have the following properties:

		generated: An object with the generated line and column positions.

		original: An object with the original line and column positions.

		source: The original source file (relative to the sourceRoot).

		name: An optional original token name for this mapping.

SourceMapGenerator.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for an original source file.

		sourceFile the URL of the original source file.

		sourceContent the content of the source file.

SourceMapGenerator.prototype.applySourceMap(sourceMapConsumer[, sourceFile[, sourceMapPath]])

Applies a SourceMap for a source file to the SourceMap.
Each mapping to the supplied source file is rewritten using the
supplied SourceMap. Note: The resolution for the resulting mappings
is the minimium of this map and the supplied map.

		sourceMapConsumer: The SourceMap to be applied.

		sourceFile: Optional. The filename of the source file.
If omitted, sourceMapConsumer.file will be used, if it exists.
Otherwise an error will be thrown.

		sourceMapPath: Optional. The dirname of the path to the SourceMap
to be applied. If relative, it is relative to the SourceMap.

This parameter is needed when the two SourceMaps aren’t in the same
directory, and the SourceMap to be applied contains relative source
paths. If so, those relative source paths need to be rewritten
relative to the SourceMap.

If omitted, it is assumed that both SourceMaps are in the same directory,
thus not needing any rewriting. (Supplying '.' has the same effect.)

SourceMapGenerator.prototype.toString()

Renders the source map being generated to a string.

SourceNode

SourceNodes provide a way to abstract over interpolating and/or concatenating
snippets of generated JavaScript source code, while maintaining the line and
column information associated between those snippets and the original source
code. This is useful as the final intermediate representation a compiler might
use before outputting the generated JS and source map.

new SourceNode([line, column, source[, chunk[, name]]])

		line: The original line number associated with this source node, or null if
it isn’t associated with an original line.

		column: The original column number associated with this source node, or null
if it isn’t associated with an original column.

		source: The original source’s filename; null if no filename is provided.

		chunk: Optional. Is immediately passed to SourceNode.prototype.add, see
below.

		name: Optional. The original identifier.

SourceNode.fromStringWithSourceMap(code, sourceMapConsumer)

Creates a SourceNode from generated code and a SourceMapConsumer.

		code: The generated code

		sourceMapConsumer The SourceMap for the generated code

SourceNode.prototype.add(chunk)

Add a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.prepend(chunk)

Prepend a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for a source file. This will be added to the
SourceMap in the sourcesContent field.

		sourceFile: The filename of the source file

		sourceContent: The content of the source file

SourceNode.prototype.walk(fn)

Walk over the tree of JS snippets in this node and its children. The walking
function is called once for each snippet of JS and is passed that snippet and
the its original associated source’s line/column location.

		fn: The traversal function.

SourceNode.prototype.walkSourceContents(fn)

Walk over the tree of SourceNodes. The walking function is called for each
source file content and is passed the filename and source content.

		fn: The traversal function.

SourceNode.prototype.join(sep)

Like Array.prototype.join except for SourceNodes. Inserts the separator
between each of this source node’s children.

		sep: The separator.

SourceNode.prototype.replaceRight(pattern, replacement)

Call String.prototype.replace on the very right-most source snippet. Useful
for trimming whitespace from the end of a source node, etc.

		pattern: The pattern to replace.

		replacement: The thing to replace the pattern with.

SourceNode.prototype.toString()

Return the string representation of this source node. Walks over the tree and
concatenates all the various snippets together to one string.

SourceNode.prototype.toStringWithSourceMap([startOfSourceMap])

Returns the string representation of this tree of source nodes, plus a
SourceMapGenerator which contains all the mappings between the generated and
original sources.

The arguments are the same as those to new SourceMapGenerator.

Tests

[image: Build Status] [https://travis-ci.org/mozilla/source-map]

Install NodeJS version 0.8.0 or greater, then run node test/run-tests.js.

To add new tests, create a new file named test/test-<your new test name>.js
and export your test functions with names that start with “test”, for example

exports["test doing the foo bar"] = function (assert, util) {
 ...
};

The new test will be located automatically when you run the suite.

The util argument is the test utility module located at test/source-map/util.

The assert argument is a cut down version of node’s assert module. You have
access to the following assertion functions:

		doesNotThrow

		equal

		ok

		strictEqual

		throws

(The reason for the restricted set of test functions is because we need the
tests to run inside Firefox’s test suite as well and so the assert module is
shimmed in that environment. See build/assert-shim.js.)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/uglify-js/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

UglifyJS 2

[image: Build Status] [https://travis-ci.org/mishoo/UglifyJS2]

UglifyJS is a JavaScript parser, minifier, compressor or beautifier toolkit.

This page documents the command line utility. For
API and internals documentation see my website [http://lisperator.net/uglifyjs/].
There’s also an
in-browser online demo [http://lisperator.net/uglifyjs/#demo] (for Firefox,
Chrome and probably Safari).

Install

First make sure you have installed the latest version of node.js [http://nodejs.org/]
(You may need to restart your computer after this step).

From NPM for use as a command line app:

npm install uglify-js -g

From NPM for programmatic use:

npm install uglify-js

From Git:

git clone git://github.com/mishoo/UglifyJS2.git
cd UglifyJS2
npm link .

Usage

uglifyjs [input files] [options]

UglifyJS2 can take multiple input files. It’s recommended that you pass the
input files first, then pass the options. UglifyJS will parse input files
in sequence and apply any compression options. The files are parsed in the
same global scope, that is, a reference from a file to some
variable/function declared in another file will be matched properly.

If you want to read from STDIN instead, pass a single dash instead of input
files.

The available options are:

 --source-map Specify an output file where to generate source map.
 [string]
 --source-map-root The path to the original source to be included in the
 source map. [string]
 --source-map-url The path to the source map to be added in //#
 sourceMappingURL. Defaults to the value passed with
 --source-map. [string]
 --source-map-include-sources
 Pass this flag if you want to include the content of
 source files in the source map as sourcesContent
 property. [boolean]
 --in-source-map Input source map, useful if you're compressing JS that was
 generated from some other original code.
 --screw-ie8 Pass this flag if you don't care about full compliance
 with Internet Explorer 6-8 quirks (by default UglifyJS
 will try to be IE-proof). [boolean]
 --expr Parse a single expression, rather than a program (for
 parsing JSON) [boolean]
 -p, --prefix Skip prefix for original filenames that appear in source
 maps. For example -p 3 will drop 3 directories from file
 names and ensure they are relative paths. You can also
 specify -p relative, which will make UglifyJS figure out
 itself the relative paths between original sources, the
 source map and the output file. [string]
 -o, --output Output file (default STDOUT).
 -b, --beautify Beautify output/specify output options. [string]
 -m, --mangle Mangle names/pass mangler options. [string]
 -r, --reserved Reserved names to exclude from mangling.
 -c, --compress Enable compressor/pass compressor options. Pass options
 like -c hoist_vars=false,if_return=false. Use -c with no
 argument to use the default compression options. [string]
 -d, --define Global definitions [string]
 -e, --enclose Embed everything in a big function, with a configurable
 parameter/argument list. [string]
 --comments Preserve copyright comments in the output. By default this
 works like Google Closure, keeping JSDoc-style comments
 that contain "@license" or "@preserve". You can optionally
 pass one of the following arguments to this flag:
 - "all" to keep all comments
 - a valid JS regexp (needs to start with a slash) to keep
 only comments that match.
 Note that currently not *all* comments can be kept when
 compression is on, because of dead code removal or
 cascading statements into sequences. [string]
 --preamble Preamble to prepend to the output. You can use this to
 insert a comment, for example for licensing information.
 This will not be parsed, but the source map will adjust
 for its presence.
 --stats Display operations run time on STDERR. [boolean]
 --acorn Use Acorn for parsing. [boolean]
 --spidermonkey Assume input files are SpiderMonkey AST format (as JSON).
 [boolean]
 --self Build itself (UglifyJS2) as a library (implies
 --wrap=UglifyJS --export-all) [boolean]
 --wrap Embed everything in a big function, making the “exports”
 and “global” variables available. You need to pass an
 argument to this option to specify the name that your
 module will take when included in, say, a browser.
 [string]
 --export-all Only used when --wrap, this tells UglifyJS to add code to
 automatically export all globals. [boolean]
 --lint Display some scope warnings [boolean]
 -v, --verbose Verbose [boolean]
 -V, --version Print version number and exit. [boolean]

Specify --output (-o) to declare the output file. Otherwise the output
goes to STDOUT.

Source map options

UglifyJS2 can generate a source map file, which is highly useful for
debugging your compressed JavaScript. To get a source map, pass
--source-map output.js.map (full path to the file where you want the
source map dumped).

Additionally you might need --source-map-root to pass the URL where the
original files can be found. In case you are passing full paths to input
files to UglifyJS, you can use --prefix (-p) to specify the number of
directories to drop from the path prefix when declaring files in the source
map.

For example:

uglifyjs /home/doe/work/foo/src/js/file1.js \
 /home/doe/work/foo/src/js/file2.js \
 -o foo.min.js \
 --source-map foo.min.js.map \
 --source-map-root http://foo.com/src \
 -p 5 -c -m

The above will compress and mangle file1.js and file2.js, will drop the
output in foo.min.js and the source map in foo.min.js.map. The source
mapping will refer to http://foo.com/src/js/file1.js and
http://foo.com/src/js/file2.js (in fact it will list http://foo.com/src
as the source map root, and the original files as js/file1.js and
js/file2.js).

Composed source map

When you’re compressing JS code that was output by a compiler such as
CoffeeScript, mapping to the JS code won’t be too helpful. Instead, you’d
like to map back to the original code (i.e. CoffeeScript). UglifyJS has an
option to take an input source map. Assuming you have a mapping from
CoffeeScript → compiled JS, UglifyJS can generate a map from CoffeeScript →
compressed JS by mapping every token in the compiled JS to its original
location.

To use this feature you need to pass --in-source-map /path/to/input/source.map. Normally the input source map should also point
to the file containing the generated JS, so if that’s correct you can omit
input files from the command line.

Mangler options

To enable the mangler you need to pass --mangle (-m). The following
(comma-separated) options are supported:

		sort — to assign shorter names to most frequently used variables. This
saves a few hundred bytes on jQuery before gzip, but the output is
bigger after gzip (and seems to happen for other libraries I tried it
on) therefore it’s not enabled by default.

		toplevel — mangle names declared in the toplevel scope (disabled by
default).

		eval — mangle names visible in scopes where eval or with are used
(disabled by default).

When mangling is enabled but you want to prevent certain names from being
mangled, you can declare those names with --reserved (-r) — pass a
comma-separated list of names. For example:

uglifyjs ... -m -r '$,require,exports'

to prevent the require, exports and $ names from being changed.

Compressor options

You need to pass --compress (-c) to enable the compressor. Optionally
you can pass a comma-separated list of options. Options are in the form
foo=bar, or just foo (the latter implies a boolean option that you want
to set true; it’s effectively a shortcut for foo=true).

		sequences – join consecutive simple statements using the comma operator

		properties – rewrite property access using the dot notation, for
example foo["bar"] → foo.bar

		dead_code – remove unreachable code

		drop_debugger – remove debugger; statements

		unsafe (default: false) – apply “unsafe” transformations (discussion below)

		conditionals – apply optimizations for if-s and conditional
expressions

		comparisons – apply certain optimizations to binary nodes, for example:
!(a <= b) → a > b (only when unsafe), attempts to negate binary nodes,
e.g. a = !b && !c && !d && !e → a=!(b||c||d||e) etc.

		evaluate – attempt to evaluate constant expressions

		booleans – various optimizations for boolean context, for example !!a ? b : c → a ? b : c

		loops – optimizations for do, while and for loops when we can
statically determine the condition

		unused – drop unreferenced functions and variables

		hoist_funs – hoist function declarations

		hoist_vars (default: false) – hoist var declarations (this is false
by default because it seems to increase the size of the output in general)

		if_return – optimizations for if/return and if/continue

		join_vars – join consecutive var statements

		cascade – small optimization for sequences, transform x, x into x
and x = something(), x into x = something()

		warnings – display warnings when dropping unreachable code or unused
declarations etc.

		negate_iife – negate “Immediately-Called Function Expressions”
where the return value is discarded, to avoid the parens that the
code generator would insert.

		pure_getters – the default is false. If you pass true for
this, UglifyJS will assume that object property access
(e.g. foo.bar or foo["bar"]) doesn’t have any side effects.

		pure_funcs – default null. You can pass an array of names and
UglifyJS will assume that those functions do not produce side
effects. DANGER: will not check if the name is redefined in scope.
An example case here, for instance var q = Math.floor(a/b). If
variable q is not used elsewhere, UglifyJS will drop it, but will
still keep the Math.floor(a/b), not knowing what it does. You can
pass pure_funcs: ['Math.floor'] to let it know that this
function won’t produce any side effect, in which case the whole
statement would get discarded. The current implementation adds some
overhead (compression will be slower).

		drop_console – default false. Pass true to discard calls to
console.* functions.

The unsafe option

It enables some transformations that might break code logic in certain
contrived cases, but should be fine for most code. You might want to try it
on your own code, it should reduce the minified size. Here’s what happens
when this flag is on:

		new Array(1, 2, 3) or Array(1, 2, 3) → [1, 2, 3]

		new Object() → {}

		String(exp) or exp.toString() → "" + exp

		new Object/RegExp/Function/Error/Array (...) → we discard the new

		typeof foo == "undefined" → foo === void 0

		void 0 → undefined (if there is a variable named “undefined” in
scope; we do it because the variable name will be mangled, typically
reduced to a single character).

Conditional compilation

You can use the --define (-d) switch in order to declare global
variables that UglifyJS will assume to be constants (unless defined in
scope). For example if you pass --define DEBUG=false then, coupled with
dead code removal UglifyJS will discard the following from the output:

if (DEBUG) {
 console.log("debug stuff");
}

UglifyJS will warn about the condition being always false and about dropping
unreachable code; for now there is no option to turn off only this specific
warning, you can pass warnings=false to turn off all warnings.

Another way of doing that is to declare your globals as constants in a
separate file and include it into the build. For example you can have a
build/defines.js file with the following:

const DEBUG = false;
const PRODUCTION = true;
// etc.

and build your code like this:

uglifyjs build/defines.js js/foo.js js/bar.js... -c

UglifyJS will notice the constants and, since they cannot be altered, it
will evaluate references to them to the value itself and drop unreachable
code as usual. The possible downside of this approach is that the build
will contain the const declarations.

[bookmark: codegen-options]

Beautifier options

The code generator tries to output shortest code possible by default. In
case you want beautified output, pass --beautify (-b). Optionally you
can pass additional arguments that control the code output:

		beautify (default true) – whether to actually beautify the output.
Passing -b will set this to true, but you might need to pass -b even
when you want to generate minified code, in order to specify additional
arguments, so you can use -b beautify=false to override it.

		indent-level (default 4)

		indent-start (default 0) – prefix all lines by that many spaces

		quote-keys (default false) – pass true to quote all keys in literal
objects

		space-colon (default true) – insert a space after the colon signs

		ascii-only (default false) – escape Unicode characters in strings and
regexps

		inline-script (default false) – escape the slash in occurrences of
</script in strings

		width (default 80) – only takes effect when beautification is on, this
specifies an (orientative) line width that the beautifier will try to
obey. It refers to the width of the line text (excluding indentation).
It doesn’t work very well currently, but it does make the code generated
by UglifyJS more readable.

		max-line-len (default 32000) – maximum line length (for uglified code)

		bracketize (default false) – always insert brackets in if, for,
do, while or with statements, even if their body is a single
statement.

		semicolons (default true) – separate statements with semicolons. If
you pass false then whenever possible we will use a newline instead of a
semicolon, leading to more readable output of uglified code (size before
gzip could be smaller; size after gzip insignificantly larger).

		preamble (default null) – when passed it must be a string and
it will be prepended to the output literally. The source map will
adjust for this text. Can be used to insert a comment containing
licensing information, for example.

Keeping copyright notices or other comments

You can pass --comments to retain certain comments in the output. By
default it will keep JSDoc-style comments that contain “@preserve”,
“@license” or “@cc_on” (conditional compilation for IE). You can pass
--comments all to keep all the comments, or a valid JavaScript regexp to
keep only comments that match this regexp. For example --comments '/foo|bar/' will keep only comments that contain “foo” or “bar”.

Note, however, that there might be situations where comments are lost. For
example:

function f() {
 /** @preserve Foo Bar */
 function g() {
 // this function is never called
 }
 return something();
}

Even though it has “@preserve”, the comment will be lost because the inner
function g (which is the AST node to which the comment is attached to) is
discarded by the compressor as not referenced.

The safest comments where to place copyright information (or other info that
needs to be kept in the output) are comments attached to toplevel nodes.

Support for the SpiderMonkey AST

UglifyJS2 has its own abstract syntax tree format; for
practical reasons [http://lisperator.net/blog/uglifyjs-why-not-switching-to-spidermonkey-ast/]
we can’t easily change to using the SpiderMonkey AST internally. However,
UglifyJS now has a converter which can import a SpiderMonkey AST.

For example Acorn [https://github.com/marijnh/acorn] is a super-fast parser that produces a
SpiderMonkey AST. It has a small CLI utility that parses one file and dumps
the AST in JSON on the standard output. To use UglifyJS to mangle and
compress that:

acorn file.js | uglifyjs --spidermonkey -m -c

The --spidermonkey option tells UglifyJS that all input files are not
JavaScript, but JS code described in SpiderMonkey AST in JSON. Therefore we
don’t use our own parser in this case, but just transform that AST into our
internal AST.

Use Acorn for parsing

More for fun, I added the --acorn option which will use Acorn to do all
the parsing. If you pass this option, UglifyJS will require("acorn").

Acorn is really fast (e.g. 250ms instead of 380ms on some 650K code), but
converting the SpiderMonkey tree that Acorn produces takes another 150ms so
in total it’s a bit more than just using UglifyJS’s own parser.

API Reference

Assuming installation via NPM, you can load UglifyJS in your application
like this:

var UglifyJS = require("uglify-js");

It exports a lot of names, but I’ll discuss here the basics that are needed
for parsing, mangling and compressing a piece of code. The sequence is (1)
parse, (2) compress, (3) mangle, (4) generate output code.

The simple way

There’s a single toplevel function which combines all the steps. If you
don’t need additional customization, you might want to go with minify.
Example:

var result = UglifyJS.minify("/path/to/file.js");
console.log(result.code); // minified output
// if you need to pass code instead of file name
var result = UglifyJS.minify("var b = function () {};", {fromString: true});

You can also compress multiple files:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"]);
console.log(result.code);

To generate a source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map"
});
console.log(result.code); // minified output
console.log(result.map);

Note that the source map is not saved in a file, it’s just returned in
result.map. The value passed for outSourceMap is only used to set the
file attribute in the source map (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit]).

You can also specify sourceRoot property to be included in source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map",
 sourceRoot: "http://example.com/src"
});

If you’re compressing compiled JavaScript and have a source map for it, you
can use the inSourceMap argument:

var result = UglifyJS.minify("compiled.js", {
 inSourceMap: "compiled.js.map",
 outSourceMap: "minified.js.map"
});
// same as before, it returns `code` and `map`

The inSourceMap is only used if you also request outSourceMap (it makes
no sense otherwise).

Other options:

		warnings (default false) — pass true to display compressor warnings.

		fromString (default false) — if you pass true then you can pass
JavaScript source code, rather than file names.

		mangle — pass false to skip mangling names.

		output (default null) — pass an object if you wish to specify
additional output options [http://lisperator.net/uglifyjs/codegen]. The defaults are optimized
for best compression.

		compress (default {}) — pass false to skip compressing entirely.
Pass an object to specify custom compressor options [http://lisperator.net/uglifyjs/compress].

We could add more options to UglifyJS.minify — if you need additional
functionality please suggest!

The hard way

Following there’s more detailed API info, in case the minify function is
too simple for your needs.

The parser

var toplevel_ast = UglifyJS.parse(code, options);

options is optional and if present it must be an object. The following
properties are available:

		strict — disable automatic semicolon insertion and support for trailing
comma in arrays and objects

		filename — the name of the file where this code is coming from

		toplevel — a toplevel node (as returned by a previous invocation of
parse)

The last two options are useful when you’d like to minify multiple files and
get a single file as the output and a proper source map. Our CLI tool does
something like this:

var toplevel = null;
files.forEach(function(file){
 var code = fs.readFileSync(file, "utf8");
 toplevel = UglifyJS.parse(code, {
 filename: file,
 toplevel: toplevel
 });
});

After this, we have in toplevel a big AST containing all our files, with
each token having proper information about where it came from.

Scope information

UglifyJS contains a scope analyzer that you need to call manually before
compressing or mangling. Basically it augments various nodes in the AST
with information about where is a name defined, how many times is a name
referenced, if it is a global or not, if a function is using eval or the
with statement etc. I will discuss this some place else, for now what’s
important to know is that you need to call the following before doing
anything with the tree:

toplevel.figure_out_scope()

Compression

Like this:

var compressor = UglifyJS.Compressor(options);
var compressed_ast = toplevel.transform(compressor);

The options can be missing. Available options are discussed above in
“Compressor options”. Defaults should lead to best compression in most
scripts.

The compressor is destructive, so don’t rely that toplevel remains the
original tree.

Mangling

After compression it is a good idea to call again figure_out_scope (since
the compressor might drop unused variables / unreachable code and this might
change the number of identifiers or their position). Optionally, you can
call a trick that helps after Gzip (counting character frequency in
non-mangleable words). Example:

compressed_ast.figure_out_scope();
compressed_ast.compute_char_frequency();
compressed_ast.mangle_names();

Generating output

AST nodes have a print method that takes an output stream. Essentially,
to generate code you do this:

var stream = UglifyJS.OutputStream(options);
compressed_ast.print(stream);
var code = stream.toString(); // this is your minified code

or, for a shortcut you can do:

var code = compressed_ast.print_to_string(options);

As usual, options is optional. The output stream accepts a lot of otions,
most of them documented above in section “Beautifier options”. The two
which we care about here are source_map and comments.

Keeping comments in the output

In order to keep certain comments in the output you need to pass the
comments option. Pass a RegExp or a function. If you pass a RegExp, only
those comments whose body matches the regexp will be kept. Note that body
means without the initial // or /*. If you pass a function, it will be
called for every comment in the tree and will receive two arguments: the
node that the comment is attached to, and the comment token itself.

The comment token has these properties:

		type: “comment1” for single-line comments or “comment2” for multi-line
comments

		value: the comment body

		pos and endpos: the start/end positions (zero-based indexes) in the
original code where this comment appears

		line and col: the line and column where this comment appears in the
original code

		file — the file name of the original file

		nlb — true if there was a newline before this comment in the original
code, or if this comment contains a newline.

Your function should return true to keep the comment, or a falsy value
otherwise.

Generating a source mapping

You need to pass the source_map argument when calling print. It needs
to be a SourceMap object (which is a thin wrapper on top of the
source-map [https://github.com/mozilla/source-map] library).

Example:

var source_map = UglifyJS.SourceMap(source_map_options);
var stream = UglifyJS.OutputStream({
 ...
 source_map: source_map
});
compressed_ast.print(stream);

var code = stream.toString();
var map = source_map.toString(); // json output for your source map

The source_map_options (optional) can contain the following properties:

		file: the name of the JavaScript output file that this mapping refers to

		root: the sourceRoot property (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit])

		orig: the “original source map”, handy when you compress generated JS
and want to map the minified output back to the original code where it
came from. It can be simply a string in JSON, or a JSON object containing
the original source map.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/uglify-js/node_modules/async/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Async.js

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with node.js [http://nodejs.org], it can also be used directly in the
browser. Also supports component [https://github.com/component/component].

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, each…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Common Pitfalls

Binding a context to an iterator

This section is really about bind, not about async. If you are wondering how to
make async execute your iterators in a given context, or are confused as to why
a method of another library isn’t working as an iterator, study this example:

// Here is a simple object with an (unnecessarily roundabout) squaring method
var AsyncSquaringLibrary = {
 squareExponent: 2,
 square: function(number, callback){
 var result = Math.pow(number, this.squareExponent);
 setTimeout(function(){
 callback(null, result);
 }, 200);
 }
};

async.map([1, 2, 3], AsyncSquaringLibrary.square, function(err, result){
 // result is [NaN, NaN, NaN]
 // This fails because the `this.squareExponent` expression in the square
 // function is not evaluated in the context of AsyncSquaringLibrary, and is
 // therefore undefined.
});

async.map([1, 2, 3], AsyncSquaringLibrary.square.bind(AsyncSquaringLibrary), function(err, result){
 // result is [1, 4, 9]
 // With the help of bind we can attach a context to the iterator before
 // passing it to async. Now the square function will be executed in its
 // 'home' AsyncSquaringLibrary context and the value of `this.squareExponent`
 // will be as expected.
});

Download

The source is available for download from
GitHub [http://github.com/caolan/async].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 29.6kb Uncompressed

In the Browser

So far it’s been tested in IE6, IE7, IE8, FF3.6 and Chrome 5. Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

		each

		eachSeries

		eachLimit

		map

		mapSeries

		mapLimit

		filter

		filterSeries

		reject

		rejectSeries

		reduce

		reduceRight

		detect

		detectSeries

		sortBy

		some

		every

		concat

		concatSeries

Control Flow

		series

		parallel

		parallelLimit

		whilst

		doWhilst

		until

		doUntil

		forever

		waterfall

		compose

		applyEach

		applyEachSeries

		queue

		cargo

		auto

		iterator

		apply

		nextTick

		times

		timesSeries

Utils

		memoize

		unmemoize

		log

		dir

		noConflict

Collections

[bookmark: forEach]
[bookmark: each]

each(arr, iterator, callback)

Applies an iterator function to each item in an array, in parallel.
The iterator is called with an item from the list and a callback for when it
has finished. If the iterator passes an error to this callback, the main
callback for the each function is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.each(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: forEachSeries]
[bookmark: eachSeries]

eachSeries(arr, iterator, callback)

The same as each only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. This means the iterator functions will complete in order.

[bookmark: forEachLimit]
[bookmark: eachLimit]

eachLimit(arr, limit, iterator, callback)

The same as each only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.eachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in the given array through
the iterator function. The iterator is called with an item from the array and a
callback for when it has finished processing. The callback takes 2 arguments,
an error and the transformed item from the array. If the iterator passes an
error to this callback, the main callback for the map function is immediately
called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order, however
the results array will be in the same order as the original array.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: mapLimit]

mapLimit(arr, limit, iterator, callback)

The same as map only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.mapLimit(['file1','file2','file3'], 1, fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

alias: selectSeries

The same as filter only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as reject, only the iterator is applied to each item in the array
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

aliases: inject, foldl

Reduces a list of values into a single value using an async iterator to return
each successive step. Memo is the initial state of the reduction. This
function only operates in series. For performance reasons, it may make sense to
split a call to this function into a parallel map, then use the normal
Array.prototype.reduce on the results. This function is for situations where
each step in the reduction needs to be async, if you can get the data before
reducing it then it’s probably a good idea to do so.

Arguments

		arr - An array to iterate over.

		memo - The initial state of the reduction.

		iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback(err, reduction) which accepts an optional error as its first
argument, and the state of the reduction as the second. If an error is
passed to the callback, the reduction is stopped and the main callback is
immediately called with the error.

		callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on the items in the array in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in a list that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original array (in terms of order) that passes the test.

If order within the original array is important then look at detectSeries.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], fs.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in the array
in series. This means the result is always the first in the original array (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each value through an async iterator.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, sortValue) which must be called once it
has completed with an error (which can be null) and a value to use as the sort
criteria.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is the items from
the original array sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies an iterator to each item in a list, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of the arguments passed to the iterator function.

Arguments

		arr - An array to iterate over

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, results) which must be called once it
has completed with an error (which can be null) and an array of results.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as async.concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run an array of functions in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run and the callback for the series is
immediately called with the value of the error. Once the tasks have completed,
the results are passed to the final callback as an array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.series.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 }
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run an array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.parallel.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 }
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: parallel]

parallelLimit(tasks, limit, [callback])

The same as parallel only the tasks are executed in parallel with a maximum of “limit”
tasks executing at any time.

Note that the tasks are not executed in batches, so there is no guarantee that
the first “limit” tasks will complete before any others are started.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		limit - The maximum number of tasks to run at any time.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls the callback when stopped,
or an error occurs.

Arguments

		test() - synchronous truth test to perform before each execution of fn.

		fn(callback) - A function to call each time the test passes. The function is
passed a callback(err) which must be called once it has completed with an
optional error argument.

		callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: doWhilst]

doWhilst(fn, test, callback)

The post check version of whilst. To reflect the difference in the order of operations test and fn arguments are switched. doWhilst is to whilst as do while is to while in plain JavaScript.

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn, until test returns true. Calls the callback when stopped,
or an error occurs.

The inverse of async.whilst.

[bookmark: doUntil]

doUntil(fn, test, callback)

Like doWhilst except the test is inverted. Note the argument ordering differs from until.

[bookmark: forever]

forever(fn, callback)

Calls the asynchronous function ‘fn’ repeatedly, in series, indefinitely.
If an error is passed to fn’s callback then ‘callback’ is called with the
error, otherwise it will never be called.

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs an array of functions in series, each passing their results to the next in
the array. However, if any of the functions pass an error to the callback, the
next function is not executed and the main callback is immediately called with
the error.

Arguments

		tasks - An array of functions to run, each function is passed a
callback(err, result1, result2, ...) it must call on completion. The first
argument is an error (which can be null) and any further arguments will be
passed as arguments in order to the next task.

		callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: compose]

compose(fn1, fn2...)

Creates a function which is a composition of the passed asynchronous
functions. Each function consumes the return value of the function that
follows. Composing functions f(), g() and h() would produce the result of
f(g(h())), only this version uses callbacks to obtain the return values.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

function add1(n, callback) {
 setTimeout(function () {
 callback(null, n + 1);
 }, 10);
}

function mul3(n, callback) {
 setTimeout(function () {
 callback(null, n * 3);
 }, 10);
}

var add1mul3 = async.compose(mul3, add1);

add1mul3(4, function (err, result) {
 // result now equals 15
});

[bookmark: applyEach]

applyEach(fns, args..., callback)

Applies the provided arguments to each function in the array, calling the
callback after all functions have completed. If you only provide the first
argument then it will return a function which lets you pass in the
arguments as if it were a single function call.

Arguments

		fns - the asynchronous functions to all call with the same arguments

		args... - any number of separate arguments to pass to the function

		callback - the final argument should be the callback, called when all
functions have completed processing

Example

async.applyEach([enableSearch, updateSchema], 'bucket', callback);

// partial application example:
async.each(
 buckets,
 async.applyEach([enableSearch, updateSchema]),
 callback
);

[bookmark: applyEachSeries]

applyEachSeries(arr, iterator, callback)

The same as applyEach only the functions are applied in series.

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue will be processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one is available. Once
a worker has completed a task, the task’s callback is called.

Arguments

		worker(task, callback) - An asynchronous function for processing a queued
task, which must call its callback(err) argument when finished, with an
optional error as an argument.

		concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		unshift(task, [callback]) - add a new task to the front of the queue.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

// add some items to the front of the queue

q.unshift({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

[bookmark: cargo]

cargo(worker, [payload])

Creates a cargo object with the specified payload. Tasks added to the
cargo will be processed altogether (up to the payload limit). If the
worker is in progress, the task is queued until it is available. Once
the worker has completed some tasks, each callback of those tasks is called.

Arguments

		worker(tasks, callback) - An asynchronous function for processing an array of
queued tasks, which must call its callback(err) argument when finished, with
an optional error as an argument.

		payload - An optional integer for determining how many tasks should be
processed per round; if omitted, the default is unlimited.

Cargo objects

The cargo object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		payload - an integer for determining how many tasks should be
process per round. This property can be changed after a cargo is created to
alter the payload on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a cargo object with payload 2

var cargo = async.cargo(function (tasks, callback) {
 for(var i=0; i<tasks.length; i++){
 console.log('hello ' + tasks[i].name);
 }
 callback();
}, 2);

// add some items

cargo.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
cargo.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});
cargo.push({name: 'baz'}, function (err) {
 console.log('finished processing baz');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running functions based on their requirements.
Each function can optionally depend on other functions being completed first,
and each function is run as soon as its requirements are satisfied. If any of
the functions pass an error to their callback, that function will not complete
(so any other functions depending on it will not run) and the main callback
will be called immediately with the error. Functions also receive an object
containing the results of functions which have completed so far.

Note, all functions are called with a results object as a second argument,
so it is unsafe to pass functions in the tasks object which cannot handle the
extra argument. For example, this snippet of code:

async.auto({
 readData: async.apply(fs.readFile, 'data.txt', 'utf-8')
}, callback);

will have the effect of calling readFile with the results object as the last
argument, which will fail:

fs.readFile('data.txt', 'utf-8', cb, {});

Instead, wrap the call to readFile in a function which does not forward the
results object:

async.auto({
 readData: function(cb, results){
 fs.readFile('data.txt', 'utf-8', cb);
 }
}, callback);

Arguments

		tasks - An object literal containing named functions or an array of
requirements, with the function itself the last item in the array. The key
used for each function or array is used when specifying requirements. The
function receives two arguments: (1) a callback(err, result) which must be
called when finished, passing an error (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions.

		callback(err, results) - An optional callback which is called when all the
tasks have been completed. The callback will receive an error as an argument
if any tasks pass an error to their callback. Results will always be passed
but if an error occurred, no other tasks will be performed, and the results
object will only contain partial results.

Example

async.auto({
 get_data: function(callback){
 // async code to get some data
 },
 make_folder: function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 },
 write_file: ['get_data', 'make_folder', function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, filename);
 }],
 email_link: ['write_file', function(callback, results){
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 }]
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 // async code to get some data
 },
 function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 }
],
function(err, results){
 async.series([
 function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 },
 function(callback){
 // once the file is written let's email a link to it...
 }
]);
});

For a complicated series of async tasks using the auto function makes adding
new tasks much easier and makes the code more readable.

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the array,
returning a continuation to call the next one after that. It’s also possible to
‘peek’ the next iterator by doing iterator.next().

This function is used internally by the async module but can be useful when
you want to manually control the flow of functions in series.

Arguments

		tasks - An array of functions to run.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied, a useful
shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 }
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls the callback on a later loop around the event loop. In node.js this just
calls process.nextTick, in the browser it falls back to setImmediate(callback)
if available, otherwise setTimeout(callback, 0), which means other higher priority
events may precede the execution of the callback.

This is used internally for browser-compatibility purposes.

Arguments

		callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two']
});
call_order.push('one')

[bookmark: times]

times(n, callback)

Calls the callback n times and accumulates results in the same manner
you would use with async.map.

Arguments

		n - The number of times to run the function.

		callback - The function to call n times.

Example

// Pretend this is some complicated async factory
var createUser = function(id, callback) {
 callback(null, {
 id: 'user' + id
 })
}
// generate 5 users
async.times(5, function(n, next){
 createUser(n, function(err, user) {
 next(err, user)
 })
}, function(err, users) {
 // we should now have 5 users
});

[bookmark: timesSeries]

timesSeries(n, callback)

The same as times only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

The cache of results is exposed as the memo property of the function returned
by memoize.

Arguments

		fn - the function you to proxy and cache results from.

		hasher - an optional function for generating a custom hash for storing
results, it has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Comes handy in tests.

Arguments

		fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/lodash/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Lo-Dash v2.4.1

A utility library delivering consistency, customization [http://lodash.com/custom-builds], performance [http://lodash.com/benchmarks], & extras [http://lodash.com/#features].

Download

Check out our wiki for details over the differences between builds.

		Modern builds perfect for newer browsers/environments:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.min.js]

		Compatibility builds for older environment support too:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.min.js]

		Underscore builds to use as a drop-in replacement:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.min.js]

CDN copies are available on cdnjs [http://cdnjs.com/libraries/lodash.js/] & jsDelivr [http://www.jsdelivr.com/#!lodash]. For smaller file sizes, create custom builds [http://lodash.com/custom-builds] with only the features needed.

Love modules? We’ve got you covered with lodash-amd [https://npmjs.org/package/lodash-amd], lodash-es6 [https://github.com/lodash/lodash-es6], lodash-node [https://npmjs.org/package/lodash-node], & npm packages [https://npmjs.org/browse/keyword/lodash-modularized] per method.

Dive in

There’s plenty of documentation [http://lodash.com/docs], unit tests [http://lodash.com/tests], & benchmarks [http://lodash.com/benchmarks].

Check out DevDocs as a fast, organized, & searchable interface for our documentation.

The full changelog for this release is available on our wiki [https://github.com/lodash/lodash/wiki/Changelog].

A list of upcoming features is available on our roadmap [https://github.com/lodash/lodash/wiki/Roadmap].

Features not in Underscore

		AMD loader support (curl [https://github.com/cujojs/curl], dojo [http://dojotoolkit.org/], requirejs [http://requirejs.org/], etc.)

		(…) [http://lodash.com/docs#] supports intuitive chaining

		_.at [http://lodash.com/docs#at] for cherry-picking collection values

		_.bindKey [http://lodash.com/docs#bindKey] for binding “lazy” [http://michaux.ca/articles/lazy-function-definition-pattern] defined methods

		_.clone [http://lodash.com/docs#clone] supports shallow cloning of Date & RegExp objects

		_.cloneDeep [http://lodash.com/docs#cloneDeep] for deep cloning arrays & objects

		_.constant [http://lodash.com/docs#constant] & _.property [http://lodash.com/docs#property] function generators for composing functions

		_.contains [http://lodash.com/docs#contains] accepts a fromIndex

		_.create [http://lodash.com/docs#create] for easier object inheritance

		_.createCallback [http://lodash.com/docs#createCallback] for extending callbacks in methods & mixins

		_.curry [http://lodash.com/docs#curry] for creating curried [http://hughfdjackson.com/javascript/2013/07/06/why-curry-helps/] functions

		_.debounce [http://lodash.com/docs#debounce] & _.throttle [http://lodash.com/docs#throttle] accept additional options for more control

		_.findIndex [http://lodash.com/docs#findIndex] & _.findKey [http://lodash.com/docs#findKey] for finding indexes & keys

		_.forEach [http://lodash.com/docs#forEach] is chainable & supports exiting early

		_.forIn [http://lodash.com/docs#forIn] for iterating own & inherited properties

		_.forOwn [http://lodash.com/docs#forOwn] for iterating own properties

		_.isPlainObject [http://lodash.com/docs#isPlainObject] for checking if values are created by Object

		_.mapValues [http://lodash.com/docs#mapValues] for mapping [http://lodash.com/docs#map] values to an object

		_.memoize [http://lodash.com/docs#memoize] exposes the cache of memoized functions

		_.merge [http://lodash.com/docs#merge] for a deep _.extend [http://lodash.com/docs#extend]

		_.noop [http://lodash.com/docs#noop] for function placeholders

		_.now [http://lodash.com/docs#now] as a cross-browser Date.now alternative

		_.parseInt [http://lodash.com/docs#parseInt] for consistent behavior

		_.pull [http://lodash.com/docs#pull] & _.remove [http://lodash.com/docs#remove] for mutating arrays

		_.random [http://lodash.com/docs#random] supports returning floating-point numbers

		_.runInContext [http://lodash.com/docs#runInContext] for easier mocking

		_.sortBy [http://lodash.com/docs#sortBy] supports sorting by multiple properties

		_.support [http://lodash.com/docs#support] for flagging environment features

		_.template [http://lodash.com/docs#template] supports “imports” [http://lodash.com/docs#templateSettings_imports] options & ES6 template delimiters [http://people.mozilla.org/~jorendorff/es6-draft.html#sec-literals-string-literals]

		_.transform [http://lodash.com/docs#transform] as a powerful alternative to _.reduce [http://lodash.com/docs#reduce] for transforming objects

		_.where [http://lodash.com/docs#where] supports deep object comparisons

		_.xor [http://lodash.com/docs#xor] as a companion to _.difference [http://lodash.com/docs#difference], _.intersection [http://lodash.com/docs#intersection], & _.union [http://lodash.com/docs#union]

		_.zip [http://lodash.com/docs#zip] is capable of unzipping values

		_.omit [http://lodash.com/docs#omit], _.pick [http://lodash.com/docs#pick], &
more [http://lodash.com/docs] accept callbacks

		_.contains [http://lodash.com/docs#contains], _.toArray [http://lodash.com/docs#toArray], &
more [http://lodash.com/docs] accept strings

		_.filter [http://lodash.com/docs#filter], _.map [http://lodash.com/docs#map], &
more [http://lodash.com/docs] support *“_.pluck”* & *“_.where”* shorthands

		_.findLast [http://lodash.com/docs#findLast], _.findLastIndex [http://lodash.com/docs#findLastIndex], &
more [http://lodash.com/docs] right-associative methods

Resources

		Podcasts

		JavaScript Jabber [http://javascriptjabber.com/079-jsj-lo-dash-with-john-david-dalton/]

		Posts

		Say “Hello” to Lo-Dash [http://kitcambridge.be/blog/say-hello-to-lo-dash/]

		Custom builds in Lo-Dash 2.0 [http://kitcambridge.be/blog/custom-builds-in-lo-dash-2-dot-0/]

		Videos

		Introduction [https://vimeo.com/44154599]

		Origins [https://vimeo.com/44154600]

		Optimizations & builds [https://vimeo.com/44154601]

		Native method use [https://vimeo.com/48576012]

		Testing [https://vimeo.com/45865290]

		CascadiaJS ’12 [http://www.youtube.com/watch?v=dpPy4f_SeEk]

A list of other community created podcasts, posts, & videos is available on our wiki [https://github.com/lodash/lodash/wiki/Resources].

Support

Tested in Chrome 5~31, Firefox 2~25, IE 6-11, Opera 9.25~17, Safari 3-7, Node.js 0.6.21~0.10.22, Narwhal 0.3.2, PhantomJS 1.9.2, RingoJS 0.9, & Rhino 1.7RC5.

Automated browser test results are available [https://saucelabs.com/u/lodash] as well as Travis CI [https://travis-ci.org/] builds for lodash [https://travis-ci.org/lodash/lodash/], lodash-cli [https://travis-ci.org/lodash/lodash-cli/], lodash-amd [https://travis-ci.org/lodash/lodash-amd/], lodash-node [https://travis-ci.org/lodash/lodash-node/], & grunt-lodash [https://travis-ci.org/lodash/grunt-lodash].

Special thanks to Sauce Labs [https://saucelabs.com/] for providing automated browser testing.

[image: Sauce Labs] [https://saucelabs.com/]

Installation & usage

In browsers:

<script src="lodash.js"></script>

Using npm [http://npmjs.org/]:

npm i --save lodash

{sudo} npm i -g lodash
npm ln lodash

In Node.js [http://nodejs.org/] & Ringo [http://ringojs.org/]:

var _ = require('lodash');
// or as Underscore
var _ = require('lodash/dist/lodash.underscore');

Notes:

		Don’t assign values to special variable [http://nodejs.org/api/repl.html#repl_repl_features] _ when in the REPL

		If Lo-Dash is installed globally, run npm ln lodash [http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/] in your project’s root directory before requiring it

In Rhino [http://www.mozilla.org/rhino/]:

load('lodash.js');

In an AMD loader:

require({
 'packages': [
 { 'name': 'lodash', 'location': 'path/to/lodash', 'main': 'lodash' }
]
},
['lodash'], function(_) {
 console.log(_.VERSION);
});

Author

| [image: twitter/jdalton] [https://twitter.com/jdalton] |
|—|
| John-David Dalton [http://allyoucanleet.com/] |

Contributors

[image: twitter/blainebublitz] [https://twitter.com/blainebublitz]	[image: twitter/kitcambridge] [https://twitter.com/kitcambridge]	[image: twitter/mathias] [https://twitter.com/mathias]
—	—	—
Blaine Bublitz [http://www.iceddev.com/]	Kit Cambridge [http://kitcambridge.be/]	Mathias Bynens [http://mathiasbynens.be/]

[image: Bitdeli Badge] [https://bitdeli.com/free]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma-mocha/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

karma-mocha [image: Build Status] [https://travis-ci.org/karma-runner/karma-mocha]

Adapter for the Mocha [http://visionmedia.github.io/mocha/] testing framework.

Installation

The easiest way is to keep karma-mocha as a devDependency in your package.json.

{
 "devDependencies": {
 "karma-mocha": "~0.1"
 }
}

You can simple do it by:

npm install karma-mocha --save-dev

How install karma you can read here. [http://karma-runner.github.io/0.12/intro/installation.html]

Configuration

Following code shows the default configuration...

// karma.conf.js
module.exports = function(config) {
 config.set({
 frameworks: ['mocha'],

 files: [
 '*.js'
]
 });
};

If you want to pass configuration options directly to mocha you can
do this in the following way

// karma.conf.js
module.exports = function(config) {
 config.set({
 frameworks: ['mocha'],

 files: [
 '*.js'
],

 client: {
 mocha: {
 ui: 'tdd'
 }
 }
 });
};

If you want run only some tests matching a given pattern you can
do this in the following way

karma start &
karma run -- --grep=<pattern>

or

module.exports = function(config) {
 config.set({
 ...
 client: {
 args: ['--grep', '<pattern>'],
 ...
 }
 });
};

--grep argument pass directly to mocha

For more information on Karma see the homepage [http://karma-runner.github.com].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/uglify-js/node_modules/source-map/node_modules/amdefine/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

amdefine

A module that can be used to implement AMD’s define() in Node. This allows you
to code to the AMD API and have the module work in node programs without
requiring those other programs to use AMD.

Usage

1) Update your package.json to indicate amdefine as a dependency:

 "dependencies": {
 "amdefine": ">=0.1.0"
 }

Then run npm install to get amdefine into your project.

2) At the top of each module that uses define(), place this code:

if (typeof define !== 'function') { var define = require('amdefine')(module) }

Only use these snippets when loading amdefine. If you preserve the basic structure,
with the braces, it will be stripped out when using the RequireJS optimizer.

You can add spaces, line breaks and even require amdefine with a local path, but
keep the rest of the structure to get the stripping behavior.

As you may know, because if statements in JavaScript don’t have their own scope, the var
declaration in the above snippet is made whether the if expression is truthy or not. If
RequireJS is loaded then the declaration is superfluous because define is already already
declared in the same scope in RequireJS. Fortunately JavaScript handles multiple var
declarations of the same variable in the same scope gracefully.

If you want to deliver amdefine.js with your code rather than specifying it as a dependency
with npm, then just download the latest release and refer to it using a relative path:

Latest Version [https://github.com/jrburke/amdefine/raw/latest/amdefine.js]

amdefine/intercept

Consider this very experimental.

Instead of pasting the piece of text for the amdefine setup of a define
variable in each module you create or consume, you can use amdefine/intercept
instead. It will automatically insert the above snippet in each .js file loaded
by Node.

Warning: you should only use this if you are creating an application that
is consuming AMD style defined()’d modules that are distributed via npm and want
to run that code in Node.

For library code where you are not sure if it will be used by others in Node or
in the browser, then explicitly depending on amdefine and placing the code
snippet above is suggested path, instead of using amdefine/intercept. The
intercept module affects all .js files loaded in the Node app, and it is
inconsiderate to modify global state like that unless you are also controlling
the top level app.

Why distribute AMD-style nodes via npm?

npm has a lot of weaknesses for front-end use (installed layout is not great,
should have better support for the `baseUrl + moduleID + ‘.js’ style of loading,
single file JS installs), but some people want a JS package manager and are
willing to live with those constraints. If that is you, but still want to author
in AMD style modules to get dynamic require([]), better direct source usage and
powerful loader plugin support in the browser, then this tool can help.

amdefine/intercept usage

Just require it in your top level app module (for example index.js, server.js):

require('amdefine/intercept');

The module does not return a value, so no need to assign the result to a local
variable.

Then just require() code as you normally would with Node’s require(). Any .js
loaded after the intercept require will have the amdefine check injected in
the .js source as it is loaded. It does not modify the source on disk, just
prepends some content to the text of the module as it is loaded by Node.

How amdefine/intercept works

It overrides the Module._extensions['.js'] in Node to automatically prepend
the amdefine snippet above. So, it will affect any .js file loaded by your
app.

define() usage

It is best if you use the anonymous forms of define() in your module:

define(function (require) {
 var dependency = require('dependency');
});

or

define(['dependency'], function (dependency) {

});

RequireJS optimizer integration. [bookmark: optimizer]

[bookmark: optimizer]
[bookmark: optimizer]Version 1.0.3 of the RequireJS optimizer [http://requirejs.org/docs/optimization.html]
will have support for stripping the if (typeof define !== 'function') check
mentioned above, so you can include this snippet for code that runs in the
browser, but avoid taking the cost of the if() statement once the code is
optimized for deployment.

Node 0.4 Support

If you want to support Node 0.4, then add require as the second parameter to amdefine:

//Only if you want Node 0.4. If using 0.5 or later, use the above snippet.
if (typeof define !== 'function') { var define = require('amdefine')(module, require) }

Limitations

Synchronous vs Asynchronous

amdefine creates a define() function that is callable by your code. It will
execute and trace dependencies and call the factory function synchronously,
to keep the behavior in line with Node’s synchronous dependency tracing.

The exception: calling AMD’s callback-style require() from inside a factory
function. The require callback is called on process.nextTick():

define(function (require) {
 require(['a'], function(a) {
 //'a' is loaded synchronously, but
 //this callback is called on process.nextTick().
 });
});

Loader Plugins

Loader plugins are supported as long as they call their load() callbacks
synchronously. So ones that do network requests will not work. However plugins
like text [http://requirejs.org/docs/api.html#text] can load text files locally.

The plugin API’s load.fromText() is not supported in amdefine, so this means
transpiler plugins like the CoffeeScript loader plugin [https://github.com/jrburke/require-cs]
will not work. This may be fixable, but it is a bit complex, and I do not have
enough node-fu to figure it out yet. See the source for amdefine.js if you want
to get an idea of the issues involved.

Tests

To run the tests, cd to tests and run:

node all.js
node all-intercept.js

License

New BSD and MIT. Check the LICENSE file for all the details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-uglify/node_modules/uglify-js/node_modules/uglify-to-browserify/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

uglify-to-browserify

A transform to make UglifyJS work in browserify.

[image: Build Status] [https://travis-ci.org/ForbesLindesay/uglify-to-browserify]
[image: Dependency Status] [https://gemnasium.com/ForbesLindesay/uglify-to-browserify]
[image: NPM version] [http://badge.fury.io/js/uglify-to-browserify]

Installation

npm install uglify-to-browserify

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.9.2 / 2014-10-27

		deps: qs@2.3.2
		Fix parsing of mixed objects and values

1.9.1 / 2014-10-22

		deps: on-finished@~2.1.1
		Fix handling of pipelined requests

		deps: qs@2.3.0
		Fix parsing of mixed implicit and explicit arrays

		deps: type-is@~1.5.2
		deps: mime-types@~2.0.2

1.9.0 / 2014-09-24

		include the charset in “unsupported charset” error message

		include the encoding in “unsupported content encoding” error message

		deps: depd@~1.0.0

1.8.4 / 2014-09-23

		fix content encoding to be case-insensitive

1.8.3 / 2014-09-19

		deps: qs@2.2.4
		Fix issue with object keys starting with numbers truncated

1.8.2 / 2014-09-15

		deps: depd@0.4.5

1.8.1 / 2014-09-07

		deps: media-typer@0.3.0

		deps: type-is@~1.5.1

1.8.0 / 2014-09-05

		make empty-body-handling consistent between chunked requests
		empty json produces {}

		empty raw produces new Buffer(0)

		empty text produces ''

		empty urlencoded produces {}

		deps: qs@2.2.3
		Fix issue where first empty value in array is discarded

		deps: type-is@~1.5.0
		fix hasbody to be true for content-length: 0

1.7.0 / 2014-09-01

		add parameterLimit option to urlencoded parser

		change urlencoded extended array limit to 100

		respond with 413 when over parameterLimit in urlencoded

1.6.7 / 2014-08-29

		deps: qs@2.2.2
		Remove unnecessary cloning

1.6.6 / 2014-08-27

		deps: qs@2.2.0
		Array parsing fix

		Performance improvements

1.6.5 / 2014-08-16

		deps: on-finished@2.1.0

1.6.4 / 2014-08-14

		deps: qs@1.2.2

1.6.3 / 2014-08-10

		deps: qs@1.2.1

1.6.2 / 2014-08-07

		deps: qs@1.2.0
		Fix parsing array of objects

1.6.1 / 2014-08-06

		deps: qs@1.1.0
		Accept urlencoded square brackets

		Accept empty values in implicit array notation

1.6.0 / 2014-08-05

		deps: qs@1.0.2
		Complete rewrite

		Limits array length to 20

		Limits object depth to 5

		Limits parameters to 1,000

1.5.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

1.5.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

1.5.0 / 2014-07-20

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		deps: iconv-lite@0.4.4
		Added encoding UTF-7

		deps: raw-body@1.3.0
		deps: iconv-lite@0.4.4

		Added encoding UTF-7

		Fix Cannot switch to old mode now error on Node.js 0.10+

		deps: type-is@~1.3.2

1.4.3 / 2014-06-19

		deps: type-is@1.3.1
		fix global variable leak

1.4.2 / 2014-06-19

		deps: type-is@1.3.0
		improve type parsing

1.4.1 / 2014-06-19

		fix urlencoded extended deprecation message

1.4.0 / 2014-06-19

		add text parser

		add raw parser

		check accepted charset in content-type (accepts utf-8)

		check accepted encoding in content-encoding (accepts identity)

		deprecate bodyParser() middleware; use .json() and .urlencoded() as needed

		deprecate urlencoded() without provided extended option

		lazy-load urlencoded parsers

		parsers split into files for reduced mem usage

		support gzip and deflate bodies
		set inflate: false to turn off

		deps: raw-body@1.2.2
		Support all encodings from iconv-lite

1.3.1 / 2014-06-11

		deps: type-is@1.2.1
		Switch dependency from mime to mime-types@1.0.0

1.3.0 / 2014-05-31

		add extended option to urlencoded parser

1.2.2 / 2014-05-27

		deps: raw-body@1.1.6
		assert stream encoding on node.js 0.8

		assert stream encoding on node.js < 0.10.6

		deps: bytes@1

1.2.1 / 2014-05-26

		invoke next(err) after request fully read
		prevents hung responses and socket hang ups

1.2.0 / 2014-05-11

		add verify option

		deps: type-is@1.2.0
		support suffix matching

1.1.2 / 2014-05-11

		improve json parser speed

1.1.1 / 2014-05-11

		fix repeated limit parsing with every request

1.1.0 / 2014-05-10

		add type option

		deps: pin for safety and consistency

1.0.2 / 2014-04-14

		use type-is module

1.0.1 / 2014-03-20

		lower default limits to 100kb

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

body-parser

![NPM Version][npm-image] [https://npmjs.org/package/body-parser]
![NPM Downloads][downloads-image] [https://npmjs.org/package/body-parser]
![Build Status][travis-image] [https://travis-ci.org/expressjs/body-parser]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/body-parser?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Node.js body parsing middleware.

This does not handle multipart bodies, due to their complex and typically large nature. For multipart bodies, you may be interested in the following modules:

		busboy [https://www.npmjs.org/package/busboy#readme] and connect-busboy [https://www.npmjs.org/package/connect-busboy#readme]

		multiparty [https://www.npmjs.org/package/multiparty#readme] and connect-multiparty [https://www.npmjs.org/package/connect-multiparty#readme]

		formidable [https://www.npmjs.org/package/formidable#readme]

		multer [https://www.npmjs.org/package/multer#readme]

Other body parsers you might be interested in:

		body [https://www.npmjs.org/package/body#readme]

		co-body [https://www.npmjs.org/package/co-body#readme]

Installation

$ npm install body-parser

API

var bodyParser = require('body-parser')

bodyParser.json(options)

Returns middleware that only parses json. This parser accepts any Unicode encoding of the body and supports automatic inflation of gzip and deflate encodings.

The options are:

		strict - only parse objects and arrays. (default: true)

		inflate - if deflated bodies will be inflated. (default: true)

		limit - maximum request body size. (default: <100kb>)

		reviver - passed to JSON.parse()

		type - request content-type to parse (default: json)

		verify - function to verify body content

The type argument is passed directly to the type-is [https://www.npmjs.org/package/type-is#readme] library. This can be an extension name (like json), a mime type (like application/json), or a mime time with a wildcard (like */json).

The verify argument, if supplied, is called as verify(req, res, buf, encoding), where buf is a Buffer of the raw request body and encoding is the encoding of the request. The parsing can be aborted by throwing an error.

The reviver argument is passed directly to JSON.parse as the second argument. You can find more information on this argument in the MDN documentation about JSON.parse [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter].

bodyParser.raw(options)

Returns middleware that parses all bodies as a Buffer. This parser supports automatic inflation of gzip and deflate encodings.

The options are:

		inflate - if deflated bodies will be inflated. (default: true)

		limit - maximum request body size. (default: <100kb>)

		type - request content-type to parse (default: application/octet-stream)

		verify - function to verify body content

The type argument is passed directly to the type-is [https://www.npmjs.org/package/type-is#readme] library. This can be an extension name (like bin), a mime type (like application/octet-stream), or a mime time with a wildcard (like application/*).

The verify argument, if supplied, is called as verify(req, res, buf, encoding), where buf is a Buffer of the raw request body and encoding is the encoding of the request. The parsing can be aborted by throwing an error.

bodyParser.text(options)

Returns middleware that parses all bodies as a string. This parser supports automatic inflation of gzip and deflate encodings.

The options are:

		defaultCharset - the default charset to parse as, if not specified in content-type. (default: utf-8)

		inflate - if deflated bodies will be inflated. (default: true)

		limit - maximum request body size. (default: <100kb>)

		type - request content-type to parse (default: text/plain)

		verify - function to verify body content

The type argument is passed directly to the type-is [https://www.npmjs.org/package/type-is#readme] library. This can be an extension name (like txt), a mime type (like text/plain), or a mime time with a wildcard (like text/*).

The verify argument, if supplied, is called as verify(req, res, buf, encoding), where buf is a Buffer of the raw request body and encoding is the encoding of the request. The parsing can be aborted by throwing an error.

bodyParser.urlencoded(options)

Returns middleware that only parses urlencoded bodies. This parser accepts only UTF-8 encoding of the body and supports automatic inflation of gzip and deflate encodings.

The options are:

		extended - parse extended syntax with the qs [https://www.npmjs.org/package/qs#readme] module. (default: true)

		inflate - if deflated bodies will be inflated. (default: true)

		limit - maximum request body size. (default: <100kb>)

		parameterLimit - maximum number of parameters. (default: 1000)

		type - request content-type to parse (default: urlencoded)

		verify - function to verify body content

The extended argument allows to choose between parsing the urlencoded data with the querystring library (when false) or the qs library (when true). The “extended” syntax allows for rich objects and arrays to be encoded into the urlencoded format, allowing for a JSON-like experience with urlencoded. For more information, please see the qs library [https://www.npmjs.org/package/qs#readme].

The parameterLimit argument controls the maximum number of parameters that are allowed in the urlencoded data. If a request contains more parameters than this value, a 413 will be returned to the client.

The type argument is passed directly to the type-is [https://www.npmjs.org/package/type-is#readme] library. This can be an extension name (like urlencoded), a mime type (like application/x-www-form-urlencoded), or a mime time with a wildcard (like */x-www-form-urlencoded).

The verify argument, if supplied, is called as verify(req, res, buf, encoding), where buf is a Buffer of the raw request body and encoding is the encoding of the request. The parsing can be aborted by throwing an error.

req.body

A new body object containing the parsed data is populated on the request object after the middleware.

Examples

express/connect top-level generic

This example demonstrates adding a generic JSON and urlencoded parser as a top-level middleware, which will parse the bodies of all incoming requests. This is the simplest setup.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// parse application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({ extended: false }))

// parse application/json
app.use(bodyParser.json())

app.use(function (req, res) {
 res.setHeader('Content-Type', 'text/plain')
 res.write('you posted:\n')
 res.end(JSON.stringify(req.body, null, 2))
})

express route-specific

This example demonstrates adding body parsers specifically to the routes that need them. In general, this is the most recommend way to use body-parser with express.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// create application/json parser
var jsonParser = bodyParser.json()

// create application/x-www-form-urlencoded parser
var urlencodedParser = bodyParser.urlencoded({ extended: false })

// POST /login gets urlencoded bodies
app.post('/login', urlencodedParser, function (req, res) {
 if (!req.body) return res.sendStatus(400)
 res.send('welcome, ' + res.body.username)
})

// POST /api/users gets JSON bodies
app.post('/api/users', jsonParser, function (req, res) {
 if (!req.body) return res.sendStatus(400)
 // create user in req.body
})

change content-type for parsers

All the parsers accept a type option which allows you to change the Content-Type that the middleware will parse.

// parse various different custom JSON types as JSON
app.use(bodyParser.json({ type: 'application/*+json' }))

// parse some custom thing into a Buffer
app.use(bodyParser.raw({ type: 'application/vnd.custom-type' }))

// parse an HTML body into a string
app.use(bodyParser.text({ type: 'text/html' }))

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/iconv-lite/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Pure JS character encoding conversion

		Doesn’t need native code compilation. Works on Windows and in sandboxed environments like Cloud9 [http://c9.io].

		Used in popular projects like Grunt [http://gruntjs.com/], Nodemailer [http://www.nodemailer.com/], Yeoman [http://yeoman.io/] and others.

		Faster than node-iconv [https://github.com/bnoordhuis/node-iconv] (see below for performance comparison).

		Intuitive encode/decode API

		Streaming support for Node v0.10+

		Can extend Node.js primitives (buffers, streams) to support all iconv-lite encodings.

		In-browser usage via Browserify [https://github.com/substack/node-browserify] (~180k gzip compressed with Buffer shim included).

		License: MIT.

[image: NPM Stats] [https://npmjs.org/packages/iconv-lite/]

Usage

Basic API

var iconv = require('iconv-lite');

// Convert from an encoded buffer to js string.
str = iconv.decode(new Buffer([0x68, 0x65, 0x6c, 0x6c, 0x6f]), 'win1251');

// Convert from js string to an encoded buffer.
buf = iconv.encode("Sample input string", 'win1251');

// Check if encoding is supported
iconv.encodingExists("us-ascii")

Streaming API (Node v0.10+)

// Decode stream (from binary stream to js strings)
http.createServer(function(req, res) {
 var converterStream = iconv.decodeStream('win1251');
 req.pipe(converterStream);

 converterStream.on('data', function(str) {
 console.log(str); // Do something with decoded strings, chunk-by-chunk.
 });
});

// Convert encoding streaming example
fs.createReadStream('file-in-win1251.txt')
 .pipe(iconv.decodeStream('win1251'))
 .pipe(iconv.encodeStream('ucs2'))
 .pipe(fs.createWriteStream('file-in-ucs2.txt'));

// Sugar: all encode/decode streams have .collect(cb) method to accumulate data.
http.createServer(function(req, res) {
 req.pipe(iconv.decodeStream('win1251')).collect(function(err, body) {
 assert(typeof body == 'string');
 console.log(body); // full request body string
 });
});

Extend Node.js own encodings

// After this call all Node basic primitives will understand iconv-lite encodings.
iconv.extendNodeEncodings();

// Examples:
buf = new Buffer(str, 'win1251');
buf.write(str, 'gbk');
str = buf.toString('latin1');
assert(Buffer.isEncoding('iso-8859-15'));
Buffer.byteLength(str, 'us-ascii');

http.createServer(function(req, res) {
 req.setEncoding('big5');
 req.collect(function(err, body) {
 console.log(body);
 });
});

fs.createReadStream("file.txt", "shift_jis");

// External modules are also supported (if they use Node primitives, which they probably do).
request = require('request');
request({
 url: "http://github.com/",
 encoding: "cp932"
});

// To remove extensions
iconv.undoExtendNodeEncodings();

Supported encodings

		All node.js native encodings: utf8, ucs2 / utf16-le, ascii, binary, base64, hex.

		Additional unicode encodings: utf16, utf16-be, utf-7, utf-7-imap.

		All widespread singlebyte encodings: Windows 125x family, ISO-8859 family,
IBM/DOS codepages, Macintosh family, KOI8 family, all others supported by iconv library.
Aliases like ‘latin1’, ‘us-ascii’ also supported.

		All widespread multibyte encodings: CP932, CP936, CP949, CP950, GB2313, GBK, GB18030, Big5, Shift_JIS, EUC-JP.

See all supported encodings on wiki [https://github.com/ashtuchkin/iconv-lite/wiki/Supported-Encodings].

Most singlebyte encodings are generated automatically from node-iconv [https://github.com/bnoordhuis/node-iconv]. Thank you Ben Noordhuis and libiconv authors!

Multibyte encodings are generated from Unicode.org mappings [http://www.unicode.org/Public/MAPPINGS/] and WHATWG Encoding Standard mappings [http://encoding.spec.whatwg.org/]. Thank you, respective authors!

Encoding/decoding speed

Comparison with node-iconv module (1000x256kb, on MacBook Pro, Core i5/2.6 GHz, Node v0.10.26).
Note: your results may vary, so please always check on your hardware.

operation iconv@2.1.4 iconv-lite@0.4.0
--
encode('win1251') ~130 Mb/s ~380 Mb/s
decode('win1251') ~127 Mb/s ~210 Mb/s

Notes

When decoding, be sure to supply a Buffer to decode() method, otherwise bad things usually happen [https://github.com/ashtuchkin/iconv-lite/wiki/Use-Buffers-when-decoding].Untranslatable characters are set to � or ?. No transliteration is currently supported.

Testing

$ git clone git@github.com:ashtuchkin/iconv-lite.git
$ cd iconv-lite
$ npm install
$ npm test

$ # To view performance:
$ node test/performance.js

Adoption

[image: NPM] [https://nodei.co/npm/iconv-lite/]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/raw-body/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.3.0 / 2014-07-20

		Fully unpipe the stream on error
		Fixes Cannot switch to old mode now error on Node.js 0.10+

1.2.3 / 2014-07-20

		deps: iconv-lite@0.4.4
		Added encoding UTF-7

1.2.2 / 2014-06-19

		Send invalid encoding error to callback

1.2.1 / 2014-06-15

		deps: iconv-lite@0.4.3
		Added encodings UTF-16BE and UTF-16 with BOM

1.2.0 / 2014-06-13

		Passing string as options interpreted as encoding

		Support all encodings from iconv-lite

1.1.7 / 2014-06-12

		use string_decoder module from npm

1.1.6 / 2014-05-27

		check encoding for old streams1

		support node.js < 0.10.6

1.1.5 / 2014-05-14

		bump bytes

1.1.4 / 2014-04-19

		allow true as an option

		bump bytes

1.1.3 / 2014-03-02

		fix case when length=null

1.1.2 / 2013-12-01

		be less strict on state.encoding check

1.1.1 / 2013-11-27

		add engines

1.1.0 / 2013-11-27

		add err.statusCode and err.type

		allow for encoding option to be true

		pause the stream instead of dumping on error

		throw if the stream’s encoding is set

1.0.1 / 2013-11-19

		dont support streams1, throw if dev set encoding

1.0.0 / 2013-11-17

		rename expected option to length

0.2.0 / 2013-11-15

		republish

0.1.1 / 2013-11-15

		use bytes

0.1.0 / 2013-11-11

		generator support

0.0.3 / 2013-10-10

		update repo

0.0.2 / 2013-09-14

		dump stream on bad headers

		listen to events after defining received and buffers

0.0.1 / 2013-09-14

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/depd/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-09-17

		No changes

0.4.5 / 2014-09-09

		Improve call speed to functions using the function wrapper

		Support Node.js 0.6

0.4.4 / 2014-07-27

		Work-around v8 generating empty stack traces

0.4.3 / 2014-07-26

		Fix exception when global Error.stackTraceLimit is too low

0.4.2 / 2014-07-19

		Correct call site for wrapped functions and properties

0.4.1 / 2014-07-19

		Improve automatic message generation for function properties

0.4.0 / 2014-07-19

		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		Support deprecate.property(fn, prop, message)

0.3.0 / 2014-06-16

		Add NO_DEPRECATION environment variable

0.2.0 / 2014-06-15

		Add deprecate.property(obj, prop, message)

		Remove supports-color dependency for node.js 0.8

0.1.0 / 2014-06-15

		Add deprecate.function(fn, message)

		Add process.on('deprecation', fn) emitter

		Automatically generate message when omitted from deprecate()

0.0.1 / 2014-06-15

		Fix warning for dynamic calls at singe call site

0.0.0 / 2014-06-15

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/iconv-lite/Changelog.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.4.4 / 2014-07-16

		added encodings UTF-7 (RFC2152) and UTF-7-IMAP (RFC3501 Section 5.1.3)

		fixed streaming base64 encoding

0.4.3 / 2014-06-14

		added encodings UTF-16BE and UTF-16 with BOM

0.4.2 / 2014-06-12

		don’t throw exception if extendNodeEncodings() is called more than once

0.4.1 / 2014-06-11

		codepage 808 added

0.4.0 / 2014-06-10

		code is rewritten from scratch

		all widespread encodings are supported

		streaming interface added

		browserify compatibility added

		(optional) extend core primitive encodings to make usage even simpler

		moved from vows to mocha as the testing framework

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/qs/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.3.1 [https://github.com/hapijs/qs/issues?milestone=16&state=closed]

		#52 [https://github.com/hapijs/qs/issues/52] Return "

undefined"

 and "

false"

 instead of throwing "

TypeError"

.

2.3.0 [https://github.com/hapijs/qs/issues?milestone=15&state=closed]

		#50 [https://github.com/hapijs/qs/issues/50] add option to omit array indices, closes #46

2.2.5 [https://github.com/hapijs/qs/issues?milestone=14&state=closed]

		#39 [https://github.com/hapijs/qs/issues/39] Is there an alternative to Buffer.isBuffer?

		#49 [https://github.com/hapijs/qs/issues/49] refactor utils.merge, fixes #45

		#41 [https://github.com/hapijs/qs/issues/41] avoid browserifying Buffer, for #39

2.2.4 [https://github.com/hapijs/qs/issues?milestone=13&state=closed]

		#38 [https://github.com/hapijs/qs/issues/38] how to handle object keys beginning with a number

2.2.3 [https://github.com/hapijs/qs/issues?milestone=12&state=closed]

		#37 [https://github.com/hapijs/qs/issues/37] parser discards first empty value in array

		#36 [https://github.com/hapijs/qs/issues/36] Update to lab 4.x

2.2.2 [https://github.com/hapijs/qs/issues?milestone=11&state=closed]

		#33 [https://github.com/hapijs/qs/issues/33] Error when plain object in a value

		#34 [https://github.com/hapijs/qs/issues/34] use Object.prototype.hasOwnProperty.call instead of obj.hasOwnProperty

		#24 [https://github.com/hapijs/qs/issues/24] Changelog? Semver?

2.2.1 [https://github.com/hapijs/qs/issues?milestone=10&state=closed]

		#32 [https://github.com/hapijs/qs/issues/32] account for circular references properly, closes #31

		#31 [https://github.com/hapijs/qs/issues/31] qs.parse stackoverflow on circular objects

2.2.0 [https://github.com/hapijs/qs/issues?milestone=9&state=closed]

		#26 [https://github.com/hapijs/qs/issues/26] Don‘

t use Buffer global if it‘

s not present

		#30 [https://github.com/hapijs/qs/issues/30] Bug when merging non-object values into arrays

		#29 [https://github.com/hapijs/qs/issues/29] Don‘

t call Utils.clone at the top of Utils.merge

		#23 [https://github.com/hapijs/qs/issues/23] Ability to not limit parameters?

2.1.0 [https://github.com/hapijs/qs/issues?milestone=8&state=closed]

		#22 [https://github.com/hapijs/qs/issues/22] Enable using a RegExp as delimiter

2.0.0 [https://github.com/hapijs/qs/issues?milestone=7&state=closed]

		#18 [https://github.com/hapijs/qs/issues/18] Why is there arrayLimit?

		#20 [https://github.com/hapijs/qs/issues/20] Configurable parametersLimit

		#21 [https://github.com/hapijs/qs/issues/21] make all limits optional, for #18, for #20

1.2.2 [https://github.com/hapijs/qs/issues?milestone=6&state=closed]

		#19 [https://github.com/hapijs/qs/issues/19] Don‘

t overwrite null values

1.2.1 [https://github.com/hapijs/qs/issues?milestone=5&state=closed]

		#16 [https://github.com/hapijs/qs/issues/16] ignore non-string delimiters

		#15 [https://github.com/hapijs/qs/issues/15] Close code block

1.2.0 [https://github.com/hapijs/qs/issues?milestone=4&state=closed]

		#12 [https://github.com/hapijs/qs/issues/12] Add optional delim argument

		#13 [https://github.com/hapijs/qs/issues/13] fix #11: flattened keys in array are now correctly parsed

1.1.0 [https://github.com/hapijs/qs/issues?milestone=3&state=closed]

		#7 [https://github.com/hapijs/qs/issues/7] Empty values of a POST array disappear after being submitted

		#9 [https://github.com/hapijs/qs/issues/9] Should not omit equals signs (=) when value is null

		#6 [https://github.com/hapijs/qs/issues/6] Minor grammar fix in README

1.0.2 [https://github.com/hapijs/qs/issues?milestone=2&state=closed]

		#5 [https://github.com/hapijs/qs/issues/5] array holes incorrectly copied into object on large index

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/qs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

qs

A querystring parsing and stringifying library with some added security.

[image: Build Status] [http://travis-ci.org/hapijs/qs]

Lead Maintainer: Nathan LaFreniere [https://github.com/nlf]

The qs module was originally created and maintained by TJ Holowaychuk [https://github.com/visionmedia/node-querystring].

Usage

var Qs = require('qs');

var obj = Qs.parse('a=c'); // { a: 'c' }
var str = Qs.stringify(obj); // 'a=c'

Parsing Objects

Qs.parse(string, [options]);

qs allows you to create nested objects within your query strings, by surrounding the name of sub-keys with square brackets [].
For example, the string 'foo[bar]=baz' converts to:

{
 foo: {
 bar: 'baz'
 }
}

URI encoded strings work too:

Qs.parse('a%5Bb%5D=c');
// { a: { b: 'c' } }

You can also nest your objects, like 'foo[bar][baz]=foobarbaz':

{
 foo: {
 bar: {
 baz: 'foobarbaz'
 }
 }
}

By default, when nesting objects qs will only parse up to 5 children deep. This means if you attempt to parse a string like
'a[b][c][d][e][f][g][h][i]=j' your resulting object will be:

{
 a: {
 b: {
 c: {
 d: {
 e: {
 f: {
 '[g][h][i]': 'j'
 }
 }
 }
 }
 }
 }
}

This depth can be overridden by passing a depth option to Qs.parse(string, [options]):

Qs.parse('a[b][c][d][e][f][g][h][i]=j', { depth: 1 });
// { a: { b: { '[c][d][e][f][g][h][i]': 'j' } } }

The depth limit helps mitigate abuse when qs is used to parse user input, and it is recommended to keep it a reasonably small number.

For similar reasons, by default qs will only parse up to 1000 parameters. This can be overridden by passing a parameterLimit option:

Qs.parse('a=b&c=d', { parameterLimit: 1 });
// { a: 'b' }

An optional delimiter can also be passed:

Qs.parse('a=b;c=d', { delimiter: ';' });
// { a: 'b', c: 'd' }

Delimiters can be a regular expression too:

Qs.parse('a=b;c=d,e=f', { delimiter: /[;,]/ });
// { a: 'b', c: 'd', e: 'f' }

Parsing Arrays

qs can also parse arrays using a similar [] notation:

Qs.parse('a[]=b&a[]=c');
// { a: ['b', 'c'] }

You may specify an index as well:

Qs.parse('a[1]=c&a[0]=b');
// { a: ['b', 'c'] }

Note that the only difference between an index in an array and a key in an object is that the value between the brackets must be a number
to create an array. When creating arrays with specific indices, qs will compact a sparse array to only the existing values preserving
their order:

Qs.parse('a[1]=b&a[15]=c');
// { a: ['b', 'c'] }

Note that an empty string is also a value, and will be preserved:

Qs.parse('a[]=&a[]=b');
// { a: ['', 'b'] }
Qs.parse('a[0]=b&a[1]=&a[2]=c');
// { a: ['b', '', 'c'] }

qs will also limit specifying indices in an array to a maximum index of 20. Any array members with an index of greater than 20 will
instead be converted to an object with the index as the key:

Qs.parse('a[100]=b');
// { a: { '100': 'b' } }

This limit can be overridden by passing an arrayLimit option:

Qs.parse('a[1]=b', { arrayLimit: 0 });
// { a: { '1': 'b' } }

If you mix notations, qs will merge the two items into an object:

Qs.parse('a[0]=b&a[b]=c');
// { a: { '0': 'b', b: 'c' } }

You can also create arrays of objects:

Qs.parse('a[][b]=c');
// { a: [{ b: 'c' }] }

Stringifying

Qs.stringify(object, [options]);

When stringifying, qs always URI encodes output. Objects are stringified as you would expect:

Qs.stringify({ a: 'b' });
// 'a=b'
Qs.stringify({ a: { b: 'c' } });
// 'a%5Bb%5D=c'

Examples beyond this point will be shown as though the output is not URI encoded for clarity. Please note that the return values in these cases will be URI encoded during real usage.

When arrays are stringified, by default they are given explicit indices:

Qs.stringify({ a: ['b', 'c', 'd'] });
// 'a[0]=b&a[1]=c&a[2]=d'

You may override this by setting the indices option to false:

Qs.stringify({ a: ['b', 'c', 'd'] }, { indices: false });
// 'a=b&a=c&a=d'

Empty strings and null values will omit the value, but the equals sign (=) remains in place:

Qs.stringify({ a: '' });
// 'a='

Properties that are set to undefined will be omitted entirely:

Qs.stringify({ a: null, b: undefined });
// 'a='

The delimiter may be overridden with stringify as well:

Qs.stringify({ a: 'b', c: 'd' }, { delimiter: ';' });
// 'a=b;c=d'

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/raw-body/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

raw-body

[image: NPM version] [http://badge.fury.io/js/raw-body]
[image: Build Status] [https://travis-ci.org/stream-utils/raw-body]
[image: Coverage Status] [https://coveralls.io/r/stream-utils/raw-body]

Gets the entire buffer of a stream either as a Buffer or a string.
Validates the stream’s length against an expected length and maximum limit.
Ideal for parsing request bodies.

API

var getRawBody = require('raw-body')
var typer = require('media-typer')

app.use(function (req, res, next) {
 getRawBody(req, {
 length: req.headers['content-length'],
 limit: '1mb',
 encoding: typer.parse(req.headers['content-type']).parameters.charset
 }, function (err, string) {
 if (err)
 return next(err)

 req.text = string
 next()
 })
})

or in a Koa generator:

app.use(function* (next) {
 var string = yield getRawBody(this.req, {
 length: this.length,
 limit: '1mb',
 encoding: this.charset
 })
})

getRawBody(stream, [options], [callback])

Returns a thunk for yielding with generators.

Options:

		length - The length length of the stream.
If the contents of the stream do not add up to this length,
an 400 error code is returned.

		limit - The byte limit of the body.
If the body ends up being larger than this limit,
a 413 error code is returned.

		encoding - The requested encoding.
By default, a Buffer instance will be returned.
Most likely, you want utf8.
You can use any type of encoding supported by iconv-lite [https://www.npmjs.org/package/iconv-lite#readme].

You can also pass a string in place of options to just specify the encoding.

callback(err, res):

		err - the following attributes will be defined if applicable:
		limit - the limit in bytes

		length and expected - the expected length of the stream

		received - the received bytes

		encoding - the invalid encoding

		status and statusCode - the corresponding status code for the error

		type - either entity.too.large, request.size.invalid, stream.encoding.set, or encoding.unsupported

		res - the result, either as a String if an encoding was set or a Buffer otherwise.

If an error occurs, the stream will be paused, everything unpiped,
and you are responsible for correctly disposing the stream.
For HTTP requests, no handling is required if you send a response.
For streams that use file descriptors, you should stream.destroy() or stream.close() to prevent leaks.

License

The MIT License (MIT)

Copyright (c) 2013 Jonathan Ong me@jongleberry.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/qs/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Please view our hapijs contributing guide [https://github.com/hapijs/hapi/blob/master/CONTRIBUTING.md].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/media-typer/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.3.0 / 2014-09-07

		Support Node.js 0.6

		Throw error when parameter format invalid on parse

0.2.0 / 2014-06-18

		Add typer.format() to format media types

0.1.0 / 2014-06-17

		Accept req as argument to parse

		Accept res as argument to parse

		Parse media type with extra LWS between type and first parameter

0.0.0 / 2014-06-13

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/depd/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

depd

![NPM Version][npm-version-image] [https://npmjs.org/package/depd]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/depd]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/dougwilson/nodejs-depd]
![Coverage Status][coveralls-image] [https://coveralls.io/r/dougwilson/nodejs-depd?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Deprecate all the things

With great modules comes great responsibility; mark things deprecated!

Install

$ npm install depd

API

var deprecate = require('depd')('my-module')

This library allows you to display deprecation messages to your users.
This library goes above and beyond with deprecation warnings by
introspection of the call stack (but only the bits that it is interested
in).

Instead of just warning on the first invocation of a deprecated
function and never again, this module will warn on the first invocation
of a deprecated function per unique call site, making it ideal to alert
users of all deprecated uses across the code base, rather than just
whatever happens to execute first.

The deprecation warnings from this module also include the file and line
information for the call into the module that the deprecated function was
in.

NOTE this library has a similar interface to the debug module, and
this module uses the calling file to get the boundary for the call stacks,
so you should always create a new deprecate object in each file and not
within some central file.

depd(namespace)

Create a new deprecate function that uses the given namespace name in the
messages and will display the call site prior to the stack entering the
file this function was called from. It is highly suggested you use the
name of your module as the namespace.

deprecate(message)

Call this function from deprecated code to display a deprecation message.
This message will appear once per unique caller site. Caller site is the
first call site in the stack in a different file from the caller of this
function.

If the message is omitted, a message is generated for you based on the site
of the deprecate() call and will display the name of the function called,
similar to the name displayed in a stack trace.

deprecate.function(fn, message)

Call this function to wrap a given function in a deprecation message on any
call to the function. An optional message can be supplied to provide a custom
message.

deprecate.property(obj, prop, message)

Call this function to wrap a given property on object in a deprecation message
on any accessing or setting of the property. An optional message can be supplied
to provide a custom message.

The method must be called on the object where the property belongs (not
inherited from the prototype).

If the property is a data descriptor, it will be converted to an accessor
descriptor in order to display the deprecation message.

process.on(‘deprecation’, fn)

This module will allow easy capturing of deprecation errors by emitting the
errors as the type “deprecation” on the global process. If there are no
listeners for this type, the errors are written to STDERR as normal, but if
there are any listeners, nothing will be written to STDERR and instead only
emitted. From there, you can write the errors in a different format or to a
logging source.

The error represents the deprecation and is emitted only once with the same
rules as writing to STDERR. The error has the following properties:

		message - This is the message given by the library

		name - This is always 'DeprecationError'

		namespace - This is the namespace the deprecation came from

		stack - This is the stack of the call to the deprecated thing

Example error.stack output:

DeprecationError: my-cool-module deprecated oldfunction
 at Object.<anonymous> ([eval]-wrapper:6:22)
 at Module._compile (module.js:456:26)
 at evalScript (node.js:532:25)
 at startup (node.js:80:7)
 at node.js:902:3

process.env.NO_DEPRECATION

As a user of modules that are deprecated, the environment variable NO_DEPRECATION
is provided as a quick solution to silencing deprecation warnings from being
output. The format of this is similar to that of DEBUG:

$ NO_DEPRECATION=my-module,othermod node app.js

This will suppress deprecations from being output for “my-module” and “othermod”.
The value is a list of comma-separated namespaces. To suppress every warning
across all namespaces, use the value * for a namespace.

Providing the argument --no-deprecation to the node executable will suppress
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not suppress the deperecations given to any “deprecation”
event listeners, just the output to STDERR.

process.env.TRACE_DEPRECATION

As a user of modules that are deprecated, the environment variable TRACE_DEPRECATION
is provided as a solution to getting more detailed location information in deprecation
warnings by including the entire stack trace. The format of this is the same as
NO_DEPRECATION:

$ TRACE_DEPRECATION=my-module,othermod node app.js

This will include stack traces for deprecations being output for “my-module” and
“othermod”. The value is a list of comma-separated namespaces. To trace every
warning across all namespaces, use the value * for a namespace.

Providing the argument --trace-deprecation to the node executable will trace
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not trace the deperecations silenced by NO_DEPRECATION.

Display

[image: message]

When a user calls a function in your library that you mark deprecated, they
will see the following written to STDERR (in the given colors, similar colors
and layout to the debug module):

bright cyan bright yellow
| | reset cyan
| | | |
▼ ▼ ▼ ▼
my-cool-module deprecated oldfunction [eval]-wrapper:6:22
▲ ▲ ▲ ▲
| | | |
namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

If the user redirects their STDERR to a file or somewhere that does not support
colors, they see (similar layout to the debug module):

Sun, 15 Jun 2014 05:21:37 GMT my-cool-module deprecated oldfunction at [eval]-wrapper:6:22
▲ ▲ ▲ ▲ ▲
| | | | |
timestamp of message namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

Examples

Deprecating all calls to a function

This will display a deprecated message about “oldfunction” being deprecated
from “my-module” on STDERR.

var deprecate = require('depd')('my-cool-module')

// message automatically derived from function name
// Object.oldfunction
exports.oldfunction = deprecate.function(function oldfunction() {
 // all calls to function are deprecated
})

// specific message
exports.oldfunction = deprecate.function(function () {
 // all calls to function are deprecated
}, 'oldfunction')

Conditionally deprecating a function call

This will display a deprecated message about “weirdfunction” being deprecated
from “my-module” on STDERR when called with less than 2 arguments.

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 }
}

When calling deprecate as a function, the warning is counted per call site
within your own module, so you can display different deprecations depending
on different situations and the users will still get all the warnings:

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 } else if (typeof arguments[0] !== 'string') {
 // calls with non-string first argument are deprecated
 deprecate('weirdfunction non-string first arg')
 }
}

Deprecating property access

This will display a deprecated message about “oldprop” being deprecated
from “my-module” on STDERR when accessed. A deprecation will be displayed
when setting the value and when getting the value.

var deprecate = require('depd')('my-cool-module')

exports.oldprop = 'something'

// message automatically derives from property name
deprecate.property(exports, 'oldprop')

// explicit message
deprecate.property(exports, 'oldprop', 'oldprop >= 0.10')

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/type-is/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.5.3 / 2014-11-09

		deps: mime-types@~2.0.3
		Add new mime types

		deps: mime-db@~1.2.0

1.5.2 / 2014-09-28

		deps: mime-types@~2.0.2
		Add new mime types

		deps: mime-db@~1.1.0

1.5.1 / 2014-09-07

		Support Node.js 0.6

		deps: media-typer@0.3.0

		deps: mime-types@~2.0.1
		Support Node.js 0.6

1.5.0 / 2014-09-05

		fix hasbody to be true for content-length: 0

1.4.0 / 2014-09-02

		update mime-types

1.3.2 / 2014-06-24

		use ~ range on mime-types

1.3.1 / 2014-06-19

		fix global variable leak

1.3.0 / 2014-06-19

		improve type parsing
		invalid media type never matches

		media type not case-sensitive

		extra LWS does not affect results

1.2.2 / 2014-06-19

		fix behavior on unknown type argument

1.2.1 / 2014-06-03

		switch dependency from mime to mime-types@1.0.0

1.2.0 / 2014-05-11

		support suffix matching:
		+json matches application/vnd+json

		*/vnd+json matches application/vnd+json

		application/*+json matches application/vnd+json

1.1.0 / 2014-04-12

		add non-array values support

		expose internal utilities:
		.is()

		.hasBody()

		.normalize()

		.match()

1.0.1 / 2014-03-30

		add multipart as a shorthand

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/type-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

type-is

![NPM Version][npm-image] [https://npmjs.org/package/type-is]
![NPM Downloads][downloads-image] [https://npmjs.org/package/type-is]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/type-is]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/type-is?branch=master]

Infer the content-type of a request.

Install

$ npm install type-is

API

var http = require('http')
var is = require('type-is')

http.createServer(function (req, res) {
 var istext = is(req, ['text/*'])
 res.end('you ' + (istext ? 'sent' : 'did not send') + ' me text')
})

type = is(request, types)

request is the node HTTP request. types is an array of types.

// req.headers.content-type = 'application/json'

is(req, ['json']) // 'json'
is(req, ['html', 'json']) // 'json'
is(req, ['application/*']) // 'application/json'
is(req, ['application/json']) // 'application/json'

is(req, ['html']) // false

Each type can be:

		An extension name such as json. This name will be returned if matched.

		A mime type such as application/json.

		A mime type with a wildcard such as */json or application/*. The full mime type will be returned if matched

		A suffix such as +json. This can be combined with a wildcard such as */vnd+json or application/*+json. The full mime type will be returned if matched.

false will be returned if no type matches.

Examples

Example body parser

var is = require('type-is');

function bodyParser(req, res, next) {
 if (!is.hasBody(req)) {
 return next()
 }

 switch (is(req, ['urlencoded', 'json', 'multipart'])) {
 case 'urlencoded':
 // parse urlencoded body
 throw new Error('implement urlencoded body parsing')
 break
 case 'json':
 // parse json body
 throw new Error('implement json body parsing')
 break
 case 'multipart':
 // parse multipart body
 throw new Error('implement multipart body parsing')
 break
 default:
 // 415 error code
 res.statusCode = 415
 res.end()
 return
 }
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/on-finished/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

on-finished

![NPM Version][npm-image] [https://npmjs.org/package/on-finished]
![NPM Downloads][downloads-image] [https://npmjs.org/package/on-finished]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/on-finished]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/on-finished?branch=master]

Execute a callback when a request closes, finishes, or errors.

Install

$ npm install on-finished

API

var onFinished = require('on-finished')

onFinished(res, listener)

Attach a listener to listen for the response to finish. The listener will
be invoked only once when the response finished. If the response finished
to to an error, the first argument will contain the error.

Listening to the end of a response would be used to close things associated
with the response, like open files.

onFinished(res, function (err) {
 // clean up open fds, etc.
})

onFinished(req, listener)

Attach a listener to listen for the request to finish. The listener will
be invoked only once when the request finished. If the request finished
to to an error, the first argument will contain the error.

Listening to the end of a request would be used to know when to continue
after reading the data.

var data = ''

req.setEncoding('utf8')
res.on('data', function (str) {
 data += str
})

onFinished(req, function (err) {
 // data is read unless there is err
})

onFinished.isFinished(res)

Determine if res is already finished. This would be useful to check and
not even start certain operations if the response has already finished.

onFinished.isFinished(req)

Determine if req is already finished. This would be useful to check and
not even start certain operations if the request has already finished.

Example

The following code ensures that file descriptors are always closed
once the response finishes.

var destroy = require('destroy')
var http = require('http')
var onFinished = require('on-finished')

http.createServer(function onRequest(req, res) {
 var stream = fs.createReadStream('package.json')
 stream.pipe(res)
 onFinished(res, function (err) {
 destroy(stream)
 })
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/on-finished/node_modules/ee-first/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

EE First

![NPM version][npm-image] [https://npmjs.org/package/ee-first]
![Build status][travis-image] [https://travis-ci.org/jonathanong/ee-first]
![Test coverage][coveralls-image] [https://coveralls.io/r/jonathanong/ee-first?branch=master]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/ee-first]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Get the first event in a set of event emitters and event pairs,
then clean up after itself.

Install

$ npm install ee-first

API

var first = require('ee-first')

first(arr, listener)

Invoke listener on the first event from the list specified in arr. arr is
an array of arrays, with each array in the format [ee, ...event]. listener
will be called only once, the first time any of the given events are emitted. If
error is one of the listened events, then if that fires first, the listener
will be given the err argument.

The listener is invoked as listener(err, ee, event, args), where err is the
first argument emitted from an error event, if applicable; ee is the event
emitter that fired; event is the string event name that fired; and args is an
array of the arguments that were emitted on the event.

var ee1 = new EventEmitter()
var ee2 = new EventEmitter()

first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

.cancel()

The group of listeners can be cancelled before being invoked and have all the event
listeners removed from the underlying event emitters.

var thunk = first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

// cancel and clean up
thunk.cancel()

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/type-is/node_modules/mime-types/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/bytes/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-bytes

Byte string parser / formatter.

Example:

bytes('1kb')
// => 1024

bytes('2mb')
// => 2097152

bytes('1gb')
// => 1073741824

bytes(1073741824)
// => 1gb

bytes(1099511627776)
// => 1tb

Installation

$ npm install bytes
$ component install visionmedia/bytes.js

License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/type-is/node_modules/mime-types/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.3 / 2014-11-09

		deps: mime-db@~1.2.0
		Add new mime types

2.0.2 / 2014-09-28

		deps: mime-db@~1.1.0
		Add new mime types

		Add additional compressible

		Update charsets

2.0.1 / 2014-09-07

		Support Node.js 0.6

2.0.0 / 2014-09-02

		Use mime-db

		Remove .define()

1.0.2 / 2014-08-04

		Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

		Add text/jsx type

1.0.0 / 2014-05-12

		Return false for unknown types

		Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/type-is/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

![NPM Version][npm-image] [https://npmjs.org/package/mime-types]
![NPM Downloads][downloads-image] [https://npmjs.org/package/mime-types]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-types]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/mime-types]

The ultimate javascript content-type utility.

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false,
so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus via mime-db [https://github.com/jshttp/mime-db]

		No .define() functionality

Otherwise, the API is compatible.

Install

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://github.com/jshttp/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions...] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/media-typer/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

media-typer

![NPM Version][npm-image] [https://npmjs.org/package/media-typer]
![NPM Downloads][downloads-image] [https://npmjs.org/package/media-typer]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/media-typer]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/media-typer]

Simple RFC 6838 media type parser

Installation

$ npm install media-typer

API

var typer = require('media-typer')

typer.parse(string)

var obj = typer.parse('image/svg+xml; charset=utf-8')

Parse a media type string. This will return an object with the following
properties (examples are shown for the string 'image/svg+xml; charset=utf-8'):

		type: The type of the media type (always lower case). Example: 'image'

		subtype: The subtype of the media type (always lower case). Example: 'svg'

		suffix: The suffix of the media type (always lower case). Example: 'xml'

		parameters: An object of the parameters in the media type (name of parameter always lower case). Example: {charset: 'utf-8'}

typer.parse(req)

var obj = typer.parse(req)

Parse the content-type header from the given req. Short-cut for
typer.parse(req.headers['content-type']).

typer.parse(res)

var obj = typer.parse(res)

Parse the content-type header set on the given res. Short-cut for
typer.parse(res.getHeader('content-type')).

typer.format(obj)

var obj = typer.format({type: 'image', subtype: 'svg', suffix: 'xml'})

Format an object into a media type string. This will return a string of the
mime type for the given object. For the properties of the object, see the
documentation for typer.parse(string).

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/on-finished/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.1 / 2014-10-22

		Fix handling of pipelined requests

2.1.0 / 2014-08-16

		Check if socket is detached

		Return undefined for isFinished if state unknown

2.0.0 / 2014-08-16

		Add isFinished function

		Move to jshttp organization

		Remove support for plain socket argument

		Rename to on-finished

		Support both req and res as arguments

		deps: ee-first@1.0.5

1.2.2 / 2014-06-10

		Reduce listeners added to emitters
		avoids “event emitter leak” warnings when used multiple times on same request

1.2.1 / 2014-06-08

		Fix returned value when already finished

1.2.0 / 2014-06-05

		Call callback when called on already-finished socket

1.1.4 / 2014-05-27

		Support node.js 0.8

1.1.3 / 2014-04-30

		Make sure errors passed as instanceof Error

1.1.2 / 2014-04-18

		Default the socket to passed-in object

1.1.1 / 2014-01-16

		Rename module to finished

1.1.0 / 2013-12-25

		Call callback when called on already-errored socket

1.0.1 / 2013-12-20

		Actually pass the error to the callback

1.0.0 / 2013-12-20

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/history.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.0 - 2013-07-13

		verbatim

		cdata-js

		cdata-css

		fix escaping in cdata

		fix less errors

2.0.1 - 2013-04-22

		Fix global leak of exportscoffeeScript (test still fails because jade requires an out of date version of transformers)

2.0.0 - 2013-03-31

		Add minify support to all transformers

		Bundle minifiers in package

1.8.3 - 2013-03-19

		Update promise dependency

1.8.2 - 2013-02-10

		Support sourceURLs in component

1.8.1 - 2013-02-10

		Add travis-ci

		FIX toffee support which was broken by their latest update

		FIX lookup paths for component weren’t set so you couldn’t build components with dependancies

1.8.0 - 2013-01-30

		highlight (needs tests)

1.7.0 - 2013-01-30

		component-js

		component-css

		html2jade - must be v0.0.7 because of a bug in later versions

		Much more extensive tests

1.6.0 - 2013-01-29

		uglify-css

		uglify-json

		Rename uglify to uglify-js

1.5.0 - 2013-01-27

		dot

1.4.0 - 2013-01-25

		Support sync @import statements in less

		Report real errors from less (rather than objects)

1.3.0 - 2013-01-25

		templayed

		plates

1.2.1 - 2013-01-09

		make markdown work when using markdown as the engine (marked is the recommended engine).

1.2.0 - 2013-01-09

		js (pass through)

		css (pass through)

		rename coffee-script from coffee to coffee-script and add coffee as an alias

1.1.0 - 2013-01-08

		coffeecup

		cson

		FIX: disabling dust cache

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [https://travis-ci.org/ForbesLindesay/transformers]

transformers

String/Data transformations for use in templating libraries, static site generators and web frameworks. This gathers the most useful transformations you can apply to text or data into one library with a consistent API. Transformations can be pretty much anything but most are either compilers or templating engines.

Supported transforms

To use each of these transforms you will also need to install the associated npm module for that transformer.

Template engines

		atpl [http://documentup.com/soywiz/atpl.js] - Compatible with twig templates

		coffeecup [http://documentup.com/gradus/coffeecup] - pure coffee-script templates (fork of coffeekup)

		dot [http://documentup.com/olado/doT] (website) [https://github.com/Katahdin/dot-packer] - focused on speed

		dust [http://documentup.com/akdubya/dustjs] (website) [http://akdubya.github.com/dustjs/] - asyncronous templates

		eco [http://documentup.com/sstephenson/eco] - Embedded CoffeeScript templates

		ect [http://documentup.com/baryshev/ect] (website) [http://ectjs.com/] - Embedded CoffeeScript templates

		ejs [http://documentup.com/visionmedia/ejs] - Embedded JavaScript templates

		haml [http://documentup.com/visionmedia/haml.js] (website) [http://haml-lang.com/] - dry indented markup

		haml-coffee [http://documentup.com/netzpirat/haml-coffee/] (website) [http://haml-lang.com/] - haml with embedded CoffeeScript

		handlebars [http://documentup.com/wycats/handlebars.js/] (website) [http://handlebarsjs.com/] - extension of mustache templates

		hogan [http://documentup.com/twitter/hogan.js] (website) [http://twitter.github.com/hogan.js/] - Mustache templates

		jade [http://documentup.com/visionmedia/jade] (website) [http://jade-lang.com/] - robust, elegant, feature rich template engine

		jazz [http://documentup.com/shinetech/jazz]

		jqtpl [http://documentup.com/kof/jqtpl] (website) [http://api.jquery.com/category/plugins/templates/] - extensible logic-less templates

		JUST [http://documentup.com/baryshev/just] - EJS style template with some special syntax for layouts/partials etc.

		liquor [http://documentup.com/chjj/liquor] - extended EJS with significant white space

		mustache [http://documentup.com/janl/mustache.js] - logic less templates

		QEJS [http://documentup.com/jepso/QEJS] - Promises + EJS for async templating

		swig [http://documentup.com/paularmstrong/swig] (website) [http://paularmstrong.github.com/swig/] - Django-like templating engine

		templayed [http://documentup.com/archan937/templayed.js/] (website) [http://archan937.github.com/templayed.js/] - Mustache focused on performance

		toffee [http://documentup.com/malgorithms/toffee] - templating language based on coffeescript

		underscore [http://documentup.com/documentcloud/underscore] (website) [http://documentcloud.github.com/underscore/]

		walrus [http://documentup.com/jeremyruppel/walrus] - A bolder kind of mustache

		whiskers [http://documentup.com/gsf/whiskers.js/tree/] - logic-less focused on readability

Stylesheet Languages

		less [http://documentup.com/cloudhead/less.js] (website) [http://lesscss.org/] - LESS extends CSS with dynamic behavior such as variables, mixins, operations and functions.

		stylus [http://documentup.com/learnboost/stylus] (website) [http://learnboost.github.com/stylus/] - revolutionary CSS generator making braces optional

		sass [http://documentup.com/visionmedia/sass.js] (website) [http://sass-lang.com/] - Sassy CSS

Minifiers

		uglify-js [http://documentup.com/mishoo/UglifyJS2] - No need to install anything, just minifies/beautifies JavaScript

		uglify-css [https://github.com/visionmedia/css] - No need to install anything, just minifies/beautifies CSS

		ugilify-json - No need to install anything, just minifies/beautifies JSON

Other

		cdata - No need to install anything, just wraps input as <![CDATA[${INPUT_STRING]]> with the standard escape for]]> (]]]]><![CDATA[>).

		cdata-js - as cdata, but with surrounding comments suitable for inclusion into a HTML/JavaScript <script> block: //<![CDATA[\n${INPUT_STRING\n//]]>.

		cdata-css - as cdata, but with surrounding comments suitable for inclusion into a HTML/CSS <style> block: /*<![CDATA[*/\n${INPUT_STRING\n/*]]>*/.

		verbatim - No need to install anything, acts as a verbatim passthrough ${INPUT_STRING}

		coffee-script [http://coffeescript.org/] - npm install coffee-script

		cson [https://github.com/bevry/cson] - coffee-script based JSON format

		markdown - You can use marked, supermarked, markdown-js or markdown

		component-js [http://documentup.com/component/component] (website) [http://component.io] - npm install component-builder options: {development: false}

		component-css [http://documentup.com/component/component] (website) [http://component.io] - npm install component-builder options: {development: false}

		html2jade [http://documentup.com/donpark/html2jade] (website) [http://html2jade.aaron-powell.com/] - npm install html2jade - Converts HTML back into jade

Pull requests to add more transforms will always be accepted providing they are open-source, come with unit tests, and don’t cause any of the tests to fail.

API

The exported object transformers is a collection of named transformers. To access an individual transformer just do:

var transformer = require('transformers')['transformer-name']

Transformer

The following options are given special meaning by transformers:

		filename is set by transformers automatically if using the renderFile APIs. It is used if cache is enabled.

		cache if true, the template function will be cached where possible (templates are still updated if you provide new options, so this can be used in most live applications).

		sudoSync used internally to put some asyncronous transformers into “sudo syncronous” mode. Don’t touch this.

		minify if set to true on a transformer that isn’t a minifier, it will cause the output to be minified. e.g. coffeeScript.renderSync(str, {minify: true}) will result in minified JavaScript.

Transformer.engines

Returns an array of engines that can be used to power this transformer. The first of these that’s installed will be used for the transformation.

To enable a transformation just take [engine] = Transformer.engines[0] and then do npm install [engine]. If [engine] is . there is no need to install an engine from npm to use the transformer.

Transformer.render(str, options, cb)

Tranform the string str using the Transformer with the provided options and call the callback cb(err, res).

If no cb is provided, this method returns a promises/A+ [http://promises-aplus.github.com/promises-spec/] promise.

Transformer.renderSync(str, options)

Synchronous version of Transformer.render

Transformer.renderFile(filename, options, cb)

Reads the file at filename into str and sets options.filename = filename then calls Transform.render(str, options, cb).

If no cb is provided, this method returns a promises/A+ [http://promises-aplus.github.com/promises-spec/] promise.

Tranformer.renderFileSync(filename, options)

Synchronous version of Tranformer.renderFile

Transformer.outputFormat

A string, one of:

		'xml'

		'css'

		'js'

		'json'

		'text'

Adding to this list will not result in a major version change, so you should handle unexpected types gracefully (I’d suggest default to assuming 'text').

Transformer.sync

true if the transformer can be used syncronously, false otherwise.

Libraries that don’t work synchronously

The following transformations will always throw an exception if you attempt to run them synchronously:

		dust

		qejs

		html2jade

The following transformations sometimes throw an exception if run syncronously, typically they only throw an exception if you are doing something like including another file. If you are not doing the things that cause them to fail then they are consistently safe to use syncronously.

		jade (only when using then-jade instead of jade)

		less (when @import is used with a url instead of a filename)

		jazz (When one of the functions passed as locals is asyncronous)

The following libraries look like they might sometimes throw exceptions when used syncronously (if you read the source) but they never actually do so:

		just

		ect

		stylus

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

[image: Jade - template engine] [http://jade-lang.com/]

Full documentation is at jade-lang.com [http://jade-lang.com/]

Jade is a high performance template engine heavily influenced by Haml [http://haml-lang.com]
and implemented with JavaScript for node [http://nodejs.org]. For discussion join the Google Group [http://groups.google.com/group/jadejs].

You can test drive Jade online here [http://naltatis.github.com/jade-syntax-docs].

[image: Build Status] [https://travis-ci.org/visionmedia/jade]
[image: Dependency Status] [https://gemnasium.com/visionmedia/jade]
[image: NPM version] [http://badge.fury.io/js/jade]

Installation

via npm:

$ npm install jade

Syntax

Jade is a clean, whitespace sensitive syntax for writing html. Here is a simple example:

doctype html
html(lang="en")
 head
 title= pageTitle
 script(type='text/javascript').
 if (foo) bar(1 + 5)
 body
 h1 Jade - node template engine
 #container.col
 if youAreUsingJade
 p You are amazing
 else
 p Get on it!
 p.
 Jade is a terse and simple templating language with a
 strong focus on performance and powerful features.

becomes

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Jade</title>
 <script type="text/javascript">
 if (foo) bar(1 + 5)
 </script>
 </head>
 <body>
 <h1>Jade - node template engine</h1>
 <div id="container" class="col">
 <p>You are amazing</p>
 <p>Jade is a terse and simple templating language with a strong focus on performance and powerful features.</p>
 </div>
 </body>
</html>

The official jade tutorial [http://jade-lang.com/tutorial/] is a great place to start. While that (and the syntax documentation) is being finished, you can view some of the old documentation here [https://github.com/visionmedia/jade/blob/master/jade.md] and here [https://github.com/visionmedia/jade/blob/master/jade-language.md]

API

For full API, see jade-lang.com/api [http://jade-lang.com/api/]

var jade = require('jade');

// compile
var fn = jade.compile('string of jade', options);
var html = fn(locals);

// render
var html = jade.render('string of jade', merge(options, locals));

// renderFile
var html = jade.renderFile('filename.jade', merge(options, locals));

Options

		filename Used in exceptions, and required when using includes

		compileDebug When false no debug instrumentation is compiled

		pretty Add pretty-indentation whitespace to output (false by default)

Browser Support

The latest version of jade can be download for the browser in standalone form from here [https://github.com/visionmedia/jade/raw/master/jade.js]. It only supports the very latest browsers though, and is a large file. It is recommended that you pre-compile your jade templates to JavaScript and then just use the runtime.js [https://github.com/visionmedia/jade/raw/master/runtime.js] library on the client.

To compile a template for use on the client using the command line, do:

$ jade --client --no-debug filename.jade

which will produce filename.js containing the compiled template.

Command Line

After installing the latest version of node [http://nodejs.org/], install with:

$ npm install jade -g

and run with

$ jade --help

Additional Resources

Tutorials:

		cssdeck interactive Jade syntax tutorial [http://cssdeck.com/labs/learning-the-jade-templating-engine-syntax]

		cssdeck interactive Jade logic tutorial [http://cssdeck.com/labs/jade-templating-tutorial-codecast-part-2]

		Jade について。 [https://gist.github.com/japboy/5402844] (A Japanese Tutorial)

		Jade - 模板引擎 [https://github.com/visionmedia/jade/blob/master/Readme_zh-cn.md]

Implementations in other languages:

		php [http://github.com/everzet/jade.php]

		scala [http://scalate.fusesource.org/versions/snapshot/documentation/scaml-reference.html]

		ruby [https://github.com/slim-template/slim]

		python [https://github.com/SyrusAkbary/pyjade]

		java [https://github.com/neuland/jade4j]

Other:

		Emacs Mode [https://github.com/brianc/jade-mode]

		Vim Syntax [https://github.com/digitaltoad/vim-jade]

		TextMate Bundle [http://github.com/miksago/jade-tmbundle]

		Coda/SubEtha syntax Mode [https://github.com/aaronmccall/jade.mode]

		Screencasts [http://tjholowaychuk.com/post/1004255394/jade-screencast-template-engine-for-nodejs]

		html2jade [https://github.com/donpark/html2jade] converter

		Jade Server [https://github.com/ded/jade-server] Ideal for building local prototypes apart from any application

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/Readme_zh-cn.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Jade - 模板引擎

Jade 是一个高性能的模板引擎，它深受 Haml [http://haml-lang.com] 影响，它是用 JavaScript 实现的, 并且可以供 Node [http://nodejs.org] 使用.

翻译: 草依山 [http://jser.me] 等

声明

从 Jade v0.31.0 开始放弃了对于 <script> 和 <style> 标签的平文本支持. 这个问题你可以在 <script> <style> 标签后加上 . 来解决.

希望这一点能让 Jade 对新手更友好, 同时也不影响到 Jade 本身的能力或者导致过度冗长.

如果你有大量的文件需要转换你可以用下 fix-jade [https://github.com/ForbesLindesay/fix-jade] 尝试自动完成这个过程.

Test drive

你可以在网上试玩 Jade [http://naltatis.github.com/jade-syntax-docs].

README 目录

		特性

		其它实现

		安装

		浏览器支持

		公开 API

		语法
		行结束标志

		标签

		标签文本

		注释

		块注释

		内联

		块展开

		Case

		属性

		HTML

		Doctypes

		过滤器

		代码

		循环

		条件语句

		模板继承

		Block append/prepend

		包含

		Mixins

		产生输出

		Makefile 的一个例子

		命令行的 Jade

		教程

		License

[bookmark: a1]

特性

		客户端支持

		代码高可读

		灵活的缩进

		块展开

		Mixins

		静态包含

		属性改写

		安全，默认代码是转义的

		运行时和编译时上下文错误报告

		命令行下编译jade模板

		HTML5 模式 (使用 ~~!!! 5~~ doctype html 文档类型)

		在内存中缓存(可选)

		合并动态和静态标签类

		可以通过 filters 修改树

		模板继承

		原生支持 Express JS [http://expressjs.com]

		通过 each 枚举对象、数组甚至是不能枚举的对象

		块注释

		没有前缀的标签

		AST Filters

		过滤器
		:stylus 必须已经安装 stylus [http://github.com/LearnBoost/stylus]

		:less 必须已经安装 less.js [http://github.com/cloudhead/less.js]

		:markdown 必须已经安装 markdown-js [http://github.com/evilstreak/markdown-js] 或者 node-discount [http://github.com/visionmedia/node-discount]

		:cdata

		:coffeescript 必须已经安装coffee-script [http://jashkenas.github.com/coffee-script/]

		Emacs Mode [https://github.com/brianc/jade-mode]

		Vim Syntax [https://github.com/digitaltoad/vim-jade]

		TextMate Bundle [http://github.com/miksago/jade-tmbundle]

		Coda/SubEtha syntax Mode [https://github.com/aaronmccall/jade.mode]

		Screencasts [http://tjholowaychuk.com/post/1004255394/jade-screencast-template-engine-for-nodejs]

		html2jade [https://github.com/donpark/html2jade] converter

[bookmark: a2]

其它实现

		php [http://github.com/everzet/jade.php]

		scala [http://scalate.fusesource.org/versions/snapshot/documentation/scaml-reference.html]

		ruby [https://github.com/slim-template/slim]

		python [https://github.com/SyrusAkbary/pyjade]

		java [https://github.com/neuland/jade4j]

[bookmark: a3]

安装

通过 NPM:

npm install jade

[bookmark: a4]

浏览器支持

把 Jade 编译为一个可供浏览器使用的单文件，只需要简单的执行:

$ make jade.js

如果你已经安装了 uglifyjs (npm install uglify-js)，你可以执行下面的命令它会生成所有的文件。其实每一个正式版本里都帮你做了这事。

make jade.min.js

默认情况下，为了方便调试Jade会把模板组织成带有形如 __.lineno = 3 的行号的形式。
在浏览器里使用的时候，你可以通过传递一个选项 { compileDebug: false } 来去掉这个。
下面的模板

p Hello #{name}

会被翻译成下面的函数：

function anonymous(locals, attrs, escape, rethrow) {
 var buf = [];
 with (locals || {}) {
 var interp;
 buf.push('\n<p>Hello ' + escape((interp = name) == null ? '' : interp) + '\n</p>');
 }
 return buf.join("");
}

通过使用 Jade 的 ./runtime.js你可以在浏览器使用这些预编译的模板而不需要使用 Jade, 你只需要使用 runtime.js 里的工具函数, 它们会放在 jade.attrs, jade.escape 这些里。 把选项 { client: true } 传递给 jade.compile(), Jade 会把这些帮助函数的引用放在jade.attrs, jade.escape.

function anonymous(locals, attrs, escape, rethrow) {
 var attrs = jade.attrs, escape = jade.escape, rethrow = jade.rethrow;
 var buf = [];
 with (locals || {}) {
 var interp;
 buf.push('\n<p>Hello ' + escape((interp = name) == null ? '' : interp) + '\n</p>');
 }
 return buf.join("");
}

[bookmark: a5]

公开 API

var jade = require('jade');

// Compile a function
var fn = jade.compile('string of jade', options);
fn(locals);

选项

		self 使用 self 命名空间来持有本地变量. (默认为 false)

		locals 本地变量对象

		filename 异常发生时使用，includes 时必需

		debug 输出 token 和翻译后的函数体

		compiler 替换掉 jade 默认的编译器

		compileDebug false的时候调试的结构不会被输出

		pretty 为输出加上了漂亮的空格缩进 (默认为 false)

[bookmark: a6]

语法

[bookmark: a6-1]

行结束标志

CRLF 和 CR 会在编译之前被转换为 LF

[bookmark: a6-2]

标签

标签就是一个简单的单词:

html

它会被转换为 <html></html>

标签也是可以有 id 的:

div#container

它会被转换为 <div id="container"></div>

怎么加 class 呢？

div.user-details

转换为 <div class="user-details"></div>

多个 class 和 id? 也是可以搞定的:

div#foo.bar.baz

转换为 <div id="foo" class="bar baz"></div>

不停的 div div div 很讨厌啊 , 可以这样:

#foo
.bar

这个算是我们的语法糖，它已经被很好的支持了，上面的会输出：

<div id="foo"></div><div class="bar"></div>

[bookmark: a6-3]

标签文本

只需要简单的把内容放在标签之后：

p wahoo!

它会被渲染为 <p>wahoo!</p>.

很帅吧，但是大段的文本怎么办呢：

p
 | foo bar baz
 | rawr rawr
 | super cool
 | go jade go

渲染为 <p>foo bar baz rawr.....</p>

怎么和数据结合起来？ 所有类型的文本展示都可以和数据结合起来，如果我们把 { name: 'tj', email: 'tj@vision-media.ca' } 传给编译函数，下面是模板上的写法:

#user #{name} <#{email}>

它会被渲染为 <div id="user">tj <tj@vision-media.ca></div>

当就是要输出 #{} 的时候怎么办? 转义一下!

p \#{something}

它会输出 <p>#{something}</p>

同样可以使用非转义的变量 !{html}, 下面的模板将直接输出一个 <script> 标签:

- var html = "<script></script>"
| !{html}

内联标签同样可以使用文本块来包含文本：

label
 | Username:
 input(name='user[name]')

或者直接使用标签文本:

label Username:
 input(name='user[name]')

只 包含文本的标签，比如 <script>, <style>, 和 <textarea> 不需要前缀 | 字符, 比如:

html
 head
 title Example
 script
 if (foo) {
 bar();
 } else {
 baz();
 }

这里还有一种选择，可以使用 . 来开始一段文本块，比如：

p.
 foo asdf
 asdf
 asdfasdfaf
 asdf
 asd.

会被渲染为:

<p>foo asdf
asdf
 asdfasdfaf
 asdf
asd
.
</p>

这和带一个空格的 . 是不一样的, 带空格的会被 Jade 的解析器忽略，当作一个普通的文字:

p .

渲染为:

<p>.</p>

需要注意的是文本块需要两次转义。比如想要输出下面的文本：

</p>foo\bar</p>

使用:

p.
 foo\\bar

[bookmark: a6-4]

注释

单行注释和 JavaScript 里是一样的，通过 // 来开始，并且必须单独一行：

// just some paragraphs
p foo
p bar

渲染为：

<!-- just some paragraphs -->
<p>foo</p>
<p>bar</p>

Jade 同样支持不输出的注释，加一个短横线就行了：

//- will not output within markup
p foo
p bar

渲染为：

<p>foo</p>
<p>bar</p>

[bookmark: a6-5]

块注释

块注释也是支持的：

body
 //
 #content
 h1 Example

渲染为：

<body>
 <!--
 <div id="content">
 <h1>Example</h1>
 </div>
 -->
</body>

Jade 同样很好的支持了条件注释：

body
 //if IE
 a(href='http://www.mozilla.com/en-US/firefox/') Get Firefox

渲染为：

<body>
 <!--[if IE]>
 Get Firefox
 <![endif]-->
</body>

[bookmark: a6-6]

内联

Jade 支持以自然的方式定义标签嵌套:

ul
 li.first
 a(href='#') foo
 li
 a(href='#') bar
 li.last
 a(href='#') baz

[bookmark: a6-7]

块展开

块展开可以帮助你在一行内创建嵌套的标签，下面的例子和上面的是一样的：

ul
 li.first: a(href='#') foo
 li: a(href='#') bar
 li.last: a(href='#') baz

[bookmark: a6-8]

Case

case 表达式按下面这样的形式写:

html
 body
 friends = 10
 case friends
 when 0
 p you have no friends
 when 1
 p you have a friend
 default
 p you have #{friends} friends

块展开在这里也可以使用:

friends = 5

html
 body
 case friends
 when 0: p you have no friends
 when 1: p you have a friend
 default: p you have #{friends} friends

[bookmark: a6-9]

属性

Jade 现在支持使用 (和) 作为属性分隔符

a(href='/login', title='View login page') Login

当一个值是 undefined 或者 null 属性 不 会被加上,
所以呢，它不会编译出 ‘something=”null”’.

div(something=null)

Boolean 属性也是支持的:

input(type="checkbox", checked)

使用代码的 Boolean 属性只有当属性为 true 时才会输出：

input(type="checkbox", checked=someValue)

多行同样也是可用的：

input(type='checkbox',
 name='agreement',
 checked)

多行的时候可以不加逗号：

input(type='checkbox'
 name='agreement'
 checked)

加点空格，格式好看一点？同样支持

input(
 type='checkbox'
 name='agreement'
 checked)

冒号也是支持的:

rss(xmlns:atom="atom")

假如我有一个 user 对象 { id: 12, name: 'tobi' }
我们希望创建一个指向 /user/12 的链接 href, 我们可以使用普通的 JavaScript 字符串连接，如下:

a(href='/user/' + user.id)= user.name

或者我们使用 Jade 的修改方式, 这个我想很多使用 Ruby 或者 CoffeeScript 的人会看起来像普通的 JS..:

a(href='/user/#{user.id}')= user.name

class 属性是一个特殊的属性，你可以直接传递一个数组，比如 bodyClasses = ['user', 'authenticated'] :

body(class=bodyClasses)

[bookmark: a6-10]

HTML

内联的 HTML 是可以的，我们可以使用管道定义一段文本 :

html
 body
 | <h1>Title</h1>
 | <p>foo bar baz</p>

或者我们可以使用 . 来告诉 Jade 我们需要一段文本：

html
 body.
 <h1>Title</h1>
 <p>foo bar baz</p>

上面的两个例子都会渲染成相同的结果：

<html><body><h1>Title</h1>
<p>foo bar baz</p>
</body></html>

这条规则适应于在 Jade 里的任何文本：

html
 body
 h1 User #{name}

[bookmark: a6-11]

Doctypes

添加文档类型只需要简单的使用 !!!, 或者 doctype 跟上下面的可选项:

!!!

会渲染出 transitional 文档类型, 或者:

!!! 5

或

!!! html

或

doctype html

Doctype 是大小写不敏感的, 所以下面两个是一样的:

doctype Basic
doctype basic

当然也是可以直接传递一段文档类型的文本：

doctype html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"

渲染后:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN">

会输出 HTML5 文档类型. 下面的默认的文档类型，可以很简单的扩展：

var doctypes = exports.doctypes = {
 '5': '<!DOCTYPE html>',
 'xml': '<?xml version="1.0" encoding="utf-8" ?>',
 'default': '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">',
 'transitional': '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">',
 'strict': '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">',
 'frameset': '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">',
 '1.1': '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">',
 'basic': '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN" "http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">',
 'mobile': '<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN" "http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">'
};

通过下面的代码可以很简单的改变默认的文档类型：

 jade.doctypes.default = 'whatever you want';

[bookmark: a7]

过滤器

过滤器前缀 :, 比如 :markdown 会把下面块里的文本交给专门的函数进行处理。查看顶部 特性 里有哪些可用的过滤器。

body
 :markdown
 Woah! jade _and_ markdown, very **cool**
 we can even link to [stuff](http://google.com)

渲染为:

<body><p>Woah! jade and markdown, very cool we can even link to stuff</p></body>

[bookmark: a8]

代码

Jade 目前支持三种类型的可执行代码。第一种是前缀 -， 这是不会被输出的：

- var foo = 'bar';

这可以用在条件语句或者循环中：

- for (var key in obj)
 p= obj[key]

由于 Jade 的缓存技术，下面的代码也是可以的：

- if (foo)
 ul
 li yay
 li foo
 li worked
- else
 p oh no! didnt work

哈哈，甚至是很长的循环也是可以的：

- if (items.length)
 ul
 - items.forEach(function(item){
 li= item
 - })

所以你想要的！

下一步我们要 转义 输出的代码，比如我们返回一个值，只要前缀一个 =：

- var foo = 'bar'
= foo
h1= foo

它会渲染为 bar<h1>bar</h1>. 为了安全起见，使用 = 输出的代码默认是转义的,如果想直接输出不转义的值可以使用 !=：

p!= aVarContainingMoreHTML

Jade 同样是设计师友好的，它可以使 JavaScript 更直接更富表现力。比如下面的赋值语句是相等的，同时表达式还是通常的 JavaScript：

- var foo = 'foo ' + 'bar'
foo = 'foo ' + 'bar'

Jade 会把 if, else if, else, until, while, unless 同别的优先对待, 但是你得记住它们还是普通的 JavaScript：

if foo == 'bar'
 ul
 li yay
 li foo
 li worked
else
 p oh no! didnt work

[bookmark: a9]

循环

尽管已经支持 JavaScript 原生代码，Jade 还是支持了一些特殊的标签，它们可以让模板更加易于理解，其中之一就是 each, 这种形式：

each VAL[, KEY] in OBJ

一个遍历数组的例子 ：

- var items = ["one", "two", "three"]
each item in items
 li= item

渲染为:

one
two
three

遍历一个数组同时带上索引：

items = ["one", "two", "three"]
each item, i in items
 li #{item}: #{i}

渲染为:

one: 0
two: 1
three: 2

遍历一个数组的键值：

obj = { foo: 'bar' }
each val, key in obj
 li #{key}: #{val}

将会渲染为：foo: bar

Jade 在内部会把这些语句转换成原生的 JavaScript 语句，就像使用 users.forEach(function(user){, 词法作用域和嵌套会像在普通的 JavaScript 中一样：

each user in users
 each role in user.roles
 li= role

如果你喜欢，也可以使用 for ：

for user in users
 for role in user.roles
 li= role

[bookmark: a10]

条件语句

Jade 条件语句和使用了(-) 前缀的 JavaScript 语句是一致的,然后它允许你不使用圆括号，这样会看上去对设计师更友好一点，
同时要在心里记住这个表达式渲染出的是 常规 JavaScript：

for user in users
 if user.role == 'admin'
 p #{user.name} is an admin
 else
 p= user.name

和下面的使用了常规 JavaScript 的代码是相等的：

for user in users
 - if (user.role == 'admin')
 p #{user.name} is an admin
 - else
 p= user.name

Jade 同时支持 unless, 这和 if (!(expr)) 是等价的：

for user in users
 unless user.isAnonymous
 p
 | Click to view
 a(href='/users/' + user.id)= user.name

[bookmark: a11]

模板继承

Jade 支持通过 block 和 extends 关键字来实现模板继承。 一个块就是一个 Jade 的 block ，它将在子模板中实现，同时是支持递归的。

Jade 块如果没有内容，Jade 会添加默认内容，下面的代码默认会输出 block scripts, block content, 和 block foot.

html
 head
 h1 My Site - #{title}
 block scripts
 script(src='/jquery.js')
 body
 block content
 block foot
 #footer
 p some footer content

现在我们来继承这个布局，简单创建一个新文件，像下面那样直接使用 extends，给定路径（可以选择带 .jade 扩展名或者不带）. 你可以定义一个或者更多的块来覆盖父级块内容, 注意到这里的 foot 块 没有 定义，所以它还会输出父级的 “some footer content”。

extends extend-layout

block scripts
 script(src='/jquery.js')
 script(src='/pets.js')

block content
 h1= title
 each pet in pets
 include pet

同样可以在一个子块里添加块，就像下面实现的块 content 里又定义了两个可以被实现的块 sidebar 和 primary，或者子模板直接实现 content。

extends regular-layout

block content
 .sidebar
 block sidebar
 p nothing
 .primary
 block primary
 p nothing

[bookmark: a12]

前置、追加代码块

Jade允许你 替换 （默认）、 前置 和 追加 blocks. 比如，假设你希望在 所有 页面的头部都加上默认的脚本，你可以这么做：

html
 head
 block head
 script(src='/vendor/jquery.js')
 script(src='/vendor/caustic.js')
 body
 block content

现在假设你有一个Javascript游戏的页面，你希望在默认的脚本之外添加一些游戏相关的脚本，你可以直接append上代码块：

extends layout

block append head
 script(src='/vendor/three.js')
 script(src='/game.js')

使用 block append 或 block prepend 时 block 是可选的:

extends layout

append head
 script(src='/vendor/three.js')
 script(src='/game.js')

[bookmark: a13]

包含

Includes 允许你静态包含一段 Jade, 或者别的存放在单个文件中的东西比如 CSS, HTML 非常常见的例子是包含头部和页脚。 假设我们有一个下面目录结构的文件夹：

./layout.jade
./includes/
 ./head.jade
 ./tail.jade

下面是 layout.jade 的内容:

html
 include includes/head
 body
 h1 My Site
 p Welcome to my super amazing site.
 include includes/foot

这两个包含 includes/head 和 includes/foot 都会读取相对于给 layout.jade 参数filename 的路径的文件, 这是一个绝对路径，不用担心Express帮你搞定这些了。Include 会解析这些文件，并且插入到已经生成的语法树中，然后渲染为你期待的内容：

<html>
 <head>
 <title>My Site</title>
 <script src="/javascripts/jquery.js">
 </script><script src="/javascripts/app.js"></script>
 </head>
 <body>
 <h1>My Site</h1>
 <p>Welcome to my super lame site.</p>
 <div id="footer">
 <p>Copyright>(c) foobar</p>
 </div>
 </body>
</html>

前面已经提到，include 可以包含比如 HTML 或者 CSS 这样的内容。给定一个扩展名后，Jade 不会把这个文件当作一个 Jade 源代码，并且会把它当作一个普通文本包含进来：

html
 head
 //- css and js have simple filters that wrap them in
 <style> and <script> tags, respectively
 include stylesheet.css
 include script.js
 body
 //- "markdown" files will use the "markdown" filter
 to convert Markdown to HTML
 include introduction.markdown
 //- html files have no filter and are included verbatim
 include content.html

Include 也可以接受块内容，给定的块将会附加到包含文件 最后 的块里。 举个例子，head.jade 包含下面的内容：

head
 script(src='/jquery.js')

我们可以像下面给include head添加内容, 这里是添加两个脚本.

html
 include head
 script(src='/foo.js')
 script(src='/bar.js')
 body
 h1 test

在被包含的模板中，你也可以使用yield语句。yield语句允许你明确地标明include的代码块的放置位置。比如，假设你希望把代码块放在scripts之前，而不是附加在scripts之后：

head
 yield
 script(src='/jquery.js')
 script(src='/jquery.ui.js')

由于被包含的Jade会按字面解析并合并到AST中，词法范围的变量的效果和直接写在同一个文件中的相同。这就意味着include可以用作partial的替代，例如，假设我们有一个引用了user变量的user.jade`文件：

h1= user.name
p= user.occupation

接着，当我们迭代users的时候，只需简单地加上include user。因为在循环中user变量已经被定义了，被包含的模板可以访问它。

users = [{ name: 'Tobi', occupation: 'Ferret' }]

each user in users
 .user
 include user

以上代码会生成：

<div class="user">
 <h1>Tobi</h1>
 <p>Ferret</p>
</div>

user.jade引用了user变量，如果我们希望使用一个不同的变量user，那么我们可以直接定义一个新变量user = person，如下所示：

each person in users
 .user
 user = person
 include user

[bookmark: a14]

Mixins

Mixins 在编译的模板里会被 Jade 转换为普通的 JavaScript 函数。 Mixins 可以还参数，但不是必需的：

mixin list
 ul
 li foo
 li bar
 li baz

使用不带参数的 mixin 看上去非常简单，在一个块外：

h2 Groceries
mixin list

Mixins 也可以带一个或者多个参数，参数就是普通的 JavaScript 表达式，比如下面的例子：

mixin pets(pets)
 ul.pets
 - each pet in pets
 li= pet

mixin profile(user)
 .user
 h2= user.name
 mixin pets(user.pets)

会输出像下面的 HTML:

<div class="user">
 <h2>tj</h2>
 <ul class="pets">
 tobi
 loki
 jane
 manny

</div>

[bookmark: a15]

产生输出

假设我们有下面的 Jade 源码：

- var title = 'yay'
h1.title #{title}
p Just an example

当 compileDebug 选项不是 false, Jade 会编译时会把函数里加上 __.lineno = n;, 这个参数会在编译出错时传递给 rethrow(), 而这个函数会在 Jade 初始输出时给出一个有用的错误信息。

function anonymous(locals) {
 var __ = { lineno: 1, input: "- var title = 'yay'\nh1.title #{title}\np Just an example", filename: "testing/test.js" };
 var rethrow = jade.rethrow;
 try {
 var attrs = jade.attrs, escape = jade.escape;
 var buf = [];
 with (locals || {}) {
 var interp;
 __.lineno = 1;
 var title = 'yay'
 __.lineno = 2;
 buf.push('<h1');
 buf.push(attrs({ "class": ('title') }));
 buf.push('>');
 buf.push('' + escape((interp = title) == null ? '' : interp) + '');
 buf.push('</h1>');
 __.lineno = 3;
 buf.push('<p>');
 buf.push('Just an example');
 buf.push('</p>');
 }
 return buf.join("");
 } catch (err) {
 rethrow(err, __.input, __.filename, __.lineno);
 }
}

当 compileDebug 参数是 false, 这个参数会被去掉，这样对于轻量级的浏览器端模板是非常有用的。结合 Jade 的参数和当前源码库里的 ./runtime.js 文件，你可以通过 toString() 来编译模板而不需要在浏览器端运行整个 Jade 库，这样可以提高性能，也可以减少载入的 JavaScript 数量。

function anonymous(locals) {
 var attrs = jade.attrs, escape = jade.escape;
 var buf = [];
 with (locals || {}) {
 var interp;
 var title = 'yay'
 buf.push('<h1');
 buf.push(attrs({ "class": ('title') }));
 buf.push('>');
 buf.push('' + escape((interp = title) == null ? '' : interp) + '');
 buf.push('</h1>');
 buf.push('<p>');
 buf.push('Just an example');
 buf.push('</p>');
 }
 return buf.join("");
}

[bookmark: a16]

Makefile 的一个例子

通过执行 make， 下面的 Makefile 例子可以把 pages/*.jade 编译为 pages/*.html 。

JADE = $(shell find pages/*.jade)
HTML = $(JADE:.jade=.html)

all: $(HTML)

%.html: %.jade
 jade < $< --path $< > $@

clean:
 rm -f $(HTML)

.PHONY: clean

这个可以和 watch(1) 命令起来产生像下面的行为：

$ watch make

[bookmark: a17]

命令行的 Jade

使用: jade [options] [dir|file ...]

选项:

 -h, --help 输出帮助信息
 -v, --version 输出版本号
 -o, --out <dir> 输出编译后的 HTML 到 <dir>
 -O, --obj <str> JavaScript 选项
 -p, --path <path> 在处理 stdio 时，查找包含文件时的查找路径
 -P, --pretty 格式化 HTML 输出
 -c, --client 编译浏览器端可用的 runtime.js
 -D, --no-debug 关闭编译的调试选项(函数会更小)
 -w, --watch 监视文件改变自动刷新编译结果

Examples:

 # 编译整个目录
 $ jade templates

 # 生成 {foo,bar}.html
 $ jade {foo,bar}.jade

 # 在标准IO下使用jade
 $ jade < my.jade > my.html

 # 在标准IO下使用jade, 同时指定用于查找包含的文件
 $ jade < my.jade -p my.jade > my.html

 # 在标准IO下使用jade
 $ echo "h1 Jade!" | jade

 # foo, bar 目录渲染到 /tmp
 $ jade foo bar --out /tmp

注意: 从 v0.31.0 的 -o 选项已经指向 --out, -O 相应做了交换

[bookmark: a18]

教程

		cssdeck interactive Jade syntax tutorial [http://cssdeck.com/labs/learning-the-jade-templating-engine-syntax]

		cssdeck interactive Jade logic tutorial [http://cssdeck.com/labs/jade-templating-tutorial-codecast-part-2]

		in Japanese [http://blog.craftgear.net/4f501e97c1347ec934000001/title/10%E5%88%86%E3%81%A7%E3%82%8F%E3%81%8B%E3%82%8Bjade%E3%83%86%E3%83%B3%E3%83%97%E3%83%AC%E3%83%BC%E3%83%88%E3%82%A8%E3%83%B3%E3%82%B8%E3%83%B3]

[bookmark: a19]

License

(The MIT License)

Copyright (c) 2009-2010 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/css/node_modules/css-parse/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

css-parse

CSS parser.

Example

js:

var parse = require('css-parse')
parse('tobi { name: "tobi" }')

object returned:

{
 "stylesheet": {
 "rules": [
 {
 "selectors": ["tobi"],
 "declarations": [
 {
 "property": "name",
 "value": "tobi"
 }
]
 }
]
 }
}

Performance

Parsed 15,000 lines of CSS (2mb) in 40ms on my macbook air.

License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/css/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

css

CSS parser / stringifier using css-parse [https://github.com/visionmedia/css-parse] and css-stringify [https://github.com/visionmedia/css-stringify].

Installation

$ npm install css

Example

js:

var css = require('css')
var obj = css.parse('tobi { name: "tobi" }')
css.stringify(obj);

object returned by .parse():

{
 "stylesheet": {
 "rules": [
 {
 "selector": "tobi",
 "declarations": [
 {
 "property": "name",
 "value": "tobi"
 }
]
 }
]
 }
}

string returned by .stringify(ast):

tobi {
 name: tobi;
}

string returned by .stringify(ast, { compress: true }):

tobi{name:tobi}

License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/transformers/node_modules/css/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.7 / 2012-11-21

		fix component.json

1.0.4 / 2012-11-15

		update css-stringify

1.0.3 / 2012-09-01

		add component support

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/passport-local/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

passport-local

[image: Build] [https://travis-ci.org/jaredhanson/passport-local]
[image: Coverage] [https://coveralls.io/r/jaredhanson/passport-local]
[image: Quality] [https://codeclimate.com/github/jaredhanson/passport-local]
[image: Dependencies] [https://david-dm.org/jaredhanson/passport-local]
[image: Tips] [https://www.gittip.com/jaredhanson/]

Passport [http://passportjs.org/] strategy for authenticating with a username
and password.

This module lets you authenticate using a username and password in your Node.js
applications. By plugging into Passport, local authentication can be easily and
unobtrusively integrated into any application or framework that supports
Connect [http://www.senchalabs.org/connect/]-style middleware, including
Express [http://expressjs.com/].

Install

$ npm install passport-local

Usage

Configure Strategy

The local authentication strategy authenticates users using a username and
password. The strategy requires a verify callback, which accepts these
credentials and calls done providing a user.

passport.use(new LocalStrategy(
 function(username, password, done) {
 User.findOne({ username: username }, function (err, user) {
 if (err) { return done(err); }
 if (!user) { return done(null, false); }
 if (!user.verifyPassword(password)) { return done(null, false); }
 return done(null, user);
 });
 }
));

Authenticate Requests

Use passport.authenticate(), specifying the 'local' strategy, to
authenticate requests.

For example, as route middleware in an Express [http://expressjs.com/]
application:

app.post('/login',
 passport.authenticate('local', { failureRedirect: '/login' }),
 function(req, res) {
 res.redirect('/');
 });

Examples

For complete, working examples, refer to the multiple examples [https://github.com/jaredhanson/passport-local/tree/master/examples] included.

Tests

$ npm install
$ npm test

Credits

		Jared Hanson [http://github.com/jaredhanson]

License

The MIT License [http://opensource.org/licenses/MIT]

Copyright (c) 2011-2014 Jared Hanson <http://jaredhanson.net/>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/passport-local/node_modules/passport-strategy/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

passport-strategy

[image: Build] [http://travis-ci.org/jaredhanson/passport-strategy]
[image: Coverage] [https://coveralls.io/r/jaredhanson/passport-strategy]
[image: Dependencies] [http://david-dm.org/jaredhanson/passport-strategy]

An abstract class implementing Passport [http://passportjs.org/]‘s strategy
API.

Install

$ npm install passport-strategy

Usage

This module exports an abstract Strategy class that is intended to be
subclassed when implementing concrete authentication strategies. Once
implemented, such strategies can be used by applications that utilize Passport
middleware for authentication.

Subclass Strategy

Create a new CustomStrategy constructor which inherits from Strategy:

var util = require('util')
 , Strategy = require('passport-strategy');

function CustomStrategy(...) {
 Strategy.call(this);
}

util.inherits(CustomStrategy, Strategy);

Implement Authentication

Implement autheticate(), performing the necessary operations required by the
authentication scheme or protocol being implemented.

CustomStrategy.prototype.authenticate = function(req, options) {
 // TODO: authenticate request
}

Tests

$ npm install
$ npm test

Credits

		Jared Hanson [http://github.com/jaredhanson]

License

The MIT License [http://opensource.org/licenses/MIT]

Copyright (c) 2011-2013 Jared Hanson <http://jaredhanson.net/>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/body-parser/node_modules/bytes/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-05-05

		add negative support. fixes #6

0.3.0 / 2014-03-19

		added terabyte support

0.2.1 / 2013-04-01

		add .component

0.2.0 / 2012-10-28

		bytes(200).should.eql(‘200b’)

0.1.0 / 2012-07-04

		add bytes to string conversion [yields]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mquery/node_modules/debug/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

debug

tiny node.js debugging utility modelled after node core’s debugging technique.

Installation

$ npm install debug

Usage

With debug you simply invoke the exported function to generate your debug function, passing it a name which will determine if a noop function is returned, or a decorated console.error, so all of the console format string goodies you’re used to work fine. A unique color is selected per-function for visibility.

Example app.js:

var debug = require('debug')('http')
 , http = require('http')
 , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
 debug(req.method + ' ' + req.url);
 res.end('hello\n');
}).listen(3000, function(){
 debug('listening');
});

// fake worker of some kind

require('./worker');

Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
 debug('doing some work');
}, 1000);

The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: debug http and worker]

[image: debug worker]

Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image:]

When stderr is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:
(NOTE: Debug now uses stderr instead of stdout, so the correct shell command for this example is actually DEBUG=* node example/worker 2> out &)

[image:]

Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use ”:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.

Wildcards

The “*” character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect.compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character. For example, DEBUG=* -connect:* would include all debuggers except those starting with “connect:”.

Browser support

Debug works in the browser as well, currently persisted by localStorage. For example if you have worker:a and worker:b as shown below, and wish to debug both type debug.enable('worker:*') in the console and refresh the page, this will remain until you disable with debug.disable().

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
 a('doing some work');
}, 1000);

setInterval(function(){
 a('doing some work');
}, 1200);

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/readdirp/node_modules/readable-stream/node_modules/core-util-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

core-util-is

The util.is* functions introduced in Node v0.12.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mpromise/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.4.3 / 2013-12-17

		fixed; non-A+ behavior on fulfill and reject lbeschastny [https://github.com/lbeschastny]

		tests; simplified harness + compatible with travis + compatible with windows

0.4.2 / 2013-11-26

		fixed; enter the domain only if not the present domain

		added; end returns the promise

0.4.1 / 2013-10-26

		Add all

		Longjohn for easier debugging

		can end a promise chain with an error handler

		Add chain

0.4.0 / 2013-10-24

		fixed; now plays nice with domains #3 refack [https://github.com/refack]

		updated; compatibility for Promises A+ 2.0.0 refack [https://github.com/refack]

		updated; guard against invalid arguments refack [https://github.com/refack]

0.3.0 / 2013-07-25

		updated; sliced to 0.0.5

		fixed; then is passed all fulfillment values

		use setImmediate if available

		conform to Promises A+ 1.1

0.2.1 / 2013-02-09

		fixed; conformancy with A+ 1.2

0.2.0 / 2013-01-09

		added; .end()

		fixed; only catch handler executions

0.1.0 / 2013-01-08

		cleaned up API

		customizable event names

		docs

0.0.1 / 2013-01-07

		original release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mpromise/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

#mpromise

[image: Build Status] [https://travis-ci.org/aheckmann/mpromise]

A promises/A+ [https://github.com/promises-aplus/promises-spec] conformant implementation, written for mongoose [http://mongoosejs.com].

installation

$ npm install mpromise

docs

An mpromise can be in any of three states, pending, fulfilled (success), or rejected (error). Once it is either fulfilled or rejected it’s state can no longer be changed.

The exports object is the Promise constructor.

var Promise = require('mpromise');

The constructor accepts an optional function which is executed when the promise is first resolved (either fulfilled or rejected).

var promise = new Promise(fn);

This is the same as passing the fn to onResolve directly.

var promise = new Promise;
promise.onResolve(function (err, args..) {
 ...
});

Methods

####fulfill

Fulfilling a promise with values:

var promise = new Promise;
promise.fulfill(args...);

If the promise has already been fulfilled or rejected, no action is taken.

####reject

Rejecting a promise with a reason:

var promise = new Promise;
promise.reject(reason);

If the promise has already been fulfilled or rejected, no action is taken.

####resolve

Node.js callback style promise resolution (err, args...):

var promise = new Promise;
promise.resolve([reason], [arg1, arg2, ...]);

If the promise has already been fulfilled or rejected, no action is taken.

####onFulfill

To register a function for execution when the promise is fulfilled, pass it to onFulfill. When executed it will receive the arguments passed to fulfill().

var promise = new Promise;
promise.onFulfill(function (a, b) {
 assert.equal(3, a + b);
});
promise.fulfill(1, 2);

The function will only be called once when the promise is fulfilled, never when rejected.

Registering a function with onFulfill after the promise has already been fulfilled results in the immediate execution of the function with the original arguments used to fulfill the promise.

var promise = new Promise;
promise.fulfill(" :D ");
promise.onFulfill(function (arg) {
 console.log(arg); // logs " :D "
})

####onReject

To register a function for execution when the promise is rejected, pass it to onReject. When executed it will receive the argument passed to reject().

var promise = new Promise;
promise.onReject(function (reason) {
 assert.equal('sad', reason);
});
promise.reject('sad');

The function will only be called once when the promise is rejected, never when fulfilled.

Registering a function with onReject after the promise has already been rejected results in the immediate execution of the function with the original argument used to reject the promise.

var promise = new Promise;
promise.reject(" :(");
promise.onReject(function (reason) {
 console.log(reason); // logs " :("
})

####onResolve

Allows registration of node.js style callbacks (err, args..) to handle either promise resolution type (fulfill or reject).

// fulfillment
var promise = new Promise;
promise.onResolve(function (err, a, b) {
 console.log(a + b); // logs 3
});
promise.fulfill(1, 2);

// rejection
var promise = new Promise;
promise.onResolve(function (err) {
 if (err) {
 console.log(err.message); // logs "failed"
 }
});
promise.reject(new Error('failed'));

####then

Creates a new promise and returns it. If onFulfill or onReject are passed, they are added as SUCCESS/ERROR callbacks to this promise after the nextTick.

Conforms to promises/A+ [https://github.com/promises-aplus/promises-spec] specification and passes its tests [https://github.com/promises-aplus/promises-tests].

// promise.then(onFulfill, onReject);

var p = new Promise;

p.then(function (arg) {
 return arg + 1;
}).then(function (arg) {
 throw new Error(arg + ' is an error!');
}).then(null, function (err) {
 assert.ok(err instanceof Error);
 assert.equal('2 is an error', err.message);
});
p.fullfill(1);

####end

Signifies that this promise was the last in a chain of then()s: if a handler passed to the call to then which produced this promise throws, the exception be rethrown.
You can pass an OnReject handler to end so that exceptions will be handled (like a final catch clause);
This method returns it’s promise for easy use with return.

var p = new Promise;
p.then(function(){ throw new Error('shucks') });
setTimeout(function () {
 p.fulfill();
 // error was caught and swallowed by the promise returned from
 // p.then(). we either have to always register handlers on
 // the returned promises or we can do the following...
}, 10);

// this time we use .end() which prevents catching thrown errors
var p = new Promise;
setTimeout(function () {
 p.fulfill(); // throws "shucks"
}, 10);
return p.then(function(){ throw new Error('shucks') }).end(); // <--

chain

Allows direct promise to promise chaining (especially useful by a outside aggregating function). It doesn’t use the asynchronous resolve algorithm and so excepts only another Promise as it’s argument.

function makeMeAPromise(i) {
 var p = new Promise;
 p.fulfill(i);
 return p;
}

var returnPromise = initialPromise = new Promise;
for (i=0; i<10; ++i)
 returnPromise = returnPromise.chain(makeMeAPromise(i));

initialPromise.fulfill();
return returnPromise;

###Event names

If you’d like to alter this implementations event names used to signify success and failure you may do so by setting Promise.SUCCESS or Promise.FAILURE respectively.

Promise.SUCCESS = 'complete';
Promise.FAILURE = 'err';

###Luke, use the Source
For more ideas read the source [https://github.com/aheckmann/mpromise/blob/master/lib], tests [https://github.com/aheckmann/mpromise/blob/master/test], or the mongoose implementation [https://github.com/LearnBoost/mongoose/blob/3.6x/lib/promise.js].

license

MIT [https://github.com/aheckmann/mpromise/blob/master/LICENSE]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/readdirp/node_modules/readable-stream/node_modules/string_decoder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 string_decoder.js (require('string_decoder')) from Node.js core

Copyright Joyent, Inc. and other Node contributors. See LICENCE file for details.

Version numbers match the versions found in Node core, e.g. 0.10.24 matches Node 0.10.24, likewise 0.11.10 matches Node 0.11.10. Prefer the stable version over the unstable.

The build/ directory contains a build script that will scrape the source from the joyent/node [https://github.com/joyent/node] repo given a specific Node version.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mpath/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #mpath

{G,S}et javascript object values using MongoDB-like path notation.

###Getting

var mpath = require('mpath');

var obj = {
 comments: [
 { title: 'funny' },
 { title: 'exciting!' }
]
}

mpath.get('comments.1.title', obj) // 'exciting!'

mpath.get supports array property notation as well.

var obj = {
 comments: [
 { title: 'funny' },
 { title: 'exciting!' }
]
}

mpath.get('comments.title', obj) // ['funny', 'exciting!']

Array property and indexing syntax, when used together, are very powerful.

var obj = {
 array: [
 { o: { array: [{x: {b: [4,6,8]}}, { y: 10}] }}
 , { o: { array: [{x: {b: [1,2,3]}}, { x: {z: 10 }}, { x: 'Turkey Day' }] }}
 , { o: { array: [{x: {b: null }}, { x: { b: [null, 1]}}] }}
 , { o: { array: [{x: null }] }}
 , { o: { array: [{y: 3 }] }}
 , { o: { array: [3, 0, null] }}
 , { o: { name: 'ha' }}
];
}

var found = mpath.get('array.o.array.x.b.1', obj);

console.log(found); // prints..

 [[6, undefined]
 , [2, undefined, undefined]
 , [null, 1]
 , [null]
 , [undefined]
 , [undefined, undefined, undefined]
 , undefined
]

#####Field selection rules:

The following rules are iteratively applied to each segment in the passed path. For example:

var path = 'one.two.14'; // path
'one' // segment 0
'two' // segment 1
14 // segment 2

		
		when value of the segment parent is not an array, return the value of parent.segment

		
		when value of the segment parent is an array

		a) if the segment is an integer, replace the parent array with the value at parent[segment]

		b) if not an integer, keep the array but replace each array item with the value returned from calling get(remainingSegments, item) or undefined if falsey.

#####Maps

mpath.get also accepts an optional map argument which receives each individual found value. The value returned from the map function will be used in the original found values place.

var obj = {
 comments: [
 { title: 'funny' },
 { title: 'exciting!' }
]
}

mpath.get('comments.title', obj, function (val) {
 return 'funny' == val
 ? 'amusing'
 : val;
});
// ['amusing', 'exciting!']

###Setting

var obj = {
 comments: [
 { title: 'funny' },
 { title: 'exciting!' }
]
}

mpath.set('comments.1.title', 'hilarious', obj)
console.log(obj.comments[1].title) // 'hilarious'

mpath.set supports the same array property notation as mpath.get.

var obj = {
 comments: [
 { title: 'funny' },
 { title: 'exciting!' }
]
}

mpath.set('comments.title', ['hilarious', 'fruity'], obj);

console.log(obj); // prints..

 { comments: [
 { title: 'hilarious' },
 { title: 'fruity' }
]}

Array property and indexing syntax can be used together also when setting.

var obj = {
 array: [
 { o: { array: [{x: {b: [4,6,8]}}, { y: 10}] }}
 , { o: { array: [{x: {b: [1,2,3]}}, { x: {z: 10 }}, { x: 'Turkey Day' }] }}
 , { o: { array: [{x: {b: null }}, { x: { b: [null, 1]}}] }}
 , { o: { array: [{x: null }] }}
 , { o: { array: [{y: 3 }] }}
 , { o: { array: [3, 0, null] }}
 , { o: { name: 'ha' }}
]
}

mpath.set('array.1.o', 'this was changed', obj);

console.log(require('util').inspect(obj, false, 1000)); // prints..

{
 array: [
 { o: { array: [{x: {b: [4,6,8]}}, { y: 10}] }}
 , { o: 'this was changed' }
 , { o: { array: [{x: {b: null }}, { x: { b: [null, 1]}}] }}
 , { o: { array: [{x: null }] }}
 , { o: { array: [{y: 3 }] }}
 , { o: { array: [3, 0, null] }}
 , { o: { name: 'ha' }}
];
}

mpath.set('array.o.array.x', 'this was changed too', obj);

console.log(require('util').inspect(obj, false, 1000)); // prints..

{
 array: [
 { o: { array: [{x: 'this was changed too'}, { y: 10, x: 'this was changed too'}] }}
 , { o: 'this was changed' }
 , { o: { array: [{x: 'this was changed too'}, { x: 'this was changed too'}] }}
 , { o: { array: [{x: 'this was changed too'}] }}
 , { o: { array: [{x: 'this was changed too', y: 3 }] }}
 , { o: { array: [3, 0, null] }}
 , { o: { name: 'ha' }}
];
}

####Setting arrays

By default, setting a property within an array to another array results in each element of the new array being set to the item in the destination array at the matching index. An example is helpful.

var obj = {
 comments: [
 { title: 'funny' },
 { title: 'exciting!' }
]
}

mpath.set('comments.title', ['hilarious', 'fruity'], obj);

console.log(obj); // prints..

 { comments: [
 { title: 'hilarious' },
 { title: 'fruity' }
]}

If we do not desire this destructuring-like assignment behavior we may instead specify the $ operator in the path being set to force the array to be copied directly.

var obj = {
 comments: [
 { title: 'funny' },
 { title: 'exciting!' }
]
}

mpath.set('comments.$.title', ['hilarious', 'fruity'], obj);

console.log(obj); // prints..

 { comments: [
 { title: ['hilarious', 'fruity'] },
 { title: ['hilarious', 'fruity'] }
]}

####Field assignment rules

The rules utilized mirror those used on mpath.get, meaning we can take values returned from mpath.get, update them, and reassign them using mpath.set. Note that setting nested arrays of arrays can get unweildy quickly. Check out the tests [https://github.com/aheckmann/mpath/blob/master/test/index.js] for more extreme examples.

#####Maps

mpath.set also accepts an optional map argument which receives each individual value being set. The value returned from the map function will be used in the original values place.

var obj = {
 comments: [
 { title: 'funny' },
 { title: 'exciting!' }
]
}

mpath.set('comments.title', ['hilarious', 'fruity'], obj, function (val) {
 return val.length;
});

console.log(obj); // prints..

 { comments: [
 { title: 9 },
 { title: 6 }
]}

Custom object types

Sometimes you may want to enact the same functionality on custom object types that store all their real data internally, say for an ODM type object. No fear, mpath has you covered. Simply pass the name of the property being used to store the internal data and it will be traversed instead:

var mpath = require('mpath');

var obj = {
 comments: [
 { title: 'exciting!', _doc: { title: 'great!' }}
]
}

mpath.get('comments.0.title', obj, '_doc') // 'great!'
mpath.set('comments.0.title', 'nov 3rd', obj, '_doc')
mpath.get('comments.0.title', obj, '_doc') // 'nov 3rd'
mpath.get('comments.0.title', obj) // 'exciting'

When used with a map, the map argument comes last.

mpath.get(path, obj, '_doc', map);
mpath.set(path, val, obj, '_doc', map);

LICENSE [https://github.com/aheckmann/mpath/blob/master/LICENSE]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/readdirp/node_modules/readable-stream/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js

Ever find yourself doing math in your head or writing 1000 * 60 * 60 …?
Don’t want to add obstrusive Number prototype extensions to your reusable
/ distributable modules and projects?

ms is a tiny utility that you can leverage when your application needs to
accept a number of miliseconds as a parameter.

If a number is supplied to ms, it returns it immediately (e.g:
If a string that contains the number is supplied, it returns it immediately as
a number (e.g: it returns 100 for '100').

However, if you pass a string with a number and a valid unit, hte number of
equivalent ms is returned.

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5ms') // 5000
ms('100') // '100'
ms(100) // 100

How to use

Node

require('ms')

Browser

<script src="ms.js"></script>

Credits

(The MIT License)

Copyright (c) 2011 Guillermo Rauch

<

guillermo@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/fsevents/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

FSEvents [image: NPM] [https://nodei.co/npm/fsevents/]

Native Access to Mac OS-X FSEvents

		Node.js [http://nodejs.org/]

		Github repo [https://github.com/pipobscure/fsevents.git]

		Module Site [https://github.com/pipobscure/fsevents]

		NPM Page [https://npmjs.org/package/fsevents]

Installation

$ npm install -g node-gyp
$ git clone https://github.com/pipobscure/fsevents.git fsevents
$ cd fsevents
$ node-gyp configure build

OR SIMPLY

$ npm install fsevents

Usage

var fsevents = require('fsevents');
var watcher = fsevents(__dirname);
watcher.on('fsevent', function(path, flags, id) { }); // RAW Event as emitted by OS-X
watcher.on('change', function(path, info) {}); // Common Event for all changes
watcher.start() // To start observation
watcher.stop() // To end observation

Events

		fsevent - RAW Event as emitted by OS-X

		change - Common Event for all changes

		created - A File-System-Item has been created

		deleted - A File-System-Item has been deleted

		modified - A File-System-Item has been modified

		moved-out - A File-System-Item has been moved away from this location

		moved-in - A File-System-Item has been moved into this location

All events except fsevent take an info object as the second parameter of the callback. The structure of this object is:

{
 "event": "<event-type>",
 "id": <eventi-id>,
 "path": "<path-that-this-is-about>",
 "type": "<file|directory|symlink>",
 "changes": {
 "inode": true, // Has the iNode Meta-Information changed
 "finder": false, // Has the Finder Meta-Data changed
 "access": false, // Have the access permissions changed
 "xattrs": false // Have the xAttributes changed
 },
 "flags": <raw-flags>
}

MIT License

Copyright (C) 2010-2014 Philipp Dunkel

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/regexp-clone/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

#regexp-clone

Clones RegExps with flag preservation

var regexpClone = require('regexp-clone');

var a = /somethin/g;
console.log(a.global); // true

var b = regexpClone(a);
console.log(b.global); // true

License

MIT [https://github.com/aheckmann/regexp-clone/blob/master/LICENSE]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/readdirp/examples/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readdirp examples

How to run the examples

Assuming you installed readdirp (npm install readdirp), you can do the following:

		npm explore readdirp

		cd examples

		npm install

At that point you can run the examples with node, i.e., node grep.

stream api

stream-api.js [https://github.com/thlorenz/readdirp/blob/master/examples/stream-api.js]

Demonstrates error and data handling by listening to events emitted from the readdirp stream.

stream api pipe

stream-api-pipe.js [https://github.com/thlorenz/readdirp/blob/master/examples/stream-api-pipe.js]

Demonstrates error handling by listening to events emitted from the readdirp stream and how to pipe the data stream into
another destination stream.

grep

grep.js [https://github.com/thlorenz/readdirp/blob/master/examples/grep.js]

Very naive implementation of grep, for demonstration purposes only.

using callback api

callback-api.js [https://github.com/thlorenz/readdirp/blob/master/examples/callback-api.js]

Shows how to pass callbacks in order to handle errors and/or data.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mpath/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.1.1 / 2012-12-21

		added; map support

0.1.0 / 2012-12-13

		added; set(‘array.property’, val, object) support

		added; get(‘array.property’, object) support

0.0.1 / 2012-11-03

		initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/fsevents/node_modules/nan/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

NAN ChangeLog

Version 1.3.0: current Node unstable: 0.11.13, Node stable: 0.10.30

1.3.0 Aug 2 2014

		Added NanNew<v8::String, std::string>(std::string)

		Added NanNew<v8::String, std::string&>(std::string&)

		Added NanAsciiString helper class

		Added NanUtf8String helper class

		Added NanUcs2String helper class

		Deprecated NanRawString()

		Deprecated NanCString()

		Added NanGetIsolateData(v8::Isolate *isolate)

		Added NanMakeCallback(v8::Handle<v8::Object> target, v8::Handle<v8::Function> func, int argc, v8::Handle<v8::Value>* argv)

		Added NanMakeCallback(v8::Handle<v8::Object> target, v8::Handle<v8::String> symbol, int argc, v8::Handle<v8::Value>* argv)

		Added NanMakeCallback(v8::Handle<v8::Object> target, const char* method, int argc, v8::Handle<v8::Value>* argv)

		Added NanSetTemplate(v8::Handle<v8::Template> templ, v8::Handle<v8::String> name , v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

		Added NanSetPrototypeTemplate(v8::Local<v8::FunctionTemplate> templ, v8::Handle<v8::String> name, v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

		Added NanSetInstanceTemplate(v8::Local<v8::FunctionTemplate> templ, const char *name, v8::Handle<v8::Data> value)

		Added NanSetInstanceTemplate(v8::Local<v8::FunctionTemplate> templ, v8::Handle<v8::String> name, v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

1.2.0 Jun 5 2014

		Add NanSetPrototypeTemplate

		Changed NAN_WEAK_CALLBACK internals, switched _NanWeakCallbackData to class,
introduced _NanWeakCallbackDispatcher

		Removed -Wno-unused-local-typedefs from test builds

		Made test builds Windows compatible (‘Sleep()’)

1.1.2 May 28 2014

		Release to fix more stuff-ups in 1.1.1

1.1.1 May 28 2014

		Release to fix version mismatch in nan.h and lack of changelog entry for 1.1.0

1.1.0 May 25 2014

		Remove nan_isolate, use v8::Isolate::GetCurrent() internally instead

		Additional explicit overloads for NanNew(): (char,int), (uint8_t[,int]),
(uint16_t[,int), double, int, unsigned int, bool, v8::String::ExternalStringResource,
v8::String::ExternalAsciiStringResource*

		Deprecate NanSymbol()

		Added SetErrorMessage() and ErrorMessage() to NanAsyncWorker

1.0.0 May 4 2014

		Heavy API changes for V8 3.25 / Node 0.11.13

		Use cpplint.py

		Removed NanInitPersistent

		Removed NanPersistentToLocal

		Removed NanFromV8String

		Removed NanMakeWeak

		Removed NanNewLocal

		Removed NAN_WEAK_CALLBACK_OBJECT

		Removed NAN_WEAK_CALLBACK_DATA

		Introduce NanNew, replaces NanNewLocal, NanPersistentToLocal, adds many overloaded typed versions

		Introduce NanUndefined, NanNull, NanTrue and NanFalse

		Introduce NanEscapableScope and NanEscapeScope

		Introduce NanMakeWeakPersistent (requires a special callback to work on both old and new node)

		Introduce NanMakeCallback for node::MakeCallback

		Introduce NanSetTemplate

		Introduce NanGetCurrentContext

		Introduce NanCompileScript and NanRunScript

		Introduce NanAdjustExternalMemory

		Introduce NanAddGCEpilogueCallback, NanAddGCPrologueCallback, NanRemoveGCEpilogueCallback, NanRemoveGCPrologueCallback

		Introduce NanGetHeapStatistics

		Rename NanAsyncWorker#SavePersistent() to SaveToPersistent()

0.8.0 Jan 9 2014

		NanDispose -> NanDisposePersistent, deprecate NanDispose

		Extract NANRETURN_TYPE, pull up NAN()

0.7.1 Jan 9 2014

		Fixes to work against debug builds of Node

		Safer NanPersistentToLocal (avoid reinterpret_cast)

		Speed up common NanRawString case by only extracting flattened string when necessary

0.7.0 Dec 17 2013

		New no-arg form of NanCallback() constructor.

		NanCallback#Call takes Handle rather than Local

		Removed deprecated NanCallback#Run method, use NanCallback#Call instead

		Split off NAN*_ARGS_TYPE from NAN*_ARGS

		Restore (unofficial) Node 0.6 compatibility at NanCallback#Call()

		Introduce NanRawString() for char* (or appropriate void*) from v8::String
(replacement for NanFromV8String)

		Introduce NanCString() for null-terminated char* from v8::String

0.6.0 Nov 21 2013

		Introduce NanNewLocal(v8::Handle value) for use in place of
v8::Local::New(...) since v8 started requiring isolate in Node 0.11.9

0.5.2 Nov 16 2013

		Convert SavePersistent and GetFromPersistent in NanAsyncWorker from protected and public

0.5.1 Nov 12 2013

		Use node::MakeCallback() instead of direct v8::Function::Call()

0.5.0 Nov 11 2013

		Added @TooTallNate as collaborator

		New, much simpler, “include_dirs” for binding.gyp

		Added full range of NAN_INDEX_* macros to match NAN_PROPERTY_* macros

0.4.4 Nov 2 2013

		Isolate argument from v8::Persistent::MakeWeak removed for 0.11.8+

0.4.3 Nov 2 2013

		Include node_object_wrap.h, removed from node.h for Node 0.11.8.

0.4.2 Nov 2 2013

		Handle deprecation of v8::Persistent::Dispose(v8::Isolate* isolate)) for
Node 0.11.8 release.

0.4.1 Sep 16 2013

		Added explicit #include <uv.h> as it was removed from node.h for v0.11.8

0.4.0 Sep 2 2013

		Added NAN_INLINE and NAN_DEPRECATED and made use of them

		Added NanError, NanTypeError and NanRangeError

		Cleaned up code

0.3.2 Aug 30 2013

		Fix missing scope declaration in GetFromPersistent() and SaveToPersistent
in NanAsyncWorker

0.3.1 Aug 20 2013

		fix “not all control paths return a value” compile warning on some platforms

0.3.0 Aug 19 2013

		Made NAN work with NPM

		Lots of fixes to NanFromV8String, pulling in features from new Node core

		Changed node::encoding to Nan::Encoding in NanFromV8String to unify the API

		Added optional error number argument for NanThrowError()

		Added NanInitPersistent()

		Added NanReturnNull() and NanReturnEmptyString()

		Added NanLocker and NanUnlocker

		Added missing scopes

		Made sure to clear disposed Persistent handles

		Changed NanAsyncWorker to allocate error messages on the heap

		Changed NanThrowError(Local) to NanThrowError(Handle)

		Fixed leak in NanAsyncWorker when errmsg is used

0.2.2 Aug 5 2013

		Fixed usage of undefined variable with node::BASE64 in NanFromV8String()

0.2.1 Aug 5 2013

		Fixed 0.8 breakage, node::BUFFER encoding type not available in 0.8 for
NanFromV8String()

0.2.0 Aug 5 2013

		Added NAN_PROPERTY_GETTER, NAN_PROPERTY_SETTER, NAN_PROPERTY_ENUMERATOR,
NAN_PROPERTY_DELETER, NAN_PROPERTY_QUERY

		Extracted _NAN_METHOD_ARGS, _NAN_GETTER_ARGS, _NAN_SETTER_ARGS,
_NAN_PROPERTY_GETTER_ARGS, _NAN_PROPERTY_SETTER_ARGS,
_NAN_PROPERTY_ENUMERATOR_ARGS, _NAN_PROPERTY_DELETER_ARGS,
_NAN_PROPERTY_QUERY_ARGS

		Added NanGetInternalFieldPointer, NanSetInternalFieldPointer

		Added NAN_WEAK_CALLBACK, NAN_WEAK_CALLBACK_OBJECT,
NAN_WEAK_CALLBACK_DATA, NanMakeWeak

		Renamed THROW_ERROR to _NAN_THROW_ERROR

		Added NanNewBufferHandle(char, size_t, node::smalloc::FreeCallback, void)

		Added NanBufferUse(char*, uint32_t)

		Added NanNewContextHandle(v8::ExtensionConfiguration*,
v8::Handle<v8::ObjectTemplate>, v8::Handle<v8::Value>)

		Fixed broken NanCallback#GetFunction()

		Added optional encoding and size arguments to NanFromV8String()

		Added NanGetPointerSafe() and NanSetPointerSafe()

		Added initial test suite (to be expanded)

		Allow NanUInt32OptionValue to convert any Number object

0.1.0 Jul 21 2013

		Added NAN_GETTER, NAN_SETTER

		Added NanThrowError with single Local argument

		Added NanNewBufferHandle with single uint32_t argument

		Added NanHasInstance(Persistent<FunctionTemplate>&, Handle<Value>)

		Added Local<Function> NanCallback#GetFunction()

		Added NanCallback#Call(int, Local<Value>[])

		Deprecated NanCallback#Run(int, Local<Value>[]) in favour of Call

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/hooks/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

hooks

Add pre and post middleware hooks to your JavaScript methods.

Installation

npm install hooks

Motivation

Suppose you have a JavaScript object with a save method.

It would be nice to be able to declare code that runs before save and after save.
For example, you might want to run validation code before every save,
and you might want to dispatch a job to a background job queue after save.

One might have an urge to hard code this all into save, but that turns out to
couple all these pieces of functionality (validation, save, and job creation) more
tightly than is necessary. For example, what if someone does not want to do background
job creation after the logical save?

It is nicer to tack on functionality using what we call pre and post hooks. These
are functions that you define and that you direct to execute before or after particular
methods.

Example

We can use hooks to add validation and background jobs in the following way:

var hooks = require('hooks')
 , Document = require('./path/to/some/document/constructor');

// Add hooks' methods: `hook`, `pre`, and `post`
for (var k in hooks) {
 Document[k] = hooks[k];
}

// Define a new method that is able to invoke pre and post middleware
Document.hook('save', Document.prototype.save);

// Define a middleware function to be invoked before 'save'
Document.pre('save', function validate (next) {
 // The `this` context inside of `pre` and `post` functions
 // is the Document instance
 if (this.isValid()) next(); // next() passes control to the next middleware
 // or to the target method itself
 else next(new Error("Invalid")); // next(error) invokes an error callback
});

// Define a middleware function to be invoked after 'save'
Document.post('save', function createJob () {
 this.sendToBackgroundQueue();
});

If you already have defined Document.prototype methods for which you want pres and posts,
then you do not need to explicitly invoke Document.hook(...). Invoking Document.pre(methodName, fn)
or Document.post(methodName, fn) will automatically and lazily change Document.prototype[methodName]
so that it plays well with hooks. An equivalent way to implement the previous example is:

var hooks = require('hooks')
 , Document = require('./path/to/some/document/constructor');

// Add hooks' methods: `hook`, `pre`, and `post`
for (var k in hooks) {
 Document[k] = hooks[k];
}

Document.prototype.save = function () {
 // ...
};

// Define a middleware function to be invoked before 'save'
Document.pre('save', function validate (next) {
 // The `this` context inside of `pre` and `post` functions
 // is the Document instance
 if (this.isValid()) next(); // next() passes control to the next middleware
 // or to the target method itself
 else next(new Error("Invalid")); // next(error) invokes an error callback
});

// Define a middleware function to be invoked after 'save'
Document.post('save', function createJob () {
 this.sendToBackgroundQueue();
});

Pres and Posts as Middleware

We structure pres and posts as middleware to give you maximum flexibility:

		You can define multiple pres (or posts) for a single method.

		These pres (or posts) are then executed as a chain of methods.

		Any functions in this middleware chain can choose to halt the chain’s execution by nexting an Error from that middleware function. If this occurs, then none of the other middleware in the chain will execute, and the main method (e.g., save) will not execute. This is nice, for example, when we don’t want a document to save if it is invalid.

Defining multiple pres (or posts)

pre is chainable, so you can define multiple pres via:
Document.pre(‘save’, function (next, halt) {
console.log(“hello”);
}).pre(‘save’, function (next, halt) {
console.log(“world”);
});

As soon as one pre finishes executing, the next one will be invoked, and so on.

Error Handling

You can define a default error handler by passing a 2nd function as the 3rd argument to hook:
Document.hook(‘set’, function (path, val) {
this[path] = val;
}, function (err) {
// Handler the error here
console.error(err);
});

Then, we can pass errors to this handler from a pre or post middleware function:
Document.pre(‘set’, function (next, path, val) {
next(new Error());
});

If you do not set up a default handler, then hooks makes the default handler that just throws the Error.

The default error handler can be over-rided on a per method invocation basis.

If the main method that you are surrounding with pre and post middleware expects its last argument to be a function
with callback signature function (error, ...), then that callback becomes the error handler, over-riding the default
error handler you may have set up.

Document.hook('save', function (callback) {
 // Save logic goes here
 ...
});

var doc = new Document();
doc.save(function (err, saved) {
 // We can pass err via `next` in any of our pre or post middleware functions
 if (err) console.error(err);

 // Rest of callback logic follows ...
});

Mutating Arguments via Middleware

pre and post middleware can also accept the intended arguments for the method
they augment. This is useful if you want to mutate the arguments before passing
them along to the next middleware and eventually pass a mutated arguments list to
the main method itself.

As a simple example, let’s define a method set that just sets a key, value pair.
If we want to namespace the key, we can do so by adding a pre middleware hook
that runs before set, alters the arguments by namespacing the key argument, and passes them onto set:

Document.hook('set', function (key, val) {
 this[key] = val;
});
Document.pre('set', function (next, key, val) {
 next('namespace-' + key, val);
});
var doc = new Document();
doc.set('hello', 'world');
console.log(doc.hello); // undefined
console.log(doc['namespace-hello']); // 'world'

As you can see above, we pass arguments via next.

If you are not mutating the arguments, then you can pass zero arguments
to next, and the next middleware function will still have access
to the arguments.

Document.hook('set', function (key, val) {
 this[key] = val;
});
Document.pre('set', function (next, key, val) {
 // I have access to key and val here
 next(); // We don't need to pass anything to next
});
Document.pre('set', function (next, key, val) {
 // And I still have access to the original key and val here
 next();
});

Finally, you can add arguments that downstream middleware can also see:

// Note that in the definition of `set`, there is no 3rd argument, options
Document.hook('set', function (key, val) {
 // But...
 var options = arguments[2]; // ...I have access to an options argument
 // because of pre function pre2 (defined below)
 console.log(options); // '{debug: true}'
 this[key] = val;
});
Document.pre('set', function pre1 (next, key, val) {
 // I only have access to key and val arguments
 console.log(arguments.length); // 3
 next(key, val, {debug: true});
});
Document.pre('set', function pre2 (next, key, val, options) {
 console.log(arguments.length); // 4
 console.log(options); // '{ debug: true}'
 next();
});
Document.pre('set', function pre3 (next, key, val, options) {
 // I still have access to key, val, AND the options argument introduced via the preceding middleware
 console.log(arguments.length); // 4
 console.log(options); // '{ debug: true}'
 next();
});

var doc = new Document()
doc.set('hey', 'there');

Parallel pre middleware

All middleware up to this point has been “serial” middleware – i.e., middleware whose logic
is executed as a serial chain.

Some scenarios call for parallel middleware – i.e., middleware that can wait for several
asynchronous services at once to respond.

For instance, you may only want to save a Document only after you have checked
that the Document is valid according to two different remote services.

We accomplish asynchronous middleware by adding a second kind of flow control callback
(the only flow control callback so far has been next), called done.

		next passes control to the next middleware in the chain

		done keeps track of how many parallel middleware have invoked done and passes
control to the target method when ALL parallel middleware have invoked done. If
you pass an Error to done, then the error is handled, and the main method that is
wrapped by pres and posts will not get invoked.

We declare pre middleware that is parallel by passing a 3rd boolean argument to our pre
definition method.

We illustrate via the parallel validation example mentioned above:

Document.hook('save', function targetFn (callback) {
 // Save logic goes here
 // ...
 // This only gets run once the two `done`s are both invoked via preOne and preTwo.
});

 // true marks this as parallel middleware
Document.pre('save', true, function preOne (next, doneOne, callback) {
 remoteServiceOne.validate(this.serialize(), function (err, isValid) {
 // The code in here will probably be run after the `next` below this block
 // and could possibly be run after the console.log("Hola") in `preTwo
 if (err) return doneOne(err);
 if (isValid) doneOne();
 });
 next(); // Pass control to the next middleware
});

// We will suppose that we need 2 different remote services to validate our document
Document.pre('save', true, function preTwo (next, doneTwo, callback) {
 remoteServiceTwo.validate(this.serialize(), function (err, isValid) {
 if (err) return doneTwo(err);
 if (isValid) doneTwo();
 });
 next();
});

// While preOne and preTwo are parallel, preThree is a serial pre middleware
Document.pre('save', function preThree (next, callback) {
 next();
});

var doc = new Document();
doc.save(function (err, doc) {
 // Do stuff with the saved doc here...
});

In the above example, flow control may happen in the following way:

(1) doc.save -> (2) preOne –(next)–> (3) preTwo –(next)–> (4) preThree –(next)–> (wait for dones to invoke) -> (5) doneTwo -> (6) doneOne -> (7) targetFn

So what’s happening is that:

		You call doc.save(...)

		First, your preOne middleware gets executed. It makes a remote call to the validation service and next()s to the preTwo middleware.

		Now, your preTwo middleware gets executed. It makes a remote call to another validation service and next()s to the preThree middleware.

		Your preThree middleware gets executed. It immediately next()s. But nothing else gets executing until both doneOne and doneTwo are invoked inside the callbacks handling the response from the two valiation services.

		We will suppose that validation remoteServiceTwo returns a response to us first. In this case, we call doneTwo inside the callback to remoteServiceTwo.

		Some fractions of a second later, remoteServiceOne returns a response to us. In this case, we call doneOne inside the callback to remoteServiceOne.

		hooks implementation keeps track of how many parallel middleware has been defined per target function. It detects that both asynchronous pre middlewares (preOne and preTwo) have finally called their done functions (doneOne and doneTwo), so the implementation finally invokes our targetFn (i.e., our core save business logic).

Removing Pres

You can remove a particular pre associated with a hook:

Document.pre('set', someFn);
Document.removePre('set', someFn);

And you can also remove all pres associated with a hook:
Document.removePre(‘set’); // Removes all declared pres on the hook ‘set’

Tests

To run the tests:
make test

Contributors

		Brian Noguchi [https://github.com/bnoguchi]

License

MIT License

Author

Brian Noguchi

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/fsevents/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Native Access to Mac OS-X FSEvents - Change-Log

Version 0.0.1

		Basic functionality

Version 0.1.2

		Finally made the Jump to node 0.8+ with this module.

		Much more Event-Details

Version 0.2.0

		More or less complete rewrite to keep up with ever changing binary compile issues

		Utilizing the “Power of Nan” [http://npmjs.org/package/nan] (Thank you rvag [https://github.com/rvag])

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/regexp-clone/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.0.1 / 2013-04-17

		initial commit

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/async-each/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

async-each 0.1.6 (5 November 2014)

		Add license to package.json

async-each 0.1.5 (22 October 2014)

		Clean up package.json to fix npm warning about repo

async-each 0.1.4 (12 November 2013)

		Fixed AMD definition.

async-each 0.1.3 (25 July 2013)

		Fixed double wrapping of errors.

async-each 0.1.2 (7 July 2013)

		Fixed behaviour on empty arrays.

async-each 0.1.1 (14 June 2013)

		Wrapped function in closure, enabled strict mode.

async-each 0.1.0 (14 June 2013)

		Initial release.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/fsevents/node_modules/nan/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Native Abstractions for Node.js

A header file filled with macro and utility goodness for making add-on development for Node.js easier across versions 0.8, 0.10 and 0.11, and eventually 0.12.

Current version: 1.3.0

(See nan.h [https://github.com/rvagg/nan/blob/master/CHANGELOG.md] for complete ChangeLog)

[image: NPM] [https://nodei.co/npm/nan/] [image: NPM] [https://nodei.co/npm/nan/]

[image: Build Status] [http://travis-ci.org/rvagg/nan]
[image: Build status] [https://ci.appveyor.com/project/RodVagg/nan]

Thanks to the crazy changes in V8 (and some in Node core), keeping native addons compiling happily across versions, particularly 0.10 to 0.11/0.12, is a minor nightmare. The goal of this project is to store all logic necessary to develop native Node.js addons without having to inspect NODE_MODULE_VERSION and get yourself into a macro-tangle.

This project also contains some helper utilities that make addon development a bit more pleasant.

		News & Updates

		Usage

		Example

		API

[bookmark: news]

News & Updates

Aug-2014: 1.3.0 release

		NanCString() and NanRawString() have been deprecated in favour of new NanAsciiString, NanUtf8String and NanUcs2String. These classes manage the underlying memory for you in a safer way than just handing off an allocated array. You should now *NanAsciiString(handle) to access the raw char data, you can also allocate on the heap if you need to keep a reference.

		Two more NanMakeCallback overloads have been added to for parity with Node core.

		You can now NanNew(std::string) (use NanNew<std::string&>(std::string&) to pass by reference)

		NanSetTemplate, NanSetPrototypeTemplate and NanSetInstanceTemplate have been added.

May-2014: 1.1.0 release

		We’ve deprecated NanSymbol(), you should just use NanNew<String>() now.

		NanNull(), NanUndefined(), NanTrue(), NanFalse() all return Locals now.

		nan_isolate is gone, it was intended to be internal-only but if you were using it then you should switch to v8::Isolate::GetCurrent().

		NanNew() has received some additional overload-love so you should be able to give it many kinds of values without specifying the <Type>.

		Lots of small fixes and additions to expand the V8 API coverage, use the source, Luke.

May-2014: Major changes for V8 3.25 / Node 0.11.13

Node 0.11.11 and 0.11.12 were both broken releases for native add-ons, you simply can’t properly compile against either of them for different reasons. But we now have a 0.11.13 release that jumps a couple of versions of V8 ahead and includes some more, major (traumatic) API changes.

Because we are now nearing Node 0.12 and estimate that the version of V8 we are using in Node 0.11.13 will be close to the API we get for 0.12, we have taken the opportunity to not only fix NAN for 0.11.13 but make some major changes to improve the NAN API.

We have removed support for Node 0.11 versions prior to 0.11.13. As usual, our tests are run against (and pass) the last 5 versions of Node 0.8 and Node 0.10. We also include Node 0.11.13 obviously.

The major change is something that Benjamin Byholm has put many hours in to. We now have a fantastic new NanNew<T>(args) interface for creating new Locals, this replaces NanNewLocal() and much more. If you look in ./nan.h you’ll see a large number of overloaded versions of this method. In general you should be able to NanNew<Type>(arguments) for any type you want to make a Local from. This includes Persistent types, so we now have a Local<T> NanNew(const Persistent<T> arg) to replace NanPersistentToLocal().

We also now have NanUndefined(), NanNull(), NanTrue() and NanFalse(). Mainly because of the new requirement for an Isolate argument for each of the native V8 versions of this.

V8 has now introduced an EscapableHandleScope from which you scope.Escape(Local<T> value) to return a value from a one scope to another. This replaces the standard HandleScope and scope.Close(Local<T> value), although HandleScope still exists for when you don’t need to return a handle to the caller. For NAN we are exposing it as NanEscapableScope() and NanEscapeScope(), while NanScope() is still how you create a new scope that doesn’t need to return handles. For older versions of Node/V8, it’ll still map to the older HandleScope functionality.

NanFromV8String() was deprecated and has now been removed. You should use NanCString() or NanRawString() instead.

Because node::MakeCallback() now takes an Isolate, and because it doesn’t exist in older versions of Node, we’ve introduced NanMakeCallback(). You should always use this when calling a JavaScript function from C++.

There’s lots more, check out the Changelog in nan.h or look through #86 [https://github.com/rvagg/nan/pull/86] for all the gory details.

Dec-2013: NanCString and NanRawString

Two new functions have been introduced to replace the functionality that’s been provided by NanFromV8String until now. NanCString has sensible defaults so it’s super easy to fetch a null-terminated c-style string out of a v8::String. NanFromV8String is still around and has defaults that allow you to pass a single handle to fetch a char* while NanRawString requires a little more attention to arguments.

Nov-2013: Node 0.11.9+ breaking V8 change

The version of V8 that’s shipping with Node 0.11.9+ has changed the signature for new Locals to: v8::Local<T>::New(isolate, value), i.e. introducing the isolate argument and therefore breaking all new Local declarations for previous versions. NAN 0.6+ now includes a NanNewLocal<T>(value) that can be used in place to work around this incompatibility and maintain compatibility with 0.8->0.11.9+ (minus a few early 0.11 releases).

For example, if you wanted to return a null on a callback you will have to change the argument from v8::Local<v8::Value>::New(v8::Null()) to NanNewLocal<v8::Value>(v8::Null()).

Nov-2013: Change to binding.gyp "include_dirs" for NAN

Inclusion of NAN in a project’s binding.gyp is now greatly simplified. You can now just use "<!(node -e \"require('nan')\")" in your "include_dirs", see example below (note Windows needs the quoting around require to be just right: "require('nan')" with appropriate \ escaping).

[bookmark: usage]

Usage

Simply add NAN as a dependency in the package.json of your Node addon:

$ npm install --save nan

Pull in the path to NAN in your binding.gyp so that you can use #include <nan.h> in your .cpp files:

"include_dirs" : [
 "<!(node -e \"require('nan')\")"
]

This works like a -I<path-to-NAN> when compiling your addon.

[bookmark: example]

Example

See LevelDOWN [https://github.com/rvagg/node-leveldown/pull/48] for a full example of NAN in use.

For a simpler example, see the async pi estimation example [https://github.com/rvagg/nan/tree/master/examples/async_pi_estimate] in the examples directory for full code and an explanation of what this Monte Carlo Pi estimation example does. Below are just some parts of the full example that illustrate the use of NAN.

Compare to the current 0.10 version of this example, found in the node-addon-examples [https://github.com/rvagg/node-addon-examples/tree/master/9_async_work] repository and also a 0.11 version of the same found here [https://github.com/kkoopa/node-addon-examples/tree/5c01f58fc993377a567812597e54a83af69686d7/9_async_work].

Note that there is no embedded version sniffing going on here and also the async work is made much simpler, see below for details on the NanAsyncWorker class.

// addon.cc
#include <node.h>
#include <nan.h>
// ...

using v8::FunctionTemplate;
using v8::Handle;
using v8::Object;
using v8::String;

void InitAll(Handle<Object> exports) {
 exports->Set(NanNew<String>("calculateSync"),
 NanNew<FunctionTemplate>(CalculateSync)->GetFunction());

 exports->Set(NanNew<String>("calculateAsync"),
 NanNew<FunctionTemplate>(CalculateAsync)->GetFunction());
}

NODE_MODULE(addon, InitAll)

// sync.h
#include <node.h>
#include <nan.h>

NAN_METHOD(CalculateSync);

// sync.cc
#include <node.h>
#include <nan.h>
#include "./sync.h"
// ...

using v8::Number;

// Simple synchronous access to the `Estimate()` function
NAN_METHOD(CalculateSync) {
 NanScope();

 // expect a number as the first argument
 int points = args[0]->Uint32Value();
 double est = Estimate(points);

 NanReturnValue(NanNew<Number>(est));
}

// async.h
#include <node.h>
#include <nan.h>

NAN_METHOD(CalculateAsync);

// async.cc
#include <node.h>
#include <nan.h>
#include "./async.h"

// ...

using v8::Function;
using v8::Local;
using v8::Null;
using v8::Number;
using v8::Value;

class PiWorker : public NanAsyncWorker {
 public:
 PiWorker(NanCallback *callback, int points)
 : NanAsyncWorker(callback), points(points) {}
 ~PiWorker() {}

 // Executed inside the worker-thread.
 // It is not safe to access V8, or V8 data structures
 // here, so everything we need for input and output
 // should go on `this`.
 void Execute () {
 estimate = Estimate(points);
 }

 // Executed when the async work is complete
 // this function will be run inside the main event loop
 // so it is safe to use V8 again
 void HandleOKCallback () {
 NanScope();

 Local<Value> argv[] = {
 NanNull()
 , NanNew<Number>(estimate)
 };

 callback->Call(2, argv);
 };

 private:
 int points;
 double estimate;
};

// Asynchronous access to the `Estimate()` function
NAN_METHOD(CalculateAsync) {
 NanScope();

 int points = args[0]->Uint32Value();
 NanCallback *callback = new NanCallback(args[1].As<Function>());

 NanAsyncQueueWorker(new PiWorker(callback, points));
 NanReturnUndefined();
}

[bookmark: api]

API

		NAN_METHOD

		NAN_GETTER

		NAN_SETTER

		NAN_PROPERTY_GETTER

		NAN_PROPERTY_SETTER

		NAN_PROPERTY_ENUMERATOR

		NAN_PROPERTY_DELETER

		NAN_PROPERTY_QUERY

		NAN_INDEX_GETTER

		NAN_INDEX_SETTER

		NAN_INDEX_ENUMERATOR

		NAN_INDEX_DELETER

		NAN_INDEX_QUERY

		NAN_WEAK_CALLBACK

		NAN_DEPRECATED

		NAN_INLINE

		NanNew

		NanUndefined

		NanNull

		NanTrue

		NanFalse

		NanReturnValue

		NanReturnUndefined

		NanReturnNull

		NanReturnEmptyString

		NanScope

		NanEscapableScope

		NanEscapeScope

		NanLocker

		NanUnlocker

		NanGetInternalFieldPointer

		NanSetInternalFieldPointer

		NanObjectWrapHandle

		NanSymbol

		NanGetPointerSafe

		NanSetPointerSafe

		NanRawString

		NanCString

		NanAsciiString

		NanUtf8String

		NanUcs2String

		NanBooleanOptionValue

		NanUInt32OptionValue

		NanError, NanTypeError, NanRangeError

		NanThrowError, NanThrowTypeError, NanThrowRangeError, NanThrowError(Handle), NanThrowError(Handle, int)

		NanNewBufferHandle(char *, size_t, FreeCallback, void *), NanNewBufferHandle(char *, uint32_t), NanNewBufferHandle(uint32_t)

		NanBufferUse(char *, uint32_t)

		NanNewContextHandle

		NanGetCurrentContext

		NanHasInstance

		NanDisposePersistent

		NanAssignPersistent

		NanMakeWeakPersistent

		NanSetTemplate

		NanSetPrototypeTemplate

		NanSetInstanceTemplate

		NanMakeCallback

		NanCompileScript

		NanRunScript

		NanAdjustExternalMemory

		NanAddGCEpilogueCallback

		NanAddGCPrologueCallback

		NanRemoveGCEpilogueCallback

		NanRemoveGCPrologueCallback

		NanGetHeapStatistics

		NanCallback

		NanAsyncWorker

		NanAsyncQueueWorker

[bookmark: api_nan_method]

NAN_METHOD(methodname)

Use NAN_METHOD to define your V8 accessible methods:

// .h:
class Foo : public node::ObjectWrap {
 ...

 static NAN_METHOD(Bar);
 static NAN_METHOD(Baz);
}

// .cc:
NAN_METHOD(Foo::Bar) {
 ...
}

NAN_METHOD(Foo::Baz) {
 ...
}

The reason for this macro is because of the method signature change in 0.11:

// 0.10 and below:
Handle<Value> name(const Arguments& args)

// 0.11 and above
void name(const FunctionCallbackInfo<Value>& args)

The introduction of FunctionCallbackInfo brings additional complications:

[bookmark: api_nan_getter]

NAN_GETTER(methodname)

Use NAN_GETTER to declare your V8 accessible getters. You get a Local<String> property and an appropriately typed args object that can act like the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_GETTER.

[bookmark: api_nan_setter]

NAN_SETTER(methodname)

Use NAN_SETTER to declare your V8 accessible setters. Same as NAN_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_property_getter]

NAN_PROPERTY_GETTER(cbname)

Use NAN_PROPERTY_GETTER to declare your V8 accessible property getters. You get a Local<String> property and an appropriately typed args object that can act similar to the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_GETTER.

[bookmark: api_nan_property_setter]

NAN_PROPERTY_SETTER(cbname)

Use NAN_PROPERTY_SETTER to declare your V8 accessible property setters. Same as NAN_PROPERTY_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_property_enumerator]

NAN_PROPERTY_ENUMERATOR(cbname)

Use NAN_PROPERTY_ENUMERATOR to declare your V8 accessible property enumerators. You get an appropriately typed args object like the args argument to a NAN_PROPERTY_GETTER call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_ENUMERATOR.

[bookmark: api_nan_property_deleter]

NAN_PROPERTY_DELETER(cbname)

Use NAN_PROPERTY_DELETER to declare your V8 accessible property deleters. Same as NAN_PROPERTY_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_DELETER.

[bookmark: api_nan_property_query]

NAN_PROPERTY_QUERY(cbname)

Use NAN_PROPERTY_QUERY to declare your V8 accessible property queries. Same as NAN_PROPERTY_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_QUERY.

[bookmark: api_nan_index_getter]

NAN_INDEX_GETTER(cbname)

Use NAN_INDEX_GETTER to declare your V8 accessible index getters. You get a uint32_t index and an appropriately typed args object that can act similar to the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_GETTER.

[bookmark: api_nan_index_setter]

NAN_INDEX_SETTER(cbname)

Use NAN_INDEX_SETTER to declare your V8 accessible index setters. Same as NAN_INDEX_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_index_enumerator]

NAN_INDEX_ENUMERATOR(cbname)

Use NAN_INDEX_ENUMERATOR to declare your V8 accessible index enumerators. You get an appropriately typed args object like the args argument to a NAN_INDEX_GETTER call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_ENUMERATOR.

[bookmark: api_nan_index_deleter]

NAN_INDEX_DELETER(cbname)

Use NAN_INDEX_DELETER to declare your V8 accessible index deleters. Same as NAN_INDEX_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_DELETER.

[bookmark: api_nan_index_query]

NAN_INDEX_QUERY(cbname)

Use NAN_INDEX_QUERY to declare your V8 accessible index queries. Same as NAN_INDEX_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_QUERY.

[bookmark: api_nan_weak_callback]

NAN_WEAK_CALLBACK(cbname)

Use NAN_WEAK_CALLBACK to define your V8 WeakReference callbacks. There is an argument object const _NanWeakCallbackData<T, P> &data allowing access to the weak object and the supplied parameter through its GetValue and GetParameter methods. You can even access the weak callback info object through the GetCallbackInfo()method, but you probably should not. Revive() keeps the weak object alive until the next GC round.

NAN_WEAK_CALLBACK(weakCallback) {
 int *parameter = data.GetParameter();
 NanMakeCallback(NanGetCurrentContext()->Global(), data.GetValue(), 0, NULL);
 if ((*parameter)++ == 0) {
 data.Revive();
 } else {
 delete parameter;
 }
}

[bookmark: api_nan_deprecated]

NAN_DEPRECATED

Declares a function as deprecated.

static NAN_DEPRECATED NAN_METHOD(foo) {
 ...
}

[bookmark: api_nan_inline]

NAN_INLINE

Inlines a function.

NAN_INLINE int foo(int bar) {
 ...
}

[bookmark: api_nan_new]

Local<

T>

 NanNew<

T>

(...)

Use NanNew to construct almost all v8 objects and make new local handles.

Note: Using NanNew with an std::string is possible, however, you should ensure
to use the overload version (NanNew(stdString)) rather than the template
version (NanNew<v8::String>(stdString)) as there is an unnecessary
performance penalty to using the template version because of the inability for
compilers to appropriately deduce to reference types on template specialization.

Local<String> s = NanNew<String>("value");

...

Persistent<Object> o;

...

Local<Object> lo = NanNew(o);

[bookmark: api_nan_undefined]

Local<

Primitive>

 NanUndefined()

Use instead of Undefined()

[bookmark: api_nan_null]

Local<

Primitive>

 NanNull()

Use instead of Null()

[bookmark: api_nan_true]

Local<

Boolean>

 NanTrue()

Use instead of True()

[bookmark: api_nan_false]

Local<

Boolean>

 NanFalse()

Use instead of False()

[bookmark: api_nan_return_value]

NanReturnValue(Handle<

Value>

)

Use NanReturnValue when you want to return a value from your V8 accessible method:

NAN_METHOD(Foo::Bar) {
 ...

 NanReturnValue(NanNew<String>("FooBar!"));
}

No return statement required.

[bookmark: api_nan_return_undefined]

NanReturnUndefined()

Use NanReturnUndefined when you don’t want to return anything from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnUndefined();
}

[bookmark: api_nan_return_null]

NanReturnNull()

Use NanReturnNull when you want to return Null from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnNull();
}

[bookmark: api_nan_return_empty_string]

NanReturnEmptyString()

Use NanReturnEmptyString when you want to return an empty String from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnEmptyString();
}

[bookmark: api_nan_scope]

NanScope()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanScope() necessary, use it in place of HandleScope scope when you do not wish to return handles (Handle or Local) to the surrounding scope (or in functions directly exposed to V8, as they do not return values in the normal sense):

NAN_METHOD(Foo::Bar) {
 NanScope();

 NanReturnValue(NanNew<String>("FooBar!"));
}

This method is not directly exposed to V8, nor does it return a handle, so it uses an unescapable scope:

bool Foo::Bar() {
 NanScope();

 Local<Boolean> val = NanFalse();
 ...
 return val->Value();
}

[bookmark: api_nan_escapable_scope]

NanEscapableScope()

The separation of handle scopes into escapable and inescapable scopes makes NanEscapableScope() necessary, use it in place of HandleScope scope when you later wish to return a handle (Handle or Local) from the scope, this is for internal functions not directly exposed to V8:

Handle<String> Foo::Bar() {
 NanEscapableScope();

 return NanEscapeScope(NanNew<String>("FooBar!"));
}

[bookmark: api_nan_escape_scope]

Local<

T>

 NanEscapeScope(Handle<

T>

 value);

Use together with NanEscapableScope to escape the scope. Corresponds to HandleScope::Close or EscapableHandleScope::Escape.

[bookmark: api_nan_locker]

NanLocker()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanLocker() necessary, use it in place of Locker locker:

NAN_METHOD(Foo::Bar) {
 NanLocker();
 ...
 NanUnlocker();
}

[bookmark: api_nan_unlocker]

NanUnlocker()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanUnlocker() necessary, use it in place of Unlocker unlocker:

NAN_METHOD(Foo::Bar) {
 NanLocker();
 ...
 NanUnlocker();
}

[bookmark: api_nan_get_internal_field_pointer]

void * NanGetInternalFieldPointer(Handle<

Object>

, int)

Gets a pointer to the internal field with at index from a V8 Object handle.

Local<Object> obj;
...
NanGetInternalFieldPointer(obj, 0);

[bookmark: api_nan_set_internal_field_pointer]

void NanSetInternalFieldPointer(Handle<

Object>

, int, void *)

Sets the value of the internal field at index on a V8 Object handle.

static Persistent<Function> dataWrapperCtor;
...
Local<Object> wrapper = NanNew(dataWrapperCtor)->NewInstance();
NanSetInternalFieldPointer(wrapper, 0, this);

[bookmark: api_nan_object_wrap_handle]

Local<

Object>

 NanObjectWrapHandle(Object)

When you want to fetch the V8 object handle from a native object you’ve wrapped with Node’s ObjectWrap, you should use NanObjectWrapHandle:

NanObjectWrapHandle(iterator)->Get(NanNew<String>("end"))

[bookmark: api_nan_symbol]

Local<

String>

 NanSymbol(const char *)

Deprecated. Use NanNew<String> instead.
Use to create string symbol objects (i.e. v8::String::NewSymbol(x)), for getting and setting object properties, or names of objects.

bool foo = false;
if (obj->Has(NanNew<String>("foo")))
 foo = optionsObj->Get(NanNew<String>("foo"))->BooleanValue()

[bookmark: api_nan_get_pointer_safe]

Type NanGetPointerSafe(Type *[, Type])

A helper for getting values from optional pointers. If the pointer is NULL, the function returns the optional default value, which defaults to 0. Otherwise, the function returns the value the pointer points to.

char *plugh(uint32_t *optional) {
 char res[] = "xyzzy";
 uint32_t param = NanGetPointerSafe<uint32_t>(optional, 0x1337);
 switch (param) {
 ...
 }
 NanSetPointerSafe<uint32_t>(optional, 0xDEADBEEF);
}

[bookmark: api_nan_set_pointer_safe]

bool NanSetPointerSafe(Type *, Type)

A helper for setting optional argument pointers. If the pointer is NULL, the function simply returns false. Otherwise, the value is assigned to the variable the pointer points to.

const char *plugh(size_t *outputsize) {
 char res[] = "xyzzy";
 if !(NanSetPointerSafe<size_t>(outputsize, strlen(res) + 1)) {
 ...
 }

 ...
}

[bookmark: api_nan_raw_string]

void* NanRawString(Handle<

Value>

, enum Nan::Encoding, size_t *, void *, size_t, int)

Deprecated. Use something else.

When you want to convert a V8 String to a char* buffer, use NanRawString. You have to supply an encoding as well as a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows setting String::WriteOptions.
Just remember that you’ll end up with an object that you’ll need to delete[] at some point unless you supply your own buffer:

size_t count;
void* decoded = NanRawString(args[1], Nan::BASE64, &count, NULL, 0, String::HINT_MANY_WRITES_EXPECTED);
...
delete[] reinterpret_cast<char*>(decoded);

[bookmark: api_nan_c_string]

char* NanCString(Handle<

Value>

, size_t *[, char *, size_t, int])

Deprecated. Use NanUtf8String instead.

When you want to convert a V8 String to a null-terminated C char* use NanCString. The resulting char* will be UTF-8-encoded, and you need to supply a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows optionally setting String::WriteOptions, which default to v8::String::NO_OPTIONS.
Just remember that you’ll end up with an object that you’ll need to delete[] at some point unless you supply your own buffer:

size_t count;
char* name = NanCString(args[0], &count);
...
delete[] name;

[bookmark: api_nan_ascii_string]

NanAsciiString

Convert a String to zero-terminated, Ascii-encoded char *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanAsciiString(arg[0])));
}

[bookmark: api_nan_utf8_string]

NanUtf8String

Convert a String to zero-terminated, Utf8-encoded char *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanUtf8String(arg[0])));
}

[bookmark: api_nan_ucs2_string]

NanUcs2String

Convert a String to zero-terminated, Ucs2-encoded uint16_t *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanUcs2String(arg[0])));
}

[bookmark: api_nan_boolean_option_value]

bool NanBooleanOptionValue(Handle<

Value>

, Handle<

String>

[, bool])

When you have an “options” object that you need to fetch properties from, boolean options can be fetched with this pair. They check first if the object exists (IsEmpty), then if the object has the given property (Has) then they get and convert/coerce the property to a bool.

The optional last parameter is the default value, which is false if left off:

// `foo` is false unless the user supplies a truthy value for it
bool foo = NanBooleanOptionValue(optionsObj, NanNew<String>("foo"));
// `bar` is true unless the user supplies a falsy value for it
bool bar = NanBooleanOptionValueDefTrue(optionsObj, NanNew<String>("bar"), true);

[bookmark: api_nan_uint32_option_value]

uint32_t NanUInt32OptionValue(Handle<

Value>

, Handle<

String>

, uint32_t)

Similar to NanBooleanOptionValue, use NanUInt32OptionValue to fetch an integer option from your options object. Can be any kind of JavaScript Number and it will be coerced to an unsigned 32-bit integer.

Requires all 3 arguments as a default is not optional:

uint32_t count = NanUInt32OptionValue(optionsObj, NanNew<String>("count"), 1024);

[bookmark: api_nan_error]

NanError(message), NanTypeError(message), NanRangeError(message)

For making Error, TypeError and RangeError objects.

Local<Value> res = NanError("you must supply a callback argument");

[bookmark: api_nan_throw_error]

NanThrowError(message), NanThrowTypeError(message), NanThrowRangeError(message), NanThrowError(Local<

Value>

), NanThrowError(Local<

Value>

, int)

For throwing Error, TypeError and RangeError objects.

NanThrowError("you must supply a callback argument");

Can also handle any custom object you may want to throw. If used with the error code argument, it will add the supplied error code to the error object as a property called code.

[bookmark: api_nan_new_buffer_handle]

Local<

Object>

 NanNewBufferHandle(char *, uint32_t), Local<

Object>

 NanNewBufferHandle(uint32_t)

The Buffer API has changed a little in Node 0.11, this helper provides consistent access to Buffer creation:

NanNewBufferHandle((char*)value.data(), value.size());

Can also be used to initialize a Buffer with just a size argument.

Can also be supplied with a NanFreeCallback and a hint for the garbage collector.

[bookmark: api_nan_buffer_use]

Local<

Object>

 NanBufferUse(char*, uint32_t)

Buffer::New(char*, uint32_t) prior to 0.11 would make a copy of the data.
While it was possible to get around this, it required a shim by passing a
callback. So the new API Buffer::Use(char*, uint32_t) was introduced to remove
needing to use this shim.

NanBufferUse uses the char* passed as the backing data, and will free the
memory automatically when the weak callback is called. Keep this in mind, as
careless use can lead to “double free or corruption” and other cryptic failures.

[bookmark: api_nan_has_instance]

bool NanHasInstance(Persistent<

FunctionTemplate>

&, Handle<

Value>

)

Can be used to check the type of an object to determine it is of a particular class you have already defined and have a Persistent<FunctionTemplate> handle for.

[bookmark: api_nan_new_context_handle]

Local<

Context>

 NanNewContextHandle([ExtensionConfiguration*, Handle<

ObjectTemplate>

, Handle<

Value>

])

Creates a new Local<Context> handle.

Local<FunctionTemplate> ftmpl = NanNew<FunctionTemplate>();
Local<ObjectTemplate> otmpl = ftmpl->InstanceTemplate();
Local<Context> ctx = NanNewContextHandle(NULL, otmpl);

[bookmark: api_nan_get_current_context]

Local<

Context>

 NanGetCurrentContext()

Gets the current context.

Local<Context> ctx = NanGetCurrentContext();

[bookmark: api_nan_dispose_persistent]

void NanDisposePersistent(Persistent<

T>

 &)

Use NanDisposePersistent to dispose a Persistent handle.

NanDisposePersistent(persistentHandle);

[bookmark: api_nan_assign_persistent]

NanAssignPersistent(handle, object)

Use NanAssignPersistent to assign a non-Persistent handle to a Persistent one. You can no longer just declare a Persistent handle and assign directly to it later, you have to Reset it in Node 0.11, so this makes it easier.

In general it is now better to place anything you want to protect from V8’s garbage collector as properties of a generic Object and then assign that to a Persistent. This works in older versions of Node also if you use NanAssignPersistent:

Persistent<Object> persistentHandle;

...

Local<Object> obj = NanNew<Object>();
obj->Set(NanNew<String>("key"), keyHandle); // where keyHandle might be a Local<String>
NanAssignPersistent(persistentHandle, obj)

[bookmark: api_nan_make_weak_persistent]

_NanWeakCallbackInfo<

T, P>

* NanMakeWeakPersistent(Handle<

T>

, P*, _NanWeakCallbackInfo<

T, P>

::Callback)

Creates a weak persistent handle with the supplied parameter and NAN_WEAK_CALLBACK.

NAN_WEAK_CALLBACK(weakCallback) {

...

}

Local<Function> func;

...

int *parameter = new int(0);
NanMakeWeakPersistent(func, parameter, &weakCallback);

[bookmark: api_nan_set_template]

NanSetTemplate(templ, name, value [, attributes])

Use to add properties on object and function templates.

[bookmark: api_nan_set_prototype_template]

NanSetPrototypeTemplate(templ, name, value [, attributes])

Use to add prototype properties on function templates.

[bookmark: api_nan_set_instance_template]

NanSetInstanceTemplate(templ, name, value [, attributes])

Use to add instance properties on function templates.

[bookmark: api_nan_make_callback]

NanMakeCallback(target, func, argc, argv)

Use instead of node::MakeCallback to call javascript functions. This is the only proper way of calling functions.

[bookmark: api_nan_compile_script]

NanCompileScript(Handle s [, const ScriptOrigin&

 origin])

Use to create new scripts bound to the current context.

[bookmark: api_nan_run_script]

NanRunScript(script)

Use to run both bound and unbound scripts.

[bookmark: api_nan_adjust_external_memory]

NanAdjustExternalMemory(int change_in_bytes)

Simply does AdjustAmountOfExternalAllocatedMemory, note that the argument and returned value have type int.

[bookmark: api_nan_add_gc_epilogue_callback]

NanAddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type_filter=kGCTypeAll)

Simply does AddGCEpilogueCallback

[bookmark: api_nan_add_gc_prologue_callback]

NanAddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type_filter=kGCTypeAll)

Simply does AddGCPrologueCallback

[bookmark: api_nan_remove_gc_epilogue_callback]

NanRemoveGCEpilogueCallback(GCEpilogueCallback callback)

Simply does RemoveGCEpilogueCallback

[bookmark: api_nan_remove_gc_prologue_callback]

NanRemoveGCPrologueCallback(GCPrologueCallback callback)

Simply does RemoveGCPrologueCallback

[bookmark: api_nan_get_heap_statistics]

NanGetHeapStatistics(HeapStatistics *heap_statistics)

Simply does GetHeapStatistics

[bookmark: api_nan_callback]

NanCallback

Because of the difficulties imposed by the changes to Persistent handles in V8 in Node 0.11, creating Persistent versions of your Handle<Function> is annoyingly tricky. NanCallback makes it easier by taking your handle, making it persistent until the NanCallback is deleted and even providing a handy Call() method to fetch and execute the callback Function.

Local<Function> callbackHandle = args[0].As<Function>();
NanCallback *callback = new NanCallback(callbackHandle);
// pass `callback` around and it's safe from GC until you:
delete callback;

You can execute the callback like so:

// no arguments:
callback->Call(0, NULL);

// an error argument:
Handle<Value> argv[] = {
 NanError(NanNew<String>("fail!"))
};
callback->Call(1, argv);

// a success argument:
Handle<Value> argv[] = {
 NanNull(),
 NanNew<String>("w00t!")
};
callback->Call(2, argv);

NanCallback also has a Local<Function> GetCallback() method that you can use
to fetch a local handle to the underlying callback function, as well as a
void SetFunction(Handle<Function>) for setting the callback on the
NanCallback. You can check if a NanCallback is empty with the bool IsEmpty() method. Additionally a generic constructor is available for using
NanCallback without performing heap allocations.

[bookmark: api_nan_async_worker]

NanAsyncWorker

NanAsyncWorker is an abstract class that you can subclass to have much of the annoying async queuing and handling taken care of for you. It can even store arbitrary V8 objects for you and have them persist while the async work is in progress.

See a rough outline of the implementation:

class NanAsyncWorker {
public:
 NanAsyncWorker (NanCallback *callback);

 // Clean up persistent handles and delete the *callback
 virtual ~NanAsyncWorker ();

 // Check the `ErrorMessage()` and call HandleOKCallback()
 // or HandleErrorCallback depending on whether it has been set or not
 virtual void WorkComplete ();

 // You must implement this to do some async work. If there is an
 // error then use `SetErrorMessage()` to set an error message and the callback will
 // be passed that string in an Error object
 virtual void Execute ();

 // Save a V8 object in a Persistent handle to protect it from GC
 void SaveToPersistent(const char *key, Local<Object> &obj);

 // Fetch a stored V8 object (don't call from within `Execute()`)
 Local<Object> GetFromPersistent(const char *key);

 // Get the error message (or NULL)
 const char *ErrorMessage();

 // Set an error message
 void SetErrorMessage(const char *msg);

protected:
 // Default implementation calls the callback function with no arguments.
 // Override this to return meaningful data
 virtual void HandleOKCallback ();

 // Default implementation calls the callback function with an Error object
 // wrapping the `errmsg` string
 virtual void HandleErrorCallback ();
};

[bookmark: api_nan_async_queue_worker]

NanAsyncQueueWorker(NanAsyncWorker *)

NanAsyncQueueWorker will run a NanAsyncWorker asynchronously via libuv. Both the execute and after_work steps are taken care of for you

—

most of the logic for this is embedded in NanAsyncWorker.

Contributors

NAN is only possible due to the excellent work of the following contributors:

		Rod Vagg		GitHub/rvagg		Twitter/@rvagg

		Benjamin Byholm		GitHub/kkoopa		-

		Trevor Norris		GitHub/trevnorris		Twitter/@trevnorris

		Nathan Rajlich		GitHub/TooTallNate		Twitter/@TooTallNate

		Brett Lawson		GitHub/brett19		Twitter/@brett19x

		Ben Noordhuis		GitHub/bnoordhuis		Twitter/@bnoordhuis

Licence &

 copyright

Copyright (c) 2014 NAN contributors (listed above).

Native Abstractions for Node.js is licensed under an MIT +no-false-attribs license. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE file for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mongodb/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Contributing to the driver

Bugfixes

		Before starting to write code, look for existing tickets [https://jira.mongodb.org/browse/NODE] or create one [https://jira.mongodb.org/secure/CreateIssue!default.jspa] for your specific issue under the “Node Driver” project. That way you avoid working on something that might not be of interest or that has been addressed already in a different branch.

		Fork the repo [https://github.com/mongodb/node-mongodb-native] or for small documentation changes, navigate to the source on github and click the Edit [https://github.com/blog/844-forking-with-the-edit-button] button.

		Follow the general coding style of the rest of the project:
		2 space tabs

		no trailing whitespace

		comma last

		inline documentation for new methods, class members, etc

		0 space between conditionals/functions, and their parenthesis and curly braces
		if(..) {

		for(..) {

		while(..) {

		function(err) {

		Write tests and make sure they pass (execute npm test from the cmd line to run the test suite).

Documentation

To contribute to the API documentation [http://mongodb.github.com/node-mongodb-native/] just make your changes to the inline documentation of the appropriate source code [https://github.com/mongodb/node-mongodb-native/tree/master/docs] in the master branch and submit a pull request [https://help.github.com/articles/using-pull-requests/]. You might also use the github Edit [https://github.com/blog/844-forking-with-the-edit-button] button.

If you’d like to preview your documentation changes, first commit your changes to your local master branch, then execute make generate_docs. Make sure you have the python documentation framework sphinx installed easy_install sphinx. The docs are generated under `docs/build’. If all looks good, submit a pull request [https://help.github.com/articles/using-pull-requests/] to the master branch with your changes.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/readdirp/node_modules/readable-stream/node_modules/isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

isarray

Array#isArray for older browsers.

Usage

var isArray = require('isarray');

console.log(isArray([])); // => true
console.log(isArray({})); // => false

Installation

With npm [http://npmjs.org] do

$ npm install isarray

Then bundle for the browser with
browserify [https://github.com/substack/browserify].

With component [http://component.io] do

$ component install juliangruber/isarray

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/readdirp/node_modules/readable-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readable-stream

Node-core streams for userland

[image: NPM] [https://nodei.co/npm/readable-stream/]
[image: NPM] [https://nodei.co/npm/readable-stream/]

This package is a mirror of the Streams2 and Streams3 implementations in Node-core.

If you want to guarantee a stable streams base, regardless of what version of Node you, or the users of your libraries are using, use readable-stream only and avoid the “stream” module in Node-core.

readable-stream comes in two major versions, v1.0.x and v1.1.x. The former tracks the Streams2 implementation in Node 0.10, including bug-fixes and minor improvements as they are added. The latter tracks Streams3 as it develops in Node 0.11; we will likely see a v1.2.x branch for Node 0.12.

readable-stream uses proper patch-level versioning so if you pin to "~1.0.0" you’ll get the latest Node 0.10 Streams2 implementation, including any fixes and minor non-breaking improvements. The patch-level versions of 1.0.x and 1.1.x should mirror the patch-level versions of Node-core releases. You should prefer the 1.0.x releases for now and when you’re ready to start using Streams3, pin to "~1.1.0"

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/passport/node_modules/passport-strategy/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

passport-strategy

[image: Build] [http://travis-ci.org/jaredhanson/passport-strategy]
[image: Coverage] [https://coveralls.io/r/jaredhanson/passport-strategy]
[image: Dependencies] [http://david-dm.org/jaredhanson/passport-strategy]

An abstract class implementing Passport [http://passportjs.org/]‘s strategy
API.

Install

$ npm install passport-strategy

Usage

This module exports an abstract Strategy class that is intended to be
subclassed when implementing concrete authentication strategies. Once
implemented, such strategies can be used by applications that utilize Passport
middleware for authentication.

Subclass Strategy

Create a new CustomStrategy constructor which inherits from Strategy:

var util = require('util')
 , Strategy = require('passport-strategy');

function CustomStrategy(...) {
 Strategy.call(this);
}

util.inherits(CustomStrategy, Strategy);

Implement Authentication

Implement autheticate(), performing the necessary operations required by the
authentication scheme or protocol being implemented.

CustomStrategy.prototype.authenticate = function(req, options) {
 // TODO: authenticate request
}

Tests

$ npm install
$ npm test

Credits

		Jared Hanson [http://github.com/jaredhanson]

License

The MIT License [http://opensource.org/licenses/MIT]

Copyright (c) 2011-2013 Jared Hanson <http://jaredhanson.net/>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/passport/node_modules/pause/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/log4js/node_modules/readable-stream/node_modules/core-util-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

core-util-is

The util.is* functions introduced in Node v0.12.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/release-items.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mongoose release procedure

		tests must pass

		update package.json version

		update History.md using git changelog or similar. list the related ticket(s) #<TICKET_NUMBER> as well as a link to the github user who fixed it if applicable.

		git commit -m ‘release x.x.x’

		git tag x.x.x

		git push origin BRANCH –tags && npm publish

		update mongoosejs.com (see “updating the website” below)

		announce to google groups - include the relevant change log and links to issues

		tweet google group announcement from @mongoosejs [https://twitter.com/mongoosejs]

		announce on #mongoosejs irc room

		change package.json version to next patch version suffixed with ‘-pre’ and commit “now working on x.x.x”

		if this is a stable release, update the unstable History.md with the changelog

updating the website

For 3.8.x:

		Change to the 3.8.x branch

		execute make docs (when this process completes you’ll be on the gh-pages branch)

		git add docs/*.html index.html

		git commit -m 'website; regen <x.x.x>'

		git push origin gh-pages

For unstable:

		Change to the master branch

		execute make docs_unstable (when this process completes you’ll be on the gh-pages branch)

		git add docs/unstable/docs/*.html docs/unstable/index.html

		git commit -m 'website; regen <x.x.x>'

		git push origin gh-pages

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/log4js/node_modules/readable-stream/node_modules/isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

isarray

Array#isArray for older browsers.

Usage

var isArray = require('isarray');

console.log(isArray([])); // => true
console.log(isArray({})); // => false

Installation

With npm [http://npmjs.org] do

$ npm install isarray

Then bundle for the browser with
browserify [https://github.com/substack/browserify].

With component [http://component.io] do

$ component install juliangruber/isarray

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Contributing to Mongoose

If you have a question about Mongoose (not a bug report) please post it to either StackOverflow [http://stackoverflow.com/questions/tagged/mongoose], our Google Group [http://groups.google.com/group/mongoose-orm], or on the #mongoosejs irc channel on freenode.

Reporting bugs

		Before opening a new issue, look for existing issues [https://github.com/learnboost/mongoose/issues] to avoid duplication. If the issue does not yet exist, create one [https://github.com/learnboost/mongoose/issues/new].
		Please describe the issue you are experiencing, along with any associated stack trace.

		Please post code that reproduces the issue, the version of mongoose, node version, and mongodb version.

		The source of this project is written in javascript, not coffeescript, therefore your bug reports should be written in javascript.

		In general, adding a “+1” comment to an existing issue does little to help get it resolved. A better way is to submit a well documented pull request with clean code and passing tests.

Requesting new features

		Before opening a new issue, look for existing issues [https://github.com/learnboost/mongoose/issues] to avoid duplication. If the issue does not yet exist, create one [https://github.com/learnboost/mongoose/issues/new].

		Please describe a use case for it

		it would be ideal to include test cases as well

		In general, adding a “+1” comment to an existing issue does little to help get it resolved. A better way is to submit a well documented pull request with clean code and passing tests.

Fixing bugs / Adding features

		Before starting to write code, look for existing issues [https://github.com/learnboost/mongoose/issues]. That way you avoid working on something that might not be of interest or that has been addressed already in a different branch. You can create a new issue here [https://github.com/learnboost/mongoose/issues/new].
		The source of this project is written in javascript, not coffeescript, therefore your bug reports should be written in javascript.

		Fork the repo [https://github.com/learnboost/mongoose] or for small documentation changes, navigate to the source on github and click the Edit [https://github.com/blog/844-forking-with-the-edit-button] button.

		Follow the general coding style of the rest of the project:
		2 space tabs

		no trailing whitespace

		comma first

		inline documentation for new methods, class members, etc

		1 space between conditionals/functions, and their parenthesis and curly braces
		if (..) {

		for (..) {

		while (..) {

		function (err) {

		Write tests and make sure they pass (tests are in the test [https://github.com/LearnBoost/mongoose/tree/master/test] directory).

Running the tests

		Open a terminal and navigate to the root of the project

		execute npm install to install the necessary dependencies

		execute make test to run the tests (we’re using mocha [http://visionmedia.github.com/mocha/])
		or to execute a single test T="-g 'some regexp that matches the test description'" make test

		any mocha flags can be specified with T="..."

Documentation

To contribute to the API documentation [http://mongoosejs.com/docs/api.html] just make your changes to the inline documentation of the appropriate source code [https://github.com/LearnBoost/mongoose/tree/master/lib] in the master branch and submit a pull request [https://help.github.com/articles/using-pull-requests/]. You might also use the github Edit [https://github.com/blog/844-forking-with-the-edit-button] button.

To contribute to the guide [http://mongoosejs.com/docs/guide.html] or quick start [http://mongoosejs.com/docs/index.html] docs, make your changes to the appropriate .jade files in the docs [https://github.com/LearnBoost/mongoose/tree/master/docs] directory of the master branch and submit a pull request. Again, the Edit [https://github.com/blog/844-forking-with-the-edit-button] button might work for you here.

If you’d like to preview your documentation changes, first commit your changes to your local 3.6.x branch, then execute make docs from the project root, which switches to the gh-pages branch, merges from the 3.6.x branch and builds all the static pages for you. Now execute node static.js from the project root which will launch a local webserver where you can browse the documentation site locally. If all looks good, submit a pull request [https://help.github.com/articles/using-pull-requests/] to the 3.6.x branch with your changes.

Plugins website

The plugins [http://plugins.mongoosejs.com/] site is also an open source project [https://github.com/aheckmann/mongooseplugins] that you can get involved with. Feel free to fork and improve it as well!

Sharing your projects

All are welcome to share their creations which use mongoose on our tumbler [http://mongoosejs.tumblr.com/]. Just fill out the simple submission form [http://mongoosejs.tumblr.com/submit].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/log4js/node_modules/readable-stream/node_modules/string_decoder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 string_decoder.js (require('string_decoder')) from Node.js core

Copyright Joyent, Inc. and other Node contributors. See LICENCE file for details.

Version numbers match the versions found in Node core, e.g. 0.10.24 matches Node 0.10.24, likewise 0.11.10 matches Node 0.11.10. Prefer the stable version over the unstable.

The build/ directory contains a build script that will scrape the source from the joyent/node [https://github.com/joyent/node] repo given a specific Node version.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

3.8.19 / 2014-11-09

		fixed; make sure to not override subdoc _ids on find #2276 alabid [https://github.com/alabid]

		fixed; exception when comparing two documents when one lacks _id #2333 slawo [https://github.com/slawo]

		fixed; getters for properties with non-strict schemas #2439 alabid [https://github.com/alabid]

		fixed; inconsistent URI format in docs #2414 sr527 [https://github.com/sr527]

3.8.18 / 2014-10-22

		fixed; Dont use all toObject options in save #2340 chetverikov [https://github.com/chetverikov]

3.8.17 / 2014-09-29

		fixed; use schema options retainKeyOrder in save() #2274

		fixed; fix skip in populate when limit is set #2252

		fixed; fix stack overflow when passing MongooseArray to findAndModify #2214

		fixed; optimize .length usage in populate #2289

3.8.16 / 2014-09-08

		fixed; properly remove modified array paths if array has been overwritten #1638

		fixed; key check errors #1884

		fixed; make sure populate on an array always returns a Mongoose array #2214

		fixed; SSL connections with node 0.11 #2234

		fixed; return sensible strings for promise errors #2239

3.8.15 / 2014-08-17

		fixed; Replica set connection string example in docs #2246

		fixed; bubble up parseError event #2229

		fixed; removed buggy populate cache #2176

		fixed; dont $inc versionKey if its being $set #1933

		fixed; cast $or and $and in $pull #1932

		fixed; properly cast to schema in stream() #1862

		fixed; memory leak in nested objects #1565 #2211 devongovett [https://github.com/devongovett]

3.8.14 / 2014-07-26

		fixed; stringifying MongooseArray shows nested arrays #2002

		fixed; use populated doc schema in toObject and toJSON by default #2035

		fixed; dont crash on arrays containing null #2140

		fixed; model.update w/ upsert has same return values on .exec and promise #2143

		fixed; better handling for populate limit with multiple documents #2151

		fixed; dont prevent users from adding weights to text index #2183

		fixed; helper for aggregation cursor #2187

		updated; node-mongodb-native to 1.4.7

3.8.13 / 2014-07-15

		fixed; memory leak with isNew events #2159

		fixed; docs for overwrite option for update() #2144

		fixed; storeShard() handles dates properly #2127

		fixed; sub-doc changes not getting persisted to db after save #2082

		fixed; populate with _id: 0 actually removes _id instead of setting to undefined #2123

		fixed; save versionKey on findOneAndUpdate w/ upsert #2122

		fixed; fix typo in 2.8 docs #2120 shakirullahi [https://github.com/shakirullahi]

		fixed; support maxTimeMs #2102 yuukinajima [https://github.com/yuukinajima]

		fixed; support $currentDate #2019

		fixed; $addToSet handles objects without _ids properly #1973

		fixed; dont crash on invalid nearSphere query #1874

3.8.12 / 2014-05-30

		fixed; single-server reconnect event fires #1672

		fixed; sub-docs not saved when pushed into populated array #1794

		fixed; .set() sometimes converts embedded docs to pojos #1954 archangel-irk [https://github.com/archangel-irk]

		fixed; sub-doc changes not getting persisted to db after save #2082

		fixed; custom getter might cause mongoose to mistakenly think a path is dirty #2100 pgherveou [https://github.com/pgherveou]

		fixed; chainable helper for allowDiskUse option in aggregation #2114

3.8.11 / 2014-05-22

		updated; node-mongodb-native to 1.4.5

		reverted; #2052, fixes #2097

3.8.10 / 2014-05-20

		updated; node-mongodb-native to 1.4.4

		fixed; _.isEqual false negatives bug in js-bson #2070

		fixed; missing check for schema.options #2014

		fixed; missing support for $position #2024

		fixed; options object corruption #2049

		fixed; improvements to virtuals docs #2055

		fixed; added domain to reserved keywords #2052 #1338

3.8.9 / 2014-05-08

		updated; mquery to 0.7.0

		updated; node-mongodb-native to 1.4.3

		fixed; $near failing against MongoDB 2.6

		fixed; relying on .options() to determine if collection exists

		fixed; $out aggregate helper

		fixed; all test failures against MongoDB 2.6.1, with caveat #2065

3.8.8 / 2014-02-22

		fixed; saving Buffers #1914

		updated; expose connection states for user-land #1926 yorkie [https://github.com/yorkie]

		updated; mquery to 0.5.3

		updated; added get / set to reserved path list #1903 tstrimple [https://github.com/tstrimple]

		docs; README code highlighting, syntax fixes #1930 IonicaBizau [https://github.com/IonicaBizau]

		docs; fixes link in the doc at #1925 kapeels [https://github.com/kapeels]

		docs; add a missed word ‘hook’ for the description of the post-hook api #1924 ipoval [https://github.com/ipoval]

3.8.7 / 2014-02-09

		fixed; sending safe/read options in Query#exec #1895

		fixed; findOneAnd..() with sort #1887

3.8.6 / 2014-01-30

		fixed; setting readPreferences #1895

3.8.5 / 2014-01-23

		fixed; ssl setting when using URI #1882

		fixed; findByIdAndUpdate now respects the overwrite option #1809 owenallenaz [https://github.com/owenallenaz]

3.8.4 / 2014-01-07

		updated; mongodb driver to 1.3.23

		updated; mquery to 0.4.1

		updated; mpromise to 0.4.3

		fixed; discriminators now work when selecting fields #1820 daemon1981 [https://github.com/daemon1981]

		fixed; geoSearch with no results timeout #1846 ghartnett [https://github.com/ghartnett]

		fixed; infitite recursion in ValidationError #1834 chetverikov [https://github.com/chetverikov]

3.8.3 / 2013-12-17

		fixed; setting empty array with model.update #1838

		docs; fix url

3.8.2 / 2013-12-14

		fixed; enum validation of multiple values #1778 heroicyang [https://github.com/heroicyang]

		fixed; global var leak #1803

		fixed; post remove now fires on subdocs #1810

		fixed; no longer set default empty array for geospatial-indexed fields #1668 shirish87 [https://github.com/shirish87]

		fixed; model.stream() not hydrating discriminators correctly #1792 j [https://github.com/j]

		docs: Stablility -> Stability nikmartin [https://github.com/nikmartin]

		tests; improve shard error handling

3.8.1 / 2013-11-19

		fixed; mishandling of Dates with minimize/getters #1764

		fixed; Normalize bugs.email, so npm will shut up #1769 refack [https://github.com/refack]

		docs; Improve the grammar where “lets us” was used #1777 alexyoung [https://github.com/alexyoung]

		docs; Fix some grammatical issues in the documentation #1777 alexyoung [https://github.com/alexyoung]

		docs; fix Query api exposure

		docs; fix return description

		docs; Added Notes on findAndUpdate() #1750 sstadelman [https://github.com/sstadelman]

		docs; Update version number in README #1762 Fodi69 [https://github.com/Fodi69]

3.8.0 / 2013-10-31

		updated; warn when using an unstable version

		updated; error message returned in doc.save() #1595

		updated; mongodb driver to 1.3.19 (fix error swallowing behavior)

		updated; mquery to 0.3.2

		updated; mocha to 1.12.0

		updated; mpromise 0.3.0

		updated; sliced 0.0.5

		removed; mongoose.Error.DocumentError (never used)

		removed; namedscope (undocumented and broken) #679 #642 #455 #379

		changed; no longer offically supporting node 0.6.x

		changed; query.within getter is now a method -> query.within()

		changed; query.intersects getter is now a method -> query.intersects()

		added; custom error msgs for built-in validators #747

		added; discriminator support #1647 #1003 j [https://github.com/j]

		added; support disabled collection name pluralization #1350 #1707 refack [https://github.com/refack]

		added; support for GeoJSON to Query#near ebensing [https://github.com/ebensing]

		added; stand-alone base query support - query.toConstructor() ebensing [https://github.com/ebensing]

		added; promise support to geoSearch #1614 ebensing [https://github.com/ebensing]

		added; promise support for geoNear #1614 ebensing [https://github.com/ebensing]

		added; connection.useDb() #1124 ebensing [https://github.com/ebensing]

		added; promise support to model.mapReduce()

		added; promise support to model.ensureIndexes()

		added; promise support to model.populate()

		added; benchmarks ebensing [https://github.com/ebensing]

		added; publicly exposed connection states #1585

		added; $geoWithin support #1529 $1455 ebensing [https://github.com/ebensing]

		added; query method chain validation

		added; model.update overwrite option

		added; model.geoNear() support #1563 ebensing [https://github.com/ebensing]

		added; model.geoSearch() support #1560 ebensing [https://github.com/ebensing]

		added; MongooseBuffer#subtype()

		added; model.create() now returns a promise #1340

		added; support for awaitdata query option

		added; pass the doc to doc.remove() callback #1419 JoeWagner [https://github.com/JoeWagner]

		added; aggregation query builder #1404 njoyard [https://github.com/njoyard]

		fixed; document.toObject when using minimize and getters options #1607 JedWatson [https://github.com/JedWatson]

		fixed; Mixed types can now be required #1722 Reggino [https://github.com/Reggino]

		fixed; do not pluralize model names not ending with letters #1703 refack [https://github.com/refack]

		fixed; repopulating modified populated paths #1697

		fixed; doc.equals() when _id option is set to false #1687

		fixed; strict mode warnings #1686

		fixed; $near GeoJSON casting #1683

		fixed; nearSphere GeoJSON query builder

		fixed; population field selection w/ strings #1669

		fixed; setters not firing on null values #1445 ebensing [https://github.com/ebensing]

		fixed; handle another versioning edge case #1520

		fixed; excluding subdocument fields #1280 ebensing [https://github.com/ebensing]

		fixed; allow array properties to be set to null with findOneAndUpdate aheuermann [https://github.com/aheuermann]

		fixed; subdocuments now use own toJSON opts #1376 ebensing [https://github.com/ebensing]

		fixed; model#geoNear fulfills promise when results empty #1658 ebensing [https://github.com/ebensing]

		fixed; utils.merge no longer overrides props and methods #1655 j [https://github.com/j]

		fixed; subdocuments now use their own transform #1412 ebensing [https://github.com/ebensing]

		fixed; model.remove() removes only what is necessary #1649

		fixed; update() now only runs with cb or explicit true #1644

		fixed; casting ref docs on creation #1606 ebensing [https://github.com/ebensing]

		fixed; model.update “overwrite” option works as documented

		fixed; query#remove() works as documented

		fixed; “limit” correctly applies to individual items on population #1490 ebensing [https://github.com/ebensing]

		fixed; issue with positional operator on ref docs #1572 ebensing [https://github.com/ebensing]

		fixed; benchmarks to actually output valid json

		deprecated; promise#addBack (use promise#onResolve)

		deprecated; promise#complete (use promise#fulfill)

		deprecated; promise#addCallback (use promise#onFulFill)

		deprecated; promise#addErrback (use promise#onReject)

		deprecated; query.nearSphere() (use query.near)

		deprecated; query.center() (use query.circle)

		deprecated; query.centerSphere() (use query.circle)

		deprecated; query#slaveOk (use query#read)

		docs; custom validator messages

		docs; 10gen -> MongoDB

		docs; add Date method caveats #1598

		docs; more validation details

		docs; state which branch is stable/unstable

		docs; mention that middleware does not run on Models

		docs; promise.fulfill()

		docs; fix readme spelling #1483 yorchopolis [https://github.com/yorchopolis]

		docs; fixed up the README and examples ebensing [https://github.com/ebensing]

		website; add “show code” for properties

		website; move “show code” links down

		website; update guide

		website; add unstable docs

		website; many improvements

		website; fix copyright #1439

		website; server.js -> static.js #1546 nikmartin [https://github.com/nikmartin]

		tests; refactor 1703

		tests; add test generator

		tests; validate formatMessage() throws

		tests; add script for continuously running tests

		tests; fixed versioning tests

		tests; race conditions in tests

		tests; added for nested and/or queries

		tests; close some test connections

		tests; validate db contents

		tests; remove .only

		tests; close some test connections

		tests; validate db contents

		tests; remove .only

		tests; replace deprecated method names

		tests; convert id to string

		tests; fix sharding tests for MongoDB 2.4.5

		tests; now 4-5 seconds faster

		tests; fix race condition

		make; suppress warning msg in test

		benchmarks; updated for pull requests

		examples; improved and expanded ebensing [https://github.com/ebensing]

3.7.4 (unstable) / 2013-10-01

		updated; mquery to 0.3.2

		removed; mongoose.Error.DocumentError (never used)

		added; custom error msgs for built-in validators #747

		added; discriminator support #1647 #1003 j [https://github.com/j]

		added; support disabled collection name pluralization #1350 #1707 refack [https://github.com/refack]

		fixed; do not pluralize model names not ending with letters #1703 refack [https://github.com/refack]

		fixed; repopulating modified populated paths #1697

		fixed; doc.equals() when _id option is set to false #1687

		fixed; strict mode warnings #1686

		fixed; $near GeoJSON casting #1683

		fixed; nearSphere GeoJSON query builder

		fixed; population field selection w/ strings #1669

		docs; custom validator messages

		docs; 10gen -> MongoDB

		docs; add Date method caveats #1598

		docs; more validation details

		website; add “show code” for properties

		website; move “show code” links down

		tests; refactor 1703

		tests; add test generator

		tests; validate formatMessage() throws

3.7.3 (unstable) / 2013-08-22

		updated; warn when using an unstable version

		updated; mquery to 0.3.1

		updated; mocha to 1.12.0

		updated; mongodb driver to 1.3.19 (fix error swallowing behavior)

		changed; no longer offically supporting node 0.6.x

		added; support for GeoJSON to Query#near ebensing [https://github.com/ebensing]

		added; stand-alone base query support - query.toConstructor() ebensing [https://github.com/ebensing]

		added; promise support to geoSearch #1614 ebensing [https://github.com/ebensing]

		added; promise support for geoNear #1614 ebensing [https://github.com/ebensing]

		fixed; setters not firing on null values #1445 ebensing [https://github.com/ebensing]

		fixed; handle another versioning edge case #1520

		fixed; excluding subdocument fields #1280 ebensing [https://github.com/ebensing]

		fixed; allow array properties to be set to null with findOneAndUpdate aheuermann [https://github.com/aheuermann]

		fixed; subdocuments now use own toJSON opts #1376 ebensing [https://github.com/ebensing]

		fixed; model#geoNear fulfills promise when results empty #1658 ebensing [https://github.com/ebensing]

		fixed; utils.merge no longer overrides props and methods #1655 j [https://github.com/j]

		fixed; subdocuments now use their own transform #1412 ebensing [https://github.com/ebensing]

		make; suppress warning msg in test

		docs; state which branch is stable/unstable

		docs; mention that middleware does not run on Models

		tests; add script for continuously running tests

		tests; fixed versioning tests

		benchmarks; updated for pull requests

3.7.2 (unstable) / 2013-08-15

		fixed; model.remove() removes only what is necessary #1649

		fixed; update() now only runs with cb or explicit true #1644

		tests; race conditions in tests

		website; update guide

3.7.1 (unstable) / 2013-08-13

		updated; driver to 1.3.18 (fixes memory leak)

		added; connection.useDb() #1124 ebensing [https://github.com/ebensing]

		added; promise support to model.mapReduce()

		added; promise support to model.ensureIndexes()

		added; promise support to model.populate()

		fixed; casting ref docs on creation #1606 ebensing [https://github.com/ebensing]

		fixed; model.update “overwrite” option works as documented

		fixed; query#remove() works as documented

		fixed; “limit” correctly applies to individual items on population #1490 ebensing [https://github.com/ebensing]

		fixed; issue with positional operator on ref docs #1572 ebensing [https://github.com/ebensing]

		fixed; benchmarks to actually output valid json

		tests; added for nested and/or queries

		tests; close some test connections

		tests; validate db contents

		tests; remove .only

		tests; close some test connections

		tests; validate db contents

		tests; remove .only

		tests; replace deprecated method names

		tests; convert id to string

		docs; promise.fulfill()

3.7.0 (unstable) / 2013-08-05

		changed; query.within getter is now a method -> query.within()

		changed; query.intersects getter is now a method -> query.intersects()

		deprecated; promise#addBack (use promise#onResolve)

		deprecated; promise#complete (use promise#fulfill)

		deprecated; promise#addCallback (use promise#onFulFill)

		deprecated; promise#addErrback (use promise#onReject)

		deprecated; query.nearSphere() (use query.near)

		deprecated; query.center() (use query.circle)

		deprecated; query.centerSphere() (use query.circle)

		deprecated; query#slaveOk (use query#read)

		removed; namedscope (undocumented and broken) #679 #642 #455 #379

		added; benchmarks ebensing [https://github.com/ebensing]

		added; publicly exposed connection states #1585

		added; $geoWithin support #1529 $1455 ebensing [https://github.com/ebensing]

		added; query method chain validation

		added; model.update overwrite option

		added; model.geoNear() support #1563 ebensing [https://github.com/ebensing]

		added; model.geoSearch() support #1560 ebensing [https://github.com/ebensing]

		added; MongooseBuffer#subtype()

		added; model.create() now returns a promise #1340

		added; support for awaitdata query option

		added; pass the doc to doc.remove() callback #1419 JoeWagner [https://github.com/JoeWagner]

		added; aggregation query builder #1404 njoyard [https://github.com/njoyard]

		updated; integrate mquery #1562 ebensing [https://github.com/ebensing]

		updated; error msg in doc.save() #1595

		updated; bump driver to 1.3.15

		updated; mpromise 0.3.0

		updated; sliced 0.0.5

		tests; fix sharding tests for MongoDB 2.4.5

		tests; now 4-5 seconds faster

		tests; fix race condition

		docs; fix readme spelling #1483 yorchopolis [https://github.com/yorchopolis]

		docs; fixed up the README and examples ebensing [https://github.com/ebensing]

		website; add unstable docs

		website; many improvements

		website; fix copyright #1439

		website; server.js -> static.js #1546 nikmartin [https://github.com/nikmartin]

		examples; improved and expanded ebensing [https://github.com/ebensing]

3.6.20 (stable) / 2013-09-23

		fixed; repopulating modified populated paths #1697

		fixed; doc.equals w/ _id false #1687

		fixed; strict mode warning #1686

		docs; near/nearSphere

3.6.19 (stable) / 2013-09-04

		fixed; population field selection w/ strings #1669

		docs; Date method caveats #1598

3.6.18 (stable) / 2013-08-22

		updated; warn when using an unstable version of mongoose

		updated; mocha to 1.12.0

		updated; mongodb driver to 1.3.19 (fix error swallowing behavior)

		fixed; setters not firing on null values #1445 ebensing [https://github.com/ebensing]

		fixed; properly exclude subdocument fields #1280 ebensing [https://github.com/ebensing]

		fixed; cast error in findAndModify #1643 aheuermann [https://github.com/aheuermann]

		website; update guide

		website; added documentation for safe:false and versioning interaction

		docs; mention that middleware dont run on Models

		docs; fix indexes link

		make; suppress warning msg in test

		tests; moar

3.6.17 / 2013-08-13

		updated; driver to 1.3.18 (fixes memory leak)

		fixed; casting ref docs on creation #1606

		docs; query options

3.6.16 / 2013-08-08

		added; publicly expose connection states #1585

		fixed; limit applies to individual items on population #1490 ebensing [https://github.com/ebensing]

		fixed; positional operator casting in updates #1572 ebensing [https://github.com/ebensing]

		updated; MongoDB driver to 1.3.17

		updated; sliced to 0.0.5

		website; tweak homepage

		tests; fixed + added

		docs; fix some examples

		docs; multi-mongos support details

		docs; auto open browser after starting static server

3.6.15 / 2013-07-16

		added; mongos failover support #1037

		updated; make schematype return vals return self #1580

		docs; add note to model.update #571

		docs; document third param to document.save callback #1536

		tests; tweek mongos test timeout

3.6.14 / 2013-07-05

		updated; driver to 1.3.11

		fixed; issue with findOneAndUpdate not returning null on upserts #1533 ebensing [https://github.com/ebensing]

		fixed; missing return statement in SchemaArray#$geoIntersects() #1498 bsrykt [https://github.com/bsrykt]

		fixed; wrong isSelected() behavior #1521 kyano [https://github.com/kyano]

		docs; note about toObject behavior during save()

		docs; add callbacks details #1547 nikmartin [https://github.com/nikmartin]

3.6.13 / 2013-06-27

		fixed; calling model.distinct without conditions #1541

		fixed; regression in Query#count() #1542

		now working on 3.6.13

3.6.12 / 2013-06-25

		updated; driver to 1.3.10

		updated; clearer capped collection error message #1509 bitmage [https://github.com/bitmage]

		fixed; MongooseBuffer subtype loss during casting #1517 zedgu [https://github.com/zedgu]

		fixed; docArray#id when doc.id is disabled #1492

		fixed; docArray#id now supports matches on populated arrays #1492 pgherveou [https://github.com/pgherveou]

		website; fix example

		website; improve _id disabling example

		website; fix typo #1494 dejj [https://github.com/dejj]

		docs; added a ‘Requesting new features’ section #1504 shovon [https://github.com/shovon]

		docs; improve subtypes description

		docs; clarify _id disabling

		docs: display by alphabetical order the methods list #1508 nicolasleger [https://github.com/nicolasleger]

		tests; refactor isSelected checks

		tests; remove pointless test

		tests; fixed timeouts

3.6.11 / 2013-05-15

		updated; driver to 1.3.5

		fixed; compat w/ Object.create(null) #1484 #1485

		fixed; cloning objects w/ missing constructors

		fixed; prevent multiple min number validators #1481 nrako [https://github.com/nrako]

		docs; add doc.increment() example

		docs; add $size example

		docs; add “distinct” example

3.6.10 / 2013-05-09

		update driver to 1.3.3

		fixed; increment() works without other changes #1475

		website; fix links to posterous

		docs; fix link #1472

3.6.9 / 2013-05-02

		fixed; depopulation of mixed documents #1471

		fixed; use of $options in array #1462

		tests; fix race condition

		docs; fix default example

3.6.8 / 2013-04-25

		updated; driver to 1.3.0

		fixed; connection.model should retain options #1458 vedmalex [https://github.com/vedmalex]

		tests; 4-5 seconds faster

3.6.7 / 2013-04-19

		fixed; population regression in 3.6.6 #1444

3.6.6 / 2013-04-18

		fixed; saving populated new documents #1442

		fixed; population regession in 3.6.5 #1441

		website; fix copyright #1439

3.6.5 / 2013-04-15

		fixed; strict:throw edge case using .set(path, val)

		fixed; schema.pathType() on some numbericAlpha paths

		fixed; numbericAlpha path versioning

		fixed; setting nested mixed paths #1418

		fixed; setting nested objects with null prop #1326

		fixed; regression in v3.6 population performance #1426 vedmalex [https://github.com/vedmalex]

		fixed; read pref typos #1422 kyano [https://github.com/kyano]

		docs; fix method example

		website; update faq

		website; add more deep links

		website; update poolSize docs

		website; add 3.6 release notes

		website; note about keepAlive

3.6.4 / 2013-04-03

		fixed; +field conflict with $slice #1370

		fixed; nested deselection conflict #1333

		fixed; RangeError in ValidationError.toString() #1296

		fixed; do not save user defined transforms #1415

		tests; fix race condition

3.6.3 / 2013-04-02

		fixed; setting subdocuments deeply nested fields #1394

		fixed; regression: populated streams #1411

		docs; mention hooks/validation with findAndModify

		docs; mention auth

		docs; add more links

		examples; add document methods example

		website; display “see” links for properties

		website; clean up homepage

3.6.2 / 2013-03-29

		fixed; corrupted sub-doc array #1408

		fixed; document#update returns a Query #1397

		docs; readpref strategy

3.6.1 / 2013-03-27

		added; populate support to findAndModify varients #1395

		added; text index type to schematypes

		expose allowed index types as Schema.indexTypes

		fixed; use of setMaxListeners as path

		fixed; regression in node 0.6 on docs with > 10 arrays

		fixed; do not alter schema arguments #1364

		fixed; subdoc#ownerDocument() #1385

		website; change search id

		website; add search from google jackdbernier [https://github.com/jackdbernier]

		website; fix link

		website; add 3.5.x docs release

		website; fix link

		docs; fix geometry

		docs; hide internal constructor

		docs; aggregation does not cast arguments #1399

		docs; querystream options

		examples; added for population

3.6.0 / 2013-03-18

		changed; cast ‘true’/’false’ to boolean #1282 mgrach [https://github.com/mgrach]

		changed; Buffer arrays can now contain nulls

		added; QueryStream transform option

		added; support for authSource driver option

		added; {mongoose,db}.modelNames()

		added; $push w/ $slice,$sort support (MongoDB 2.4)

		added; hashed index type (MongoDB 2.4)

		added; support for mongodb 2.4 geojson (MongoDB 2.4)

		added; value at time of validation error

		added; support for object literal schemas

		added; bufferCommands schema option

		added; allow auth option in connections #1360 geoah [https://github.com/geoah]

		added; performance improvements to populate() 263ece9 [https://github.com/LearnBoost/mongoose/commit/263ece9]

		added; allow adding uncasted docs to populated arrays and properties #570

		added; doc#populated(path) stores original populated _ids

		added; lean population #1260

		added; query.populate() now accepts an options object

		added; document#populate(opts, callback)

		added; Model.populate(docs, opts, callback)

		added; support for rich nested path population

		added; doc.array.remove(value) subdoc with _id value support #1278

		added; optionally allow non-strict sets and updates

		added; promises/A+ comformancy with mpromise [https://github.com/aheckmann/mpromise]

		added; promise#then

		added; promise#end

		fixed; use of model as doc property

		fixed; lean population #1382

		fixed; empty object mixed defaults #1380

		fixed; populate w/ deselected _id using string syntax

		fixed; attempted save of divergent populated arrays #1334 related

		fixed; better error msg when attempting toObject as property name

		fixed; non population buffer casting from doc

		fixed; setting populated paths #570

		fixed; casting when added docs to populated arrays #570

		fixed; prohibit updating arrays selected with $elemMatch #1334

		fixed; pull / set subdoc combination #1303

		fixed; multiple bg index creation #1365

		fixed; manual reconnection to single mongod

		fixed; Constructor / version exposure #1124

		fixed; CastError race condition

		fixed; no longer swallowing misuse of subdoc#invalidate()

		fixed; utils.clone retains RegExp opts

		fixed; population of non-schema property

		fixed; allow updating versionKey #1265

		fixed; add EventEmitter props to reserved paths #1338

		fixed; can now deselect populated doc _ids #1331

		fixed; properly pass subtype to Binary in MongooseBuffer

		fixed; casting _id from document with non-ObjectId _id

		fixed; specifying schema type edge case { path: [{type: “String” }] }

		fixed; typo in schemdate #1329 jplock [https://github.com/jplock]

		updated; driver to 1.2.14

		updated; muri to 0.3.1

		updated; mpromise to 0.2.1

		updated; mocha 1.8.1

		updated; mpath to 0.1.1

		deprecated; pluralization will die in 4.x

		refactor; rename private methods to something unusable as doc properties

		refactor MongooseArray#remove

		refactor; move expires index to SchemaDate #1328

		refactor; internal document properties #1171 #1184

		tests; added

		docs; indexes

		docs; validation

		docs; populate

		docs; populate

		docs; add note about stream compatibility with node 0.8

		docs; fix for private names

		docs; Buffer -> mongodb.Binary #1363

		docs; auth options

		docs; improved

		website; update FAQ

		website; add more api links

		website; add 3.5.x docs to prior releases

		website; Change mongoose-types to an active repo jackdbernier [https://github.com/jackdbernier]

		website; compat with node 0.10

		website; add news section

		website; use T for generic type

		benchmark; make adjustable

3.6.0rc1 / 2013-03-12

		refactor; rename private methods to something unusable as doc properties

		added; {mongoose,db}.modelNames()

		added; $push w/ $slice,$sort support (MongoDB 2.4)

		added; hashed index type (MongoDB 2.4)

		added; support for mongodb 2.4 geojson (MongoDB 2.4)

		added; value at time of validation error

		added; support for object literal schemas

		added; bufferCommands schema option

		added; allow auth option in connections #1360 geoah [https://github.com/geoah]

		fixed; lean population #1382

		fixed; empty object mixed defaults #1380

		fixed; populate w/ deselected _id using string syntax

		fixed; attempted save of divergent populated arrays #1334 related

		fixed; better error msg when attempting toObject as property name

		fixed; non population buffer casting from doc

		fixed; setting populated paths #570

		fixed; casting when added docs to populated arrays #570

		fixed; prohibit updating arrays selected with $elemMatch #1334

		fixed; pull / set subdoc combination #1303

		fixed; multiple bg index creation #1365

		fixed; manual reconnection to single mongod

		fixed; Constructor / version exposure #1124

		fixed; CastError race condition

		fixed; no longer swallowing misuse of subdoc#invalidate()

		fixed; utils.clone retains RegExp opts

		fixed; population of non-schema property

		fixed; allow updating versionKey #1265

		fixed; add EventEmitter props to reserved paths #1338

		fixed; can now deselect populated doc _ids #1331

		updated; muri to 0.3.1

		updated; driver to 1.2.12

		updated; mpromise to 0.2.1

		deprecated; pluralization will die in 4.x

		docs; Buffer -> mongodb.Binary #1363

		docs; auth options

		docs; improved

		website; add news section

		benchmark; make adjustable

3.6.0rc0 / 2013-02-03

		changed; cast ‘true’/’false’ to boolean #1282 mgrach [https://github.com/mgrach]

		changed; Buffer arrays can now contain nulls

		fixed; properly pass subtype to Binary in MongooseBuffer

		fixed; casting _id from document with non-ObjectId _id

		fixed; specifying schema type edge case { path: [{type: “String” }] }

		fixed; typo in schemdate #1329 jplock [https://github.com/jplock]

		refactor; move expires index to SchemaDate #1328

		refactor; internal document properties #1171 #1184

		added; performance improvements to populate() 263ece9 [https://github.com/LearnBoost/mongoose/commit/263ece9]

		added; allow adding uncasted docs to populated arrays and properties #570

		added; doc#populated(path) stores original populated _ids

		added; lean population #1260

		added; query.populate() now accepts an options object

		added; document#populate(opts, callback)

		added; Model.populate(docs, opts, callback)

		added; support for rich nested path population

		added; doc.array.remove(value) subdoc with _id value support #1278

		added; optionally allow non-strict sets and updates

		added; promises/A+ comformancy with mpromise [https://github.com/aheckmann/mpromise]

		added; promise#then

		added; promise#end

		updated; mocha 1.8.1

		updated; muri to 0.3.0

		updated; mpath to 0.1.1

		updated; docs

3.5.16 / 2013-08-13

		updated; driver to 1.3.18

3.5.15 / 2013-07-26

		updated; sliced to 0.0.5

		updated; driver to 1.3.12

		fixed; regression in Query#count() due to driver change

		tests; fixed timeouts

		tests; handle differing test uris

3.5.14 / 2013-05-15

		updated; driver to 1.3.5

		fixed; compat w/ Object.create(null) #1484 #1485

		fixed; cloning objects missing constructors

		fixed; prevent multiple min number validators #1481 nrako [https://github.com/nrako]

3.5.13 / 2013-05-09

		update driver to 1.3.3

		fixed; use of $options in array #1462

3.5.12 / 2013-04-25

		updated; driver to 1.3.0

		fixed; connection.model should retain options #1458 vedmalex [https://github.com/vedmalex]

		fixed; read pref typos #1422 kyano [https://github.com/kyano]

3.5.11 / 2013-04-03

		fixed; +field conflict with $slice #1370

		fixed; RangeError in ValidationError.toString() #1296

		fixed; nested deselection conflict #1333

		remove time from Makefile

3.5.10 / 2013-04-02

		fixed; setting subdocuments deeply nested fields #1394

		fixed; do not alter schema arguments #1364

3.5.9 / 2013-03-15

		updated; driver to 1.2.14

		added; support for authSource driver option (mongodb 2.4)

		added; QueryStream transform option (node 0.10 helper)

		fixed; backport for saving required populated buffers

		fixed; pull / set subdoc combination #1303

		fixed; multiple bg index creation #1365

		test; added for saveable required populated buffers

		test; added for #1365

		test; add authSource test

3.5.8 / 2013-03-12

		added; auth option in connection geoah [https://github.com/geoah]

		fixed; CastError race condition

		docs; add note about stream compatibility with node 0.8

3.5.7 / 2013-02-22

		updated; driver to 1.2.13

		updated; muri to 0.3.1 #1347

		fixed; utils.clone retains RegExp opts #1355

		fixed; deepEquals RegExp support

		tests; fix a connection test

		website; clean up docs afshinm [https://github.com/afshinm]

		website; update homepage

		website; migragtion: emphasize impact of strict docs #1264

3.5.6 / 2013-02-14

		updated; driver to 1.2.12

		fixed; properly pass Binary subtype

		fixed; add EventEmitter props to reserved paths #1338

		fixed; use correct node engine version

		fixed; display empty docs as {} in log output #953 follow up

		improved; “bad $within $box argument” error message

		populate; add unscientific benchmark

		website; add stack overflow to help section

		website; use better code font #1336 risseraka [https://github.com/risseraka]

		website; clarify where help is available

		website; fix source code links #1272 floatingLomas [https://github.com/floatingLomas]

		docs; be specific about _id schema option #1103

		docs; add ensureIndex error handling example

		docs; README

		docs; CONTRIBUTING.md

3.5.5 / 2013-01-29

		updated; driver to 1.2.11

		removed; old node < 0.6x shims

		fixed; documents with Buffer _ids equality

		fixed; MongooseBuffer properly casts numbers

		fixed; reopening closed connection on alt host/port #1287

		docs; fixed typo in Readme #1298 rened [https://github.com/rened]

		docs; fixed typo in migration docs Prinzhorn [https://github.com/Prinzhorn]

		docs; fixed incorrect annotation in SchemaNumber#min bilalq [https://github.com/bilalq]

		docs; updated

3.5.4 / 2013-01-07

		changed; “_pres” & “_posts” are now reserved pathnames #1261

		updated; driver to 1.2.8

		fixed; exception when reopening a replica set. #1263 ethankan [https://github.com/ethankan]

		website; updated

3.5.3 / 2012-12-26

		added; support for geo object notation #1257

		fixed; $within query casting with arrays

		fixed; unix domain socket support #1254

		updated; driver to 1.2.7

		updated; muri to 0.0.5

3.5.2 / 2012-12-17

		fixed; using auth with replica sets #1253

3.5.1 / 2012-12-12

		fixed; regression when using subdoc with path as pathname #1245 daeq [https://github.com/daeq]

		fixed; safer db option checks

		updated; driver to 1.2.5

		website; add more examples

		website; clean up old docs

		website; fix prev release urls

		docs; clarify streaming with HTTP responses

3.5.0 / 2012-12-10

		added; paths to CastErrors #1239

		added; support for mongodb connection string spec #1187

		added; post validate event

		added; Schema#get (to retrieve schema options)

		added; VersionError #1071

		added; npmignore hidekiy [https://github.com/hidekiy]

		update; driver to 1.2.3

		fixed; stackoverflow in setter #1234

		fixed; utils.isObject()

		fixed; do not clobber user specified driver writeConcern #1227

		fixed; always pass current document to post hooks

		fixed; throw error when user attempts to overwrite a model

		fixed; connection.model only caches on connection #1209

		fixed; respect conn.model() creation when matching global model exists #1209

		fixed; passing model name + collection name now always honors collection name

		fixed; setting virtual field to an empty object #1154

		fixed; subclassed MongooseErrors exposure, now available in mongoose.Error.xxxx

		fixed; model.remove() ignoring callback when executed twice daeq [https://github.com/daeq] #1210

		docs; add collection option to schema api docs #1222

		docs; NOTE about db safe options

		docs; add post hooks docs

		docs; connection string options

		docs; middleware is not executed with Model.remove #1241

		docs; {g,s}etter introspection #777

		docs; update validation docs

		docs; add link to plugins page

		docs; clarify error returned by unique indexes #1225

		docs; more detail about disabling autoIndex behavior

		docs; add homepage section to package (npm docs mongoose)

		docs; more detail around collection name pluralization #1193

		website; add .important css

		website; update models page

		website; update getting started

		website; update quick start

3.4.0 / 2012-11-10

		added; support for generic toJSON/toObject transforms #1160 #1020 #1197

		added; doc.set() merge support #1148 NuORDER [https://github.com/NuORDER]

		added; query#add support #1188 aleclofabbro [https://github.com/aleclofabbro]

		changed; adding invalid nested paths to non-objects throws 4216f14

		changed; fixed; stop invalid function cloning (internal fix)

		fixed; add query $and casting support #1180 anotheri [https://github.com/anotheri]

		fixed; overwriting of query arguments #1176

		docs; fix expires examples

		docs; transforms

		docs; schema collection option docs hermanjunge [https://github.com/hermanjunge]

		website; updated

		tests; added

3.3.1 / 2012-10-11

		fixed; allow goose.connect(uris, dbname, opts) #1144

		docs; persist API private checked state across page loads

3.3.0 / 2012-10-10

		fixed; passing options as 2nd arg to connect() #1144

		fixed; race condition after no-op save #1139

		fixed; schema field selection application in findAndModify #1150

		fixed; directly setting arrays #1126

		updated; driver to 1.1.11

		updated; collection pluralization rules mrickard [https://github.com/mrickard]

		tests; added

		docs; updated

3.2.2 / 2012-10-08

		updated; driver to 1.1.10 #1143

		updated; use sliced 0.0.3

		fixed; do not recast embedded docs unnecessarily

		fixed; expires schema option helper #1132

		fixed; built in string setters #1131

		fixed; debug output for Dates/ObjectId properties #1129

		docs; fixed Javascript syntax error in example olalonde [https://github.com/olalonde]

		docs; fix toJSON example #1137

		docs; add ensureIndex production notes

		docs; fix spelling

		docs; add blogposts about v3

		website; updated

		removed; undocumented inGroupsOf util

		tests; added

3.2.1 / 2012-09-28

		fixed; remove query batchSize option default of 1000 https://github.com/learnboost/mongoose/commit/3edaa8651

		docs; updated

		website; updated

3.2.0 / 2012-09-27

		added; direct array index assignment with casting support doc.array.set(index, value)

		fixed; QueryStream#resume within same tick as pause() #1116

		fixed; default value validatation #1109

		fixed; array splice() not casting #1123

		fixed; default array construction edge case #1108

		fixed; query casting for inequalities in arrays #1101 dpatti [https://github.com/dpatti]

		tests; added

		website; more documentation

		website; fixed layout issue #1111 SlashmanX [https://github.com/SlashmanX]

		website; refactored guille [https://github.com/guille]

3.1.2 / 2012-09-10

		added; ReadPreferrence schema option #1097

		updated; driver to 1.1.7

		updated; default query batchSize to 1000

		fixed; we now cast the mapReduce query option #1095

		fixed; $elemMatch+$in with field selection #1091

		fixed; properly cast $elemMatch+$in conditions #1100

		fixed; default field application of subdocs #1027

		fixed; querystream prematurely dying #1092

		fixed; querystream never resumes when paused at getMore boundries #1092

		fixed; querystream occasionally emits data events after destroy #1092

		fixed; remove unnecessary ObjectId creation in querystream

		fixed; allow ne(boolean) again #1093

		docs; add populate/field selection syntax notes

		docs; add toObject/toJSON options detail

		docs; read schema option

3.1.1 / 2012-08-31

		updated; driver to 1.1.6

3.1.0 / 2012-08-29

		changed; fixed; directly setting nested objects now overwrites entire object (previously incorrectly merged them)

		added; read pref support (mongodb 2.2) 205a709c

		added; aggregate support (mongodb 2.2) f3a5bd3d

		added; virtual {g,s}etter introspection (#1070)

		updated; docs brettz9 [https://github.com/brettz9]

		updated; driver to 1.1.5

		fixed; retain virtual setter return values (#1069)

3.0.3 / 2012-08-23

		fixed; use of nested paths beginning w/ numbers #1062

		fixed; query population edge case #1053 #1055 jfremy [https://github.com/jfremy]

		fixed; simultaneous top and sub level array modifications #1073

		added; id and _id schema option aliases + tests

		improve debug formatting to allow copy/paste logged queries into mongo shell eknkc [https://github.com/eknkc]

		docs

3.0.2 / 2012-08-17

		added; missing support for v3 sort/select syntax to findAndModify helpers (#1058)

		fixed; replset fullsetup event emission

		fixed; reconnected event for replsets

		fixed; server reconnection setting discovery

		fixed; compat with non-schema path props using positional notation (#1048)

		fixed; setter/casting order (#665)

		docs; updated

3.0.1 / 2012-08-11

		fixed; throw Error on bad validators (1044)

		fixed; typo in EmbeddedDocument#parentArray [lackac]

		fixed; repair mongoose.SchemaTypes alias

		updated; docs

3.0.0 / 2012-08-07

		removed; old subdocument#commit method

		fixed; setting arrays of matching docs [6924cbc2]

		fixed; doc!remove event now emits in save order as save for consistency

		fixed; pre-save hooks no longer fire on subdocuments when validation fails

		added; subdoc#parent() and subdoc#parentArray() to access subdocument parent objects

		added; query#lean() helper

3.0.0rc0 / 2012-08-01

		fixed; allow subdoc literal declarations containing “type” pathname (#993)

		fixed; unsetting a default array (#758)

		fixed; boolean $in queries (#998)

		fixed; allow use of options as a pathname (#529)

		fixed; model is again a permitted schema path name

		fixed; field selection option on subdocs (#1022)

		fixed; handle another edge case with subdoc saving (#975)

		added; emit save err on model if listening

		added; MongoDB TTL collection support (#1006)

		added; $center options support

		added; $nearSphere and $polygon support

		updated; driver version to 1.1.2

3.0.0alpha2 / 2012-07-18

		changed; index errors are now emitted on their model and passed to an optional callback (#984)

		fixed; specifying index along with sparse/unique option no longer overwrites (#1004)

		fixed; never swallow connection errors (#618)

		fixed; creating object from model with emded object no longer overwrites defaults [achurkin] (#859)

		fixed; stop needless validation of unchanged/unselected fields (#891)

		fixed; document#equals behavior of objectids (#974)

		fixed; honor the minimize schema option (#978)

		fixed; provide helpful error msgs when reserved schema path is used (#928)

		fixed; callback to conn#disconnect is optional (#875)

		fixed; handle missing protocols in connection urls (#987)

		fixed; validate args to query#where (#969)

		fixed; saving modified/removed subdocs (#975)

		fixed; update with $pull from Mixed array (#735)

		fixed; error with null shard key value

		fixed; allow unsetting enums (#967)

		added; support for manual index creation (#984)

		added; support for disabled auto-indexing (#984)

		added; support for preserving MongooseArray#sort changes (#752)

		added; emit state change events on connection

		added; support for specifying BSON subtype in MongooseBuffer#toObject [jcrugzz]

		added; support for disabled versioning (#977)

		added; implicit “new” support for models and Schemas

3.0.0alpha1 / 2012-06-15

		removed; doc#commit (use doc#markModified)

		removed; doc.modified getter (#950)

		removed; mongoose{connectSet,createSetConnection}. use connect,createConnection instead

		removed; query alias methods 1149804c

		removed; MongooseNumber

		changed; now creating indexes in background by default

		changed; strict mode now enabled by default (#952)

		changed; doc#modifiedPaths is now a method (#950)

		changed; getters no longer cast (#820); casting happens during set

		fixed; no need to pass updateArg to findOneAndUpdate (#931)

		fixed: utils.merge bug when merging nested non-objects. [treygriffith]

		fixed; strict:throw should produce errors in findAndModify (#963)

		fixed; findAndUpdate no longer overwrites document (#962)

		fixed; setting default DocumentArrays (#953)

		fixed; selection of _id with schema deselection (#954)

		fixed; ensure promise#error emits instanceof Error

		fixed; CursorStream: No stack overflow on any size result (#929)

		fixed; doc#remove now passes safe options

		fixed; invalid use of $set during $pop

		fixed; array#{$pop,$shift} mirror MongoDB behavior

		fixed; no longer test non-required vals in string match (#934)

		fixed; edge case with doc#inspect

		fixed; setter order (#665)

		fixed; setting invalid paths in strict mode (#916)

		fixed; handle docs without id in DocumentArray#id method (#897)

		fixed; do not save virtuals during model.update (#894)

		fixed; sub doc toObject virtuals application (#889)

		fixed; MongooseArray#pull of ObjectId (#881)

		fixed; handle passing db name with any repl set string

		fixed; default application of selected fields (#870)

		fixed; subdoc paths reported in validation errors (#725)

		fixed; incorrect reported num of affected docs in update ops (#862)

		fixed; connection assignment in Model#model (#853)

		fixed; stringifying arrays of docs (#852)

		fixed; modifying subdoc and parent array works (#842)

		fixed; passing undefined to next hook (#785)

		fixed; Query#{update,remove}() works without callbacks (#788)

		fixed; set/updating nested objects by parent pathname (#843)

		fixed; allow null in number arrays (#840)

		fixed; isNew on sub doc after insertion error (#837)

		fixed; if an insert fails, set isNew back to false [boutell]

		fixed; isSelected when only _id is selected (#730)

		fixed; setting an unset default value (#742)

		fixed; query#sort error messaging (#671)

		fixed; support for passing $options with $regex

		added; array of object literal notation in schema creates DocumentArrays

		added; gt,gte,lt,lte query support for arrays (#902)

		added; capped collection support (#938)

		added; document versioning support

		added; inclusion of deselected schema path (#786)

		added; non-atomic array#pop

		added; EmbeddedDocument constructor is now exposed in DocArray#create 7cf8beec

		added; mapReduce support (#678)

		added; support for a configurable minimize option #to{Object,JSON}(option) (#848)

		added; support for strict: throws [regality]

		added; support for named schema types (#795)

		added; to{Object,JSON} schema options (#805)

		added; findByIdAnd{Update,Remove}()

		added; findOneAnd{Update,Remove}()

		added; query.setOptions()

		added; instance.update() (#794)

		added; support specifying model in populate() [DanielBaulig]

		added; lean query option [gitfy]

		added; multi-atomic support to MongooseArray#nonAtomicPush

		added; support for $set + other $atomic ops on single array

		added; tests

		updated; driver to 1.0.2

		updated; query.sort() syntax to mirror query.select()

		updated; clearer cast error msg for array numbers

		updated; docs

		updated; doc.clone 3x faster (#950)

		updated; only create _id if necessary (#950)

2.7.3 / 2012-08-01

		fixed; boolean $in queries (#998)

		fixed field selection option on subdocs (#1022)

2.7.2 / 2012-07-18

		fixed; callback to conn#disconnect is optional (#875)

		fixed; handle missing protocols in connection urls (#987)

		fixed; saving modified/removed subdocs (#975)

		updated; tests

2.7.1 / 2012-06-26

		fixed; sharding: when a document holds a null as a value of the shard key

		fixed; update() using $pull on an array of Mixed (gh-735)

		deprecated; MongooseNumber#{inc, increment, decrement} methods

		tests; now using mocha

2.7.0 / 2012-06-14

		added; deprecation warnings to methods being removed in 3.x

2.6.8 / 2012-06-14

		fixed; edge case when using ‘options’ as a path name (#961)

2.6.7 / 2012-06-08

		fixed; ensure promise#error always emits instanceof Error

		fixed; selection of _id w/ another excluded path (#954)

		fixed; setting default DocumentArrays (#953)

2.6.6 / 2012-06-06

		fixed; stack overflow in query stream with large result sets (#929)

		added; $gt, $gte, $lt, $lte support to arrays (#902)

		fixed; pass option safe along to doc#remove() calls

2.6.5 / 2012-05-24

		fixed; do not save virtuals in Model.update (#894)

		added; missing $ prefixed query aliases (going away in 3.x) (#884) [timoxley]

		fixed; setting invalid paths in strict mode (#916)

		fixed; resetting isNew after insert failure (#837) [boutell]

2.6.4 / 2012-05-15

		updated; backport string regex $options to 2.x

		updated; use driver 1.0.2 (performance improvements) (#914)

		fixed; calling MongooseDocumentArray#id when the doc has no _id (#897)

2.6.3 / 2012-05-03

		fixed; repl-set connectivity issues during failover on MongoDB 2.0.1

		updated; driver to 1.0.0

		fixed; virtuals application of subdocs when using toObject({ virtuals: true }) (#889)

		fixed; MongooseArray#pull of ObjectId correctly updates the array itself (#881)

2.6.2 / 2012-04-30

		fixed; default field application of selected fields (#870)

2.6.1 / 2012-04-30

		fixed; connection assignment in mongoose#model (#853, #877)

		fixed; incorrect reported num of affected docs in update ops (#862)

2.6.0 / 2012-04-19

		updated; hooks.js to 0.2.1

		fixed; issue with passing undefined to a hook callback. thanks to [chrisleishman] for reporting.

		fixed; updating/setting nested objects in strict schemas (#843) as reported by [kof]

		fixed; Query#{update,remove}() work without callbacks again (#788)

		fixed; modifying subdoc along with parent array $atomic op (#842)

2.5.14 / 2012-04-13

		fixed; setting an unset default value (#742)

		fixed; doc.isSelected(otherpath) when only _id is selected (#730)

		updated; docs

2.5.13 / 2012-03-22

		fixed; failing validation of unselected required paths (#730,#713)

		fixed; emitting connection error when only one listener (#759)

		fixed; MongooseArray#splice was not returning values (#784) [chrisleishman]

2.5.12 / 2012-03-21

		fixed; honor the safe option in all ensureIndex calls

		updated; node-mongodb-native driver to 0.9.9-7

2.5.11 / 2012-03-15

		added; introspection for getters/setters (#745)

		updated; node-mongodb-driver to 0.9.9-5

		added; tailable method to Query (#769) [holic]

		fixed; Number min/max validation of null (#764) [btamas]

		added; more flexible user/password connection options (#738) [KarneAsada]

2.5.10 / 2012-03-06

		updated; node-mongodb-native driver to 0.9.9-4

		added; Query#comment()

		fixed; allow unsetting arrays

		fixed; hooking the set method of subdocuments (#746)

		fixed; edge case in hooks

		fixed; allow $id and $ref in queries (fixes compatibility with mongoose-dbref) (#749) [richtera]

		added; default path selection to SchemaTypes

2.5.9 / 2012-02-22

		fixed; properly cast nested atomic update operators for sub-documents

2.5.8 / 2012-02-21

		added; post ‘remove’ middleware includes model that was removed (#729) [timoxley]

2.5.7 / 2012-02-09

		fixed; RegExp validators on node >= v0.6.x

2.5.6 / 2012-02-09

		fixed; emit errors returned from db.collection() on the connection (were being swallowed)

		added; can add multiple validators in your schema at once (#718) [diogogmt]

		fixed; strict embedded documents (#717)

		updated; docs [niemyjski]

		added; pass number of affected docs back in model.update/save

2.5.5 / 2012-02-03

		fixed; RangeError: maximum call stack exceed error when removing docs with Number _id (#714)

2.5.4 / 2012-02-03

		fixed; RangeError: maximum call stack exceed error (#714)

2.5.3 / 2012-02-02

		added; doc#isSelected(path)

		added; query#equals()

		added; beta sharding support

		added; more descript error msgs (#700) [obeleh]

		added; document.modifiedPaths (#709) [ljharb]

		fixed; only functions can be added as getters/setters (#707,704) [ljharb]

2.5.2 / 2012-01-30

		fixed; rollback -native driver to 0.9.7-3-5 (was causing timeouts and other replica set weirdness)

		deprecated; MongooseNumber (will be moved to a separate repo for 3.x)

		added; init event is emitted on schemas

2.5.1 / 2012-01-27

		fixed; honor strict schemas in Model.update (#699)

2.5.0 / 2012-01-26

		added; doc.toJSON calls toJSON on embedded docs when exists [jerem]

		added; populate support for refs of type Buffer (#686) [jerem]

		added; $all support for ObjectIds and Dates (#690)

		fixed; virtual setter calling on instantiation when strict: true (#682) [hunterloftis]

		fixed; doc construction triggering getters (#685)

		fixed; MongooseBuffer check in deepEquals (#688)

		fixed; range error when using Number _ids with instance.save() (#691)

		fixed; isNew on embedded docs edge case (#680)

		updated; driver to 0.9.8-3

		updated; expose model() method within static methods

2.4.10 / 2012-01-10

		added; optional getter application in .toObject()/.toJSON() (#412)

		fixed; nested $operators in $all queries (#670)

		added; $nor support (#674)

		fixed; bug when adding nested schema (#662) [paulwe]

2.4.9 / 2012-01-04

		updated; driver to 0.9.7-3-5 to fix Linux performance degradation on some boxes

2.4.8 / 2011-12-22

		updated; bump -native to 0.9.7.2-5

		fixed; compatibility with date.js (#646) [chrisleishman]

		changed; undocumented schema “lax” option to “strict”

		fixed; default value population for strict schemas

		updated; the nextTick helper for small performance gain. 1bee2a2

2.4.7 / 2011-12-16

		fixed; bug in 2.4.6 with path setting

		updated; bump -native to 0.9.7.2-1

		added; strict schema option [nw]

2.4.6 / 2011-12-16

		fixed; conflicting mods on update bug [sirlantis]

		improved; doc.id getter performance

2.4.5 / 2011-12-14

		fixed; bad MongooseArray behavior in 2.4.2 - 2.4.4

2.4.4 / 2011-12-14

		fixed; MongooseArray#doAtomics throwing after sliced

2.4.3 / 2011-12-14

		updated; system.profile schema for MongoDB 2x

2.4.2 / 2011-12-12

		fixed; partially populating multiple children of subdocs (#639) [kenpratt]

		fixed; allow Update of numbers to null (#640) [jerem]

2.4.1 / 2011-12-02

		added; options support for populate() queries

		updated; -native driver to 0.9.7-1.4

2.4.0 / 2011-11-29

		added; QueryStreams (#614)

		added; debug print mode for development

		added; $within support to Array queries (#586) [ggoodale]

		added; $centerSphere query support

		fixed; $within support

		added; $unset is now used when setting a path to undefined (#519)

		added; query#batchSize support

		updated; docs

		updated; -native driver to 0.9.7-1.3 (provides Windows support)

2.3.13 / 2011-11-15

		fixed; required validation for Refs (#612) [ded]

		added; $nearSphere support for Arrays (#610)

2.3.12 / 2011-11-09

		fixed; regression, objects passed to Model.update should not be changed (#605)

		fixed; regression, empty Model.update should not be executed

2.3.11 / 2011-11-08

		fixed; using $elemMatch on arrays of Mixed types (#591)

		fixed; allow using $regex when querying Arrays (#599)

		fixed; calling Model.update with no atomic keys (#602)

2.3.10 / 2011-11-05

		fixed; model.update casting for nested paths works (#542)

2.3.9 / 2011-11-04

		fixed; deepEquals check for MongooseArray returned false

		fixed; reset modified flags of embedded docs after save [gitfy]

		fixed; setting embedded doc with identical values no longer marks modified [gitfy]

		updated; -native driver to 0.9.6.23 [mlazarov]

		fixed; Model.update casting (#542, #545, #479)

		fixed; populated refs no longer fail required validators (#577)

		fixed; populating refs of objects with custom ids works

		fixed; $pop & $unset work with Model.update (#574)

		added; more helpful debugging message for Schema#add (#578)

		fixed; accessing .id when no _id exists now returns null (#590)

2.3.8 / 2011-10-26

		added; callback to query#findOne is now optional (#581)

2.3.7 / 2011-10-24

		fixed; wrapped save/remove callbacks in nextTick to mitigate -native swallowing thrown errors

2.3.6 / 2011-10-21

		fixed; exclusion of embedded doc _id from query results (#541)

2.3.5 / 2011-10-19

		fixed; calling queries without passing a callback works (#569)

		fixed; populate() works with String and Number _ids too (#568)

2.3.4 / 2011-10-18

		added; Model.create now accepts an array as a first arg

		fixed; calling toObject on a DocumentArray with nulls no longer throws

		fixed; calling inspect on a DocumentArray with nulls no longer throws

		added; MongooseArray#unshift support

		fixed; save hooks now fire on embedded documents [gitfy] (#456)

		updated; -native driver to 0.9.6-22

		fixed; correctly pass $addToSet op instead of $push

		fixed; $addToSet properly detects dates

		fixed; $addToSet with multiple items works

		updated; better node 0.6 Buffer support

2.3.3 / 2011-10-12

		fixed; population conditions in multi-query settings [vedmalex] (#563)

		fixed; now compatible with Node v0.5.x

2.3.2 / 2011-10-11

		fixed; population of null subdoc properties no longer hangs (#561)

2.3.1 / 2011-10-10

		added; support for Query filters to populate() [eneko]

		fixed; querying with number no longer crashes mongodb (#555) [jlbyrey]

		updated; version of -native driver to 0.9.6-21

		fixed; prevent query callbacks that throw errors from corrupting -native connection state

2.3.0 / 2011-10-04

		fixed; nulls as default values for Boolean now works as expected

		updated; version of -native driver to 0.9.6-20

2.2.4 / 2011-10-03

		fixed; populate() works when returned array contains undefined/nulls

2.2.3 / 2011-09-29

		updated; version of -native driver to 0.9.6-19

2.2.2 / 2011-09-28

		added; $regex support to String [davidandrewcope]

		added; support for other contexts like repl etc (#535)

		fixed; clear modified state properly after saving

		added; $addToSet support to Array

2.2.1 / 2011-09-22

		more descript error when casting undefined to string

		updated; version of -native driver to 0.9.6-18

2.2.0 / 2011-09-22

		fixed; maxListeners warning on schemas with many arrays (#530)

		changed; return / apply defaults based on fields selected in query (#423)

		fixed; correctly detect Mixed types within schema arrays (#532)

2.1.4 / 2011-09-20

		fixed; new private methods that stomped on users code

		changed; finished removing old “compat” support which did nothing

2.1.3 / 2011-09-16

		updated; version of -native driver to 0.9.6-15

		added; emit error on connection when open fails [edwardhotchkiss]

		added; index support to Buffers (thanks justmoon for helping track this down)

		fixed; passing collection name via schema in conn.model() now works (thanks vedmalex for reporting)

2.1.2 / 2011-09-07

		fixed; Query#find with no args no longer throws

2.1.1 / 2011-09-07

		added; support Model.count(fn)

		fixed; compatibility with node >=0.4.0 < 0.4.3

		added; pass model.options.safe through with .save() so w:2, wtimeout:5000 options work [andrewjstone]

		added; support for $type queries

		added; support for Query#or

		added; more tests

		optimized populate queries

2.1.0 / 2011-09-01

		changed; document#validate is a public method

		fixed; setting number to same value no longer marks modified (#476) [gitfy]

		fixed; Buffers shouldn’t have default vals

		added; allow specifying collection name in schema (#470) [ixti]

		fixed; reset modified paths and atomics after saved (#459)

		fixed; set isNew on embedded docs to false after save

		fixed; use self to ensure proper scope of options in doOpenSet (#483) [andrewjstone]

2.0.4 / 2011-08-29

		Fixed; Only send the depopulated ObjectId instead of the entire doc on save (DBRefs)

		Fixed; Properly cast nested array values in Model.update (the data was stored in Mongo incorrectly but recast on document fetch was “fixing” it)

2.0.3 / 2011-08-28

		Fixed; manipulating a populated array no longer causes infinite loop in BSON serializer during save (#477)

		Fixed; populating an empty array no longer hangs foreeeeeeeever (#481)

2.0.2 / 2011-08-25

		Fixed; Maintain query option key order (fixes ‘bad hint’ error from compound query hints)

2.0.1 / 2011-08-25

		Fixed; do not over-write the doc when no valide props exist in Model.update (#473)

2.0.0 / 2011-08-24

		Added; support for Buffers [justmoon]

		Changed; improved error handling [maelstrom]

		Removed: unused utils.erase

		Fixed; support for passing other context object into Schemas (#234) [Sija]

		Fixed; getters are no longer circular refs to themselves (#366)

		Removed; unused compat.js

		Fixed; getter/setter scopes are set properly

		Changed; made several private properties more obvious by prefixing _

		Added; DBRef support [guille]

		Changed; removed support for multiple collection names per model

		Fixed; no longer applying setters when document returned from db

		Changed; default auto_reconnect to true

		Changed; Query#bind no longer clones the query

		Fixed; Model.update now accepts $pull, $inc and friends (#404)

		Added; virtual type option support [nw]

1.8.4 / 2011-08-21

		Fixed; validation bug when instantiated with non-schema properties (#464) [jmreidy]

1.8.3 / 2011-08-19

		Fixed; regression in connection#open [jshaw86]

1.8.2 / 2011-08-17

		fixed; reset connection.readyState after failure [tomseago]

		fixed; can now query positionally for non-embedded docs (arrays of numbers/strings etc)

		fixed; embedded document query casting

		added; support for passing options to node-mongo-native db, server, and replsetserver [tomseago]

1.8.1 / 2011-08-10

		fixed; ObjectIds were always marked modified

		fixed; can now query using document instances

		fixed; can now query/update using documents with subdocs

1.8.0 / 2011-08-04

		fixed; can now use $all with String and Number

		fixed; can query subdoc array with $ne: null

		fixed; instance.subdocs#id now works with custom _ids

		fixed; do not apply setters when doc returned from db (change in bad behavior)

1.7.4 / 2011-07-25

		fixed; sparse now a valid seperate schema option

		fixed; now catching cast errors in queries

		fixed; calling new Schema with object created in vm.runInNewContext now works (#384) [Sija]

		fixed; String enum was disallowing null

		fixed; Find by nested document _id now works (#389)

1.7.3 / 2011-07-16

		fixed; MongooseArray#indexOf now works with ObjectIds

		fixed; validation scope now set properly (#418)

		fixed; added missing colors dependency (#398)

1.7.2 / 2011-07-13

		changed; node-mongodb-native driver to v0.9.6.7

1.7.1 / 2011-07-12

		changed; roll back node-mongodb-native driver to v0.9.6.4

1.7.0 / 2011-07-12

		fixed; collection name misspelling [mathrawka]

		fixed; 2nd param is required for ReplSetServers [kevinmarvin]

		fixed; MongooseArray behaves properly with Object.keys

		changed; node-mongodb-native driver to v0.9.6.6

		fixed/changed; Mongodb segfault when passed invalid ObjectId (#407)
		This means invalid data passed to the ObjectId constructor will now error

1.6.0 / 2011-07-07

		changed; .save() errors are now emitted on the instances db instead of the instance 9782463fc

		fixed; errors occurring when creating indexes now properly emit on db

		added; $maxDistance support to MongooseArrays

		fixed; RegExps now work with $all

		changed; node-mongodb-native driver to v0.9.6.4

		fixed; model names are now accessible via .modelName

		added; Query#slaveOk support

1.5.0 / 2011-06-27

		changed; saving without a callback no longer ignores the error (@bnoguchi)

		changed; hook-js version bump to 0.1.9

		changed; node-mongodb-native version bumped to 0.9.6.1 - When .remove() doesn’t
return an error, null is no longer passed.

		fixed; two memory leaks (@justmoon)

		added; sparse index support

		added; more ObjectId conditionals (gt, lt, gte, lte) (@phillyqueso)

		added; options are now passed in model#remote (@JerryLuke)

1.4.0 / 2011-06-10

		bumped hooks-js dependency (fixes issue passing null as first arg to next())

		fixed; document#inspect now works properly with nested docs

		fixed; ‘set’ now works as a schema attribute (GH-365)

		fixed; _id is now set properly within pre-init hooks (GH-289)

		added; Query#distinct / Model#distinct support (GH-155)

		fixed; embedded docs now can use instance methods (GH-249)

		fixed; can now overwrite strings conflicting with schema type

1.3.7 / 2011-06-03

		added MongooseArray#splice support

		fixed; ‘path’ is now a valid Schema pathname

		improved hooks (utilizing https://github.com/bnoguchi/hooks-js)

		fixed; MongooseArray#$shift now works (never did)

		fixed; Document.modified no longer throws

		fixed; modifying subdoc property sets modified paths for subdoc and parent doc

		fixed; marking subdoc path as modified properly persists the value to the db

		fixed; RexExps can again be saved (#357)

1.3.6 / 2011-05-18

		fixed; corrected casting for queries against array types

		added; Document#set now accepts Document instances

1.3.5 / 2011-05-17

		fixed; $ne queries work properly with single vals

		added; #inspect() methods to improve console.log output

1.3.4 / 2011-05-17

		fixed; find by Date works as expected (#336)

		added; geospatial 2d index support

		added; support for $near (#309)

		updated; node-mongodb-native driver

		fixed; updating numbers work (#342)

		added; better error msg when try to remove an embedded doc without an _id (#307)

		added; support for ‘on-the-fly’ schemas (#227)

		changed; virtual id getters can now be skipped

		fixed; .index() called on subdoc schema now works as expected

		fixed; db.setProfile() now buffers until the db is open (#340)

1.3.3 / 2011-04-27

		fixed; corrected query casting on nested mixed types

1.3.2 / 2011-04-27

		fixed; query hints now retain key order

1.3.1 / 2011-04-27

		fixed; setting a property on an embedded array no longer overwrites entire array (GH-310)

		fixed; setting nested properties works when sibling prop is named “type”

		fixed; isModified is now much finer grained when .set() is used (GH-323)

		fixed; mongoose.model() and connection.model() now return the Model (GH-308, GH-305)

		fixed; can now use $gt, $lt, $gte, $lte with String schema types (GH-317)

		fixed; .lowercase() -> .toLowerCase() in pluralize()

		fixed; updating an embedded document by index works (GH-334)

		changed; .save() now passes the instance to the callback (GH-294, GH-264)

		added; can now query system.profile and system.indexes collections

		added; db.model(‘system.profile’) is now included as a default Schema

		added; db.setProfiling(level, ms, callback)

		added; Query#hint() support

		added; more tests

		updated node-mongodb-native to 0.9.3

1.3.0 / 2011-04-19

		changed; save() callbacks now fire only once on failed validation

		changed; Errors returned from save() callbacks now instances of ValidationError

		fixed; MongooseArray#indexOf now works properly

1.2.0 / 2011-04-11

		changed; MongooseNumber now casts empty string to null

1.1.25 / 2011-04-08

		fixed; post init now fires at proper time

1.1.24 / 2011-04-03

		fixed; pushing an array onto an Array works on existing docs

1.1.23 / 2011-04-01

		Added Model#model

1.1.22 / 2011-03-31

		Fixed; $in queries on mixed types now work

1.1.21 / 2011-03-31

		Fixed; setting object root to null/undefined works

1.1.20 / 2011-03-31

		Fixed; setting multiple props on null field works

1.1.19 / 2011-03-31

		Fixed; no longer using $set on paths to an unexisting fields

1.1.18 / 2011-03-30

		Fixed; non-mixed type object setters work after initd from null

1.1.17 / 2011-03-30

		Fixed; nested object property access works when root initd with null value

1.1.16 / 2011-03-28

		Fixed; empty arrays are now saved

1.1.15 / 2011-03-28

		Fixed; null and undefined are set atomically.

1.1.14 / 2011-03-28

		Changed; more forgiving date casting, accepting ‘’ as null.

1.1.13 / 2011-03-26

		Fixed setting values as undefined.

1.1.12 / 2011-03-26

		Fixed; nested objects now convert to JSON properly

		Fixed; setting nested objects directly now works

		Update node-mongodb-native

1.1.11 / 2011-03-25

		Fixed for use of type as a key.

1.1.10 / 2011-03-23

		Changed; Make sure to only ensure indexes while connected

1.1.9 / 2011-03-2

		Fixed; Mixed can now default to empty arrays

		Fixed; keys by the name ‘type’ are now valid

		Fixed; null values retrieved from the database are hydrated as null values.

		Fixed repeated atomic operations when saving a same document twice.

1.1.8 / 2011-03-23

		Fixed ‘id’ overriding. [bnoguchi]

1.1.7 / 2011-03-22

		Fixed RegExp query casting when querying against an Array of Strings [bnoguchi]

		Fixed getters/setters for nested virtualsl. [bnoguchi]

1.1.6 / 2011-03-22

		Only doValidate when path exists in Schema [aheckmann]

		Allow function defaults for Array types [aheckmann]

		Fix validation hang [aheckmann]

		Fix setting of isRequired of SchemaType [aheckmann]

		Fix SchemaType#required(false) filter [aheckmann]

		More backwards compatibility [aheckmann]

		More tests [aheckmann]

1.1.5 / 2011-03-14

		Added support for uri, db, fn and uri, fn signatures for replica sets.

		Improved/extended replica set tests.

1.1.4 / 2011-03-09

		Fixed; running an empty Query doesn’t throw. [aheckmann]

		Changed; Promise#addBack returns promise. [aheckmann]

		Added streaming cursor support. [aheckmann]

		Changed; Query#update defaults to use$SetOnSave now. [brian]

		Added more docs.

1.1.3 / 2011-03-04

		Added Promise#resolve [aheckmann]

		Fixed backward compatibility with nulls [aheckmann]

		Changed; Query#{run,exec} return promises [aheckmann]

1.1.2 / 2011-03-03

		Restored Query#exec and added notion of default operation [brian]

		Fixed ValidatorError messages [brian]

1.1.1 / 2011-03-01

		Added SchemaType String lowercase, uppercase, trim.

		Public exports (Model, Document) and tests.

		Added ObjectId casting support for Documents.

1.1.0 / 2011-02-25

		Added support for replica sets.

1.0.16 / 2011-02-18

		Added $nin as another whitelisted $conditional for SchemaArray [brian]

		Changed #with to #where [brian]

		Added ability to use $in conditional with Array types [brian]

1.0.15 / 2011-02-18

		Added id virtual getter for documents to easily access the hexString of
the _id.

1.0.14 / 2011-02-17

		Fix for arrays within subdocuments [brian]

1.0.13 / 2011-02-16

		Fixed embedded documents saving.

1.0.12 / 2011-02-14

		Minor refactorings [brian]

1.0.11 / 2011-02-14

		Query refactor and $ne, $slice, $or, $size, $elemMatch, $nin, $exists support [brian]

		Named scopes sugar [brian]

1.0.10 / 2011-02-11

		Updated node-mongodb-native driver [thanks John Allen]

1.0.9 / 2011-02-09

		Fixed single member arrays as defaults [brian]

1.0.8 / 2011-02-09

		Fixed for collection-level buffering of commands [gitfy]

		Fixed Document#toJSON [dalejefferson]

		Fixed Connection authentication [robrighter]

		Fixed clash of accessors in getters/setters [eirikurn]

		Improved Model#save promise handling

1.0.7 / 2011-02-05

		Fixed memory leak warnings for test suite on 0.3

		Fixed querying documents that have an array that contain at least one
specified member. [brian]

		Fixed default value for Array types (fixes GH-210). [brian]

		Fixed example code.

1.0.6 / 2011-02-03

		Fixed post middleware

		Fixed; it’s now possible to instantiate a model even when one of the paths maps
to an undefined value [brian]

1.0.5 / 2011-02-02

		Fixed; combo $push and $pushAll auto-converts into a $pushAll [brian]

		Fixed; combo $pull and $pullAll auto-converts to a single $pullAll [brian]

		Fixed; $pullAll now removes said members from array before save (so it acts just
like pushAll) [brian]

		Fixed; multiple $pulls and $pushes become a single $pullAll and $pushAll.
Moreover, $pull now modifies the array before save to reflect the immediate
change [brian]

		Added tests for nested shortcut getters [brian]

		Added tests that show that Schemas with nested Arrays don’t apply defaults
[brian]

1.0.4 / 2011-02-02

		Added MongooseNumber#toString

		Added MongooseNumber unit tests

1.0.3 / 2011-02-02

		Make sure safe mode works with Model#save

		Changed Schema options: safe mode is now the default

		Updated node-mongodb-native to HEAD

1.0.2 / 2011-02-02

		Added a Model.create shortcut for creating documents. [brian]

		Fixed; we can now instantiate models with hashes that map to at least one
null value. [brian]

		Fixed Schema with more than 2 nested levels. [brian]

1.0.1 / 2011-02-02

		Improved MongooseNumber, works almost like the native except for typeof
not being 'number'.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/log4js/node_modules/readable-stream/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Mongoose

Mongoose is a MongoDB [http://www.mongodb.org/] object modeling tool designed to work in an asynchronous environment.

[image: Build Status] [https://travis-ci.org/LearnBoost/mongoose]

Documentation

mongoosejs.com [http://mongoosejs.com/]

Support

		Stack Overflow [http://stackoverflow.com/questions/tagged/mongoose]

		bug reports [https://github.com/learnboost/mongoose/issues/]

		help forum [http://groups.google.com/group/mongoose-orm]

		MongoDB support [http://www.mongodb.org/display/DOCS/Technical+Support]

		(irc) #mongoosejs on freenode

Plugins

Check out the plugins search site [http://plugins.mongoosejs.com/] to see hundreds of related modules from the community.

Contributors

View all 100+ contributors [https://github.com/learnboost/mongoose/graphs/contributors]. Stand up and be counted as a contributor [https://github.com/LearnBoost/mongoose/blob/master/CONTRIBUTING.md] too!

Live Examples

[image:]

Installation

First install node.js [http://nodejs.org/] and mongodb [http://www.mongodb.org/downloads]. Then:

$ npm install mongoose

Stability

The current stable branch is 3.8.x [https://github.com/LearnBoost/mongoose/tree/3.8.x]. New (unstable) development always occurs on the master [https://github.com/LearnBoost/mongoose/tree/master] branch.

Overview

Connecting to MongoDB

First, we need to define a connection. If your app uses only one database, you should use mongoose.connect. If you need to create additional connections, use mongoose.createConnection.

Both connect and createConnection take a mongodb:// URI, or the parameters host, database, port, options.

var mongoose = require('mongoose');

mongoose.connect('mongodb://localhost/my_database');

Once connected, the open event is fired on the Connection instance. If you’re using mongoose.connect, the Connection is mongoose.connection. Otherwise, mongoose.createConnection return value is a Connection.

Important! Mongoose buffers all the commands until it’s connected to the database. This means that you don’t have to wait until it connects to MongoDB in order to define models, run queries, etc.

Defining a Model

Models are defined through the Schema interface.

var Schema = mongoose.Schema
 , ObjectId = Schema.ObjectId;

var BlogPost = new Schema({
 author : ObjectId
 , title : String
 , body : String
 , date : Date
});

Aside from defining the structure of your documents and the types of data you’re storing, a Schema handles the definition of:

		Validators [http://mongoosejs.com/docs/validation.html] (async and sync)

		Defaults [http://mongoosejs.com/docs/api.html#schematype_SchemaType-default]

		Getters [http://mongoosejs.com/docs/api.html#schematype_SchemaType-get]

		Setters [http://mongoosejs.com/docs/api.html#schematype_SchemaType-set]

		Indexes [http://mongoosejs.com/docs/guide.html#indexes]

		Middleware [http://mongoosejs.com/docs/middleware.html]

		Methods [http://mongoosejs.com/docs/guide.html#methods] definition

		Statics [http://mongoosejs.com/docs/guide.html#statics] definition

		Plugins [http://mongoosejs.com/docs/plugins.html]

		pseudo-JOINs [http://mongoosejs.com/docs/populate.html]

The following example shows some of these features:

var Comment = new Schema({
 name : { type: String, default: 'hahaha' }
 , age : { type: Number, min: 18, index: true }
 , bio : { type: String, match: /[a-z]/ }
 , date : { type: Date, default: Date.now }
 , buff : Buffer
});

// a setter
Comment.path('name').set(function (v) {
 return capitalize(v);
});

// middleware
Comment.pre('save', function (next) {
 notify(this.get('email'));
 next();
});

Take a look at the example in examples/schema.js for an end-to-end example of a typical setup.

Accessing a Model

Once we define a model through mongoose.model('ModelName', mySchema), we can access it through the same function

var myModel = mongoose.model('ModelName');

Or just do it all at once

var MyModel = mongoose.model('ModelName', mySchema);

We can then instantiate it, and save it:

var instance = new MyModel();
instance.my.key = 'hello';
instance.save(function (err) {
 //
});

Or we can find documents from the same collection

MyModel.find({}, function (err, docs) {
 // docs.forEach
});

You can also findOne, findById, update, etc. For more details check out the docs [http://mongoosejs.com/docs/queries.html].

Important! If you opened a separate connection using mongoose.createConnection() but attempt to access the model through mongoose.model('ModelName') it will not work as expected since it is not hooked up to an active db connection. In this case access your model through the connection you created:

var conn = mongoose.createConnection('your connection string')
 , MyModel = conn.model('ModelName', schema)
 , m = new MyModel;
m.save(); // works

vs

var conn = mongoose.createConnection('your connection string')
 , MyModel = mongoose.model('ModelName', schema)
 , m = new MyModel;
m.save(); // does not work b/c the default connection object was never connected

Embedded Documents

In the first example snippet, we defined a key in the Schema that looks like:

comments: [Comments]

Where Comments is a Schema we created. This means that creating embedded documents is as simple as:

// retrieve my model
var BlogPost = mongoose.model('BlogPost');

// create a blog post
var post = new BlogPost();

// create a comment
post.comments.push({ title: 'My comment' });

post.save(function (err) {
 if (!err) console.log('Success!');
});

The same goes for removing them:

BlogPost.findById(myId, function (err, post) {
 if (!err) {
 post.comments[0].remove();
 post.save(function (err) {
 // do something
 });
 }
});

Embedded documents enjoy all the same features as your models. Defaults, validators, middleware. Whenever an error occurs, it’s bubbled to the save() error callback, so error handling is a snap!

Mongoose interacts with your embedded documents in arrays atomically, out of the box.

Middleware

See the docs [http://mongoosejs.com/docs/middleware.html] page.

Intercepting and mutating method arguments

You can intercept method arguments via middleware.

For example, this would allow you to broadcast changes about your Documents every time someone sets a path in your Document to a new value:

schema.pre('set', function (next, path, val, typel) {
 // `this` is the current Document
 this.emit('set', path, val);

 // Pass control to the next pre
 next();
});

Moreover, you can mutate the incoming method arguments so that subsequent middleware see different values for those arguments. To do so, just pass the new values to next:

.pre(method, function firstPre (next, methodArg1, methodArg2) {
 // Mutate methodArg1
 next("altered-" + methodArg1.toString(), methodArg2);
});

// pre declaration is chainable
.pre(method, function secondPre (next, methodArg1, methodArg2) {
 console.log(methodArg1);
 // => 'altered-originalValOfMethodArg1'

 console.log(methodArg2);
 // => 'originalValOfMethodArg2'

 // Passing no arguments to `next` automatically passes along the current argument values
 // i.e., the following `next()` is equivalent to `next(methodArg1, methodArg2)`
 // and also equivalent to, with the example method arg
 // values, `next('altered-originalValOfMethodArg1', 'originalValOfMethodArg2')`
 next();
});

Schema gotcha

type, when used in a schema has special meaning within Mongoose. If your schema requires using type as a nested property you must use object notation:

new Schema({
 broken: { type: Boolean }
 , asset : {
 name: String
 , type: String // uh oh, it broke. asset will be interpreted as String
 }
});

new Schema({
 works: { type: Boolean }
 , asset : {
 name: String
 , type: { type: String } // works. asset is an object with a type property
 }
});

Driver access

The driver being used defaults to node-mongodb-native [https://github.com/mongodb/node-mongodb-native] and is directly accessible through YourModel.collection. Note: using the driver directly bypasses all Mongoose power-tools like validation, getters, setters, hooks, etc.

API Docs

Find the API docs here [http://mongoosejs.com/docs/api.html], generated using dox [http://github.com/visionmedia/dox].

License

Copyright (c) 2010 LearnBoost

<

dev@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/mime/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime

Comprehensive MIME type mapping API. Includes all 600+ types and 800+ extensions defined by the Apache project, plus additional types submitted by the node.js community.

Install

Install with npm [http://github.com/isaacs/npm]:

npm install mime

API - Queries

mime.lookup(path)

Get the mime type associated with a file, if no mime type is found application/octet-stream is returned. Performs a case-insensitive lookup using the extension in path (the substring after the last ‘/’ or ‘.’). E.g.

var mime = require('mime');

mime.lookup('/path/to/file.txt'); // => 'text/plain'
mime.lookup('file.txt'); // => 'text/plain'
mime.lookup('.TXT'); // => 'text/plain'
mime.lookup('htm'); // => 'text/html'

mime.default_type

Sets the mime type returned when mime.lookup fails to find the extension searched for. (Default is application/octet-stream.)

mime.extension(type)

Get the default extension for type

mime.extension('text/html'); // => 'html'
mime.extension('application/octet-stream'); // => 'bin'

mime.charsets.lookup()

Map mime-type to charset

mime.charsets.lookup('text/plain'); // => 'UTF-8'

(The logic for charset lookups is pretty rudimentary. Feel free to suggest improvements.)

API - Defining Custom Types

The following APIs allow you to add your own type mappings within your project. If you feel a type should be included as part of node-mime, see requesting new types [https://github.com/broofa/node-mime/wiki/Requesting-New-Types].

mime.define()

Add custom mime/extension mappings

mime.define({
 'text/x-some-format': ['x-sf', 'x-sft', 'x-sfml'],
 'application/x-my-type': ['x-mt', 'x-mtt'],
 // etc ...
});

mime.lookup('x-sft'); // => 'text/x-some-format'

The first entry in the extensions array is returned by mime.extension(). E.g.

mime.extension('text/x-some-format'); // => 'x-sf'

mime.load(filepath)

Load mappings from an Apache ”.types” format file

mime.load('./my_project.types');

The .types file format is simple - See the types dir for examples.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/sliced/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.0.5 / 2013-02-05

		optimization: remove use of arguments jkroso [https://github.com/jkroso]

		add scripts to component.json jkroso [https://github.com/jkroso]

		tests; remove time for travis

0.0.4 / 2013-01-07

		added component.json #1 jkroso [https://github.com/jkroso]

		reversed array loop #1 jkroso [https://github.com/jkroso]

		remove fn params

0.0.3 / 2012-09-29

		faster with negative start args

0.0.2 / 2012-09-29

		support full [].slice semantics

0.0.1 / 2012-09-29

		initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/di/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Dependency Injection for Node.js

Heavily influenced by AngularJS [http://angularjs.org/] and its implementation of dependency injection.
Inspired by Guice [http://code.google.com/p/google-guice/] and Pico Container [http://picocontainer.codehaus.org/].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/sliced/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

#sliced

A faster alternative to [].slice.call(arguments).

[image: Build Status] [http://travis-ci.org/aheckmann/sliced]

Example output from benchmark.js [https://github.com/bestiejs/benchmark.js]

Array.prototype.slice.call x 1,320,205 ops/sec ±2.35% (92 runs sampled)
[].slice.call x 1,314,605 ops/sec ±1.60% (95 runs sampled)
cached slice.call x 10,468,380 ops/sec ±1.45% (95 runs sampled)
sliced x 16,608,237 ops/sec ±1.40% (92 runs sampled)
fastest is sliced

Array.prototype.slice.call(arguments, 1) x 1,383,584 ops/sec ±1.73% (97 runs sampled)
[].slice.call(arguments, 1) x 1,494,735 ops/sec ±1.33% (95 runs sampled)
cached slice.call(arguments, 1) x 10,085,270 ops/sec ±1.51% (97 runs sampled)
sliced(arguments, 1) x 16,620,480 ops/sec ±1.29% (95 runs sampled)
fastest is sliced(arguments, 1)

Array.prototype.slice.call(arguments, -1) x 1,303,262 ops/sec ±1.62% (94 runs sampled)
[].slice.call(arguments, -1) x 1,325,615 ops/sec ±1.36% (97 runs sampled)
cached slice.call(arguments, -1) x 9,673,603 ops/sec ±1.70% (96 runs sampled)
sliced(arguments, -1) x 16,384,575 ops/sec ±1.06% (91 runs sampled)
fastest is sliced(arguments, -1)

Array.prototype.slice.call(arguments, -2, -10) x 1,404,390 ops/sec ±1.61% (95 runs sampled)
[].slice.call(arguments, -2, -10) x 1,514,367 ops/sec ±1.21% (96 runs sampled)
cached slice.call(arguments, -2, -10) x 9,836,017 ops/sec ±1.21% (95 runs sampled)
sliced(arguments, -2, -10) x 18,544,882 ops/sec ±1.30% (91 runs sampled)
fastest is sliced(arguments, -2, -10)

Array.prototype.slice.call(arguments, -2, -1) x 1,458,604 ops/sec ±1.41% (97 runs sampled)
[].slice.call(arguments, -2, -1) x 1,536,547 ops/sec ±1.63% (99 runs sampled)
cached slice.call(arguments, -2, -1) x 10,060,633 ops/sec ±1.37% (96 runs sampled)
sliced(arguments, -2, -1) x 18,608,712 ops/sec ±1.08% (93 runs sampled)
fastest is sliced(arguments, -2, -1)

Benchmark source [https://github.com/aheckmann/sliced/blob/master/bench.js].

##Usage

sliced accepts the same arguments as Array#slice so you can easily swap it out.

function zing () {
 var slow = [].slice.call(arguments, 1, 8);
 var args = slice(arguments, 1, 8);

 var slow = Array.prototype.slice.call(arguments);
 var args = slice(arguments);
 // etc
}

install

npm install sliced

LICENSE [https://github.com/aheckmann/sliced/blob/master/LICENSE]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/readdirp/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readdirp [image: Build Status] [http://travis-ci.org/thlorenz/readdirp]

[image: NPM] [https://nodei.co/npm/readdirp/]

Recursive version of fs.readdir [http://nodejs.org/docs/latest/api/fs.html#fs_fs_readdir_path_callback]. Exposes a stream api.

var readdirp = require('readdirp')
 , path = require('path')
 , es = require('event-stream');

// print out all JavaScript files along with their size

var stream = readdirp({ root: path.join(__dirname), fileFilter: '*.js' });
stream
 .on('warn', function (err) {
 console.error('non-fatal error', err);
 // optionally call stream.destroy() here in order to abort and cause 'close' to be emitted
 })
 .on('error', function (err) { console.error('fatal error', err); })
 .pipe(es.mapSync(function (entry) {
 return { path: entry.path, size: entry.stat.size };
 }))
 .pipe(es.stringify())
 .pipe(process.stdout);

Meant to be one of the recursive versions of fs [http://nodejs.org/docs/latest/api/fs.html] functions, e.g., like mkdirp [https://github.com/substack/node-mkdirp].

Table of Contents generated with DocToc [http://doctoc.herokuapp.com/]

		Installation

		API
		entry stream

		options

		entry info

		Filters

		Callback API
		allProcessed

		fileProcessed

		More Examples
		stream api

		stream api pipe

		grep

		using callback api

		tests

Installation

npm install readdirp

API

var entryStream = readdirp (options)

Reads given root recursively and returns a stream of entry infos.

entry stream

Behaves as follows:

		emit('data') passes an entry info whenever one is found

		emit('warn') passes a non-fatal Error that prevents a file/directory from being processed (i.e., if it is
inaccessible to the user)

		emit('error') passes a fatal Error which also ends the stream (i.e., when illegal options where passed)

		emit('end') called when all entries were found and no more will be emitted (i.e., we are done)

		emit('close') called when the stream is destroyed via stream.destroy() (which could be useful if you want to
manually abort even on a non fatal error) - at that point the stream is no longer readable and no more entries,
warning or errors are emitted

		to learn more about streams, consult the very detailed
nodejs streams documentation [http://nodejs.org/api/stream.html] or the
stream-handbook [https://github.com/substack/stream-handbook]

options

		root: path in which to start reading and recursing into subdirectories

		fileFilter: filter to include/exclude files found (see Filters for more)

		directoryFilter: filter to include/exclude directories found and to recurse into (see Filters for more)

		depth: depth at which to stop recursing even if more subdirectories are found

		entryType: determines if data events on the stream should be emitted for 'files', 'directories' or 'both'. Defaults to 'files'.

		lstat: if true, readdirp uses fs.lstat instead of fs.stat in order to stat files

entry info

Has the following properties:

		parentDir : directory in which entry was found (relative to given root)

		fullParentDir : full path to parent directory

		name : name of the file/directory

		path : path to the file/directory (relative to given root)

		fullPath : full path to the file/directory found

		stat : built in stat object [http://nodejs.org/docs/v0.4.9/api/fs.html#fs.Stats]

		Example: (assuming root was /User/dev/readdirp)

 parentDir : 'test/bed/root_dir1',
 fullParentDir : '/User/dev/readdirp/test/bed/root_dir1',
 name : 'root_dir1_subdir1',
 path : 'test/bed/root_dir1/root_dir1_subdir1',
 fullPath : '/User/dev/readdirp/test/bed/root_dir1/root_dir1_subdir1',
 stat : [...]

Filters

There are three different ways to specify filters for files and directories respectively.

		function: a function that takes an entry info as a parameter and returns true to include or false to exclude the entry

		glob string: a string (e.g., *.js) which is matched using minimatch [https://github.com/isaacs/minimatch], so go there for more
information.

Globstars (**) are not supported since specifiying a recursive pattern for an already recursive function doesn’t make sense.

Negated globs (as explained in the minimatch documentation) are allowed, e.g., !*.txt matches everything but text files.

		array of glob strings: either need to be all inclusive or all exclusive (negated) patterns otherwise an error is thrown.

['*.json', '*.js'] includes all JavaScript and Json files.

`['!.git', '!node_modules']` includes all directories except the '.git' and 'node_modules'.

Directories that do not pass a filter will not be recursed into.

Callback API

Although the stream api is recommended, readdirp also exposes a callback based api.

readdirp (options, callback1 [, callback2])

If callback2 is given, callback1 functions as the fileProcessed callback, and callback2 as the allProcessed callback.

If only callback1 is given, it functions as the allProcessed callback.

allProcessed

		function with err and res parameters, e.g., function (err, res) { ... }

		err: array of errors that occurred during the operation, res may still be present, even if errors occurred

		res: collection of file/directory entry infos

fileProcessed

		function with entry info parameter e.g., function (entryInfo) { ... }

More Examples

on('error', ..), on('warn', ..) and on('end', ..) handling omitted for brevity

var readdirp = require('readdirp');

// Glob file filter
readdirp({ root: './test/bed', fileFilter: '*.js' })
 .on('data', function (entry) {
 // do something with each JavaScript file entry
 });

// Combined glob file filters
readdirp({ root: './test/bed', fileFilter: ['*.js', '*.json'] })
 .on('data', function (entry) {
 // do something with each JavaScript and Json file entry
 });

// Combined negated directory filters
readdirp({ root: './test/bed', directoryFilter: ['!.git', '!*modules'] })
 .on('data', function (entry) {
 // do something with each file entry found outside '.git' or any modules directory
 });

// Function directory filter
readdirp({ root: './test/bed', directoryFilter: function (di) { return di.name.length === 9; } })
 .on('data', function (entry) {
 // do something with each file entry found inside directories whose name has length 9
 });

// Limiting depth
readdirp({ root: './test/bed', depth: 1 })
 .on('data', function (entry) {
 // do something with each file entry found up to 1 subdirectory deep
 });

// callback api
readdirp(
 { root: '.' }
 , function(fileInfo) {
 // do something with file entry here
 }
 , function (err, res) {
 // all done, move on or do final step for all file entries here
 }
);

Try more examples by following instructions [https://github.com/thlorenz/readdirp/blob/master/examples/Readme.md]
on how to get going.

stream api

stream-api.js [https://github.com/thlorenz/readdirp/blob/master/examples/stream-api.js]

Demonstrates error and data handling by listening to events emitted from the readdirp stream.

stream api pipe

stream-api-pipe.js [https://github.com/thlorenz/readdirp/blob/master/examples/stream-api-pipe.js]

Demonstrates error handling by listening to events emitted from the readdirp stream and how to pipe the data stream into
another destination stream.

grep

grep.js [https://github.com/thlorenz/readdirp/blob/master/examples/grep.js]

Very naive implementation of grep, for demonstration purposes only.

using callback api

callback-api.js [https://github.com/thlorenz/readdirp/blob/master/examples/callback-api.js]

Shows how to pass callbacks in order to handle errors and/or data.

tests

The readdirp tests [https://github.com/thlorenz/readdirp/blob/master/test/readdirp.js] also will give you a good idea on
how things work.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mquery/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.8.0 / 2014-05-15

		added; support for maxTimeMS #44 yoitsro [https://github.com/yoitsro]

		updated; devDependency (driver to 1.4.4)

0.7.0 / 2014-05-02

		fixed; pass $maxDistance in $near object as described in docs #43 vkarpov15 [https://github.com/vkarpov15]

		fixed; cloning buffers #42 gjohnson [https://github.com/gjohnson]

		tests; a little bit more mongodb agnostic #34 refack [https://github.com/refack]

0.6.0 / 2014-04-01

		fixed; Allow $meta args in sort() so text search sorting works #37 vkarpov15 [https://github.com/vkarpov15]

0.5.3 / 2014-02-22

		fixed; cloning mongodb.Binary

0.5.2 / 2014-01-30

		fixed; cloning ObjectId constructors

		fixed; cloning of ReadPreferences #30 ashtuchkin [https://github.com/ashtuchkin]

		tests; use specific mongodb version #29 AvianFlu [https://github.com/AvianFlu]

		tests; remove dependency on ObjectId #28 refack [https://github.com/refack]

		tests; add failing ReadPref test

0.5.1 / 2014-01-17

		added; deprecation notice to tags parameter #27 ashtuchkin [https://github.com/ashtuchkin]

		readme; add links

0.5.0 / 2014-01-16

		removed; mongodb driver dependency #26 ashtuchkin [https://github.com/ashtuchkin]

		removed; first class support of read preference tags #26 (still supported though) ashtuchkin [https://github.com/ashtuchkin]

		added; better ObjectId clone support

		fixed; cloning objects that have no constructor #21

		docs; cleaned up ashtuchkin [https://github.com/ashtuchkin]

0.4.2 / 2014-01-08

		updated; debug module 0.7.4 refack [https://github.com/refack]

0.4.1 / 2014-01-07

		fixed; inclusive/exclusive logic

0.4.0 / 2014-01-06

		added; selected()

		added; selectedInclusively()

		added; selectedExclusively()

0.3.3 / 2013-11-14

		Fix Mongo DB Dependency #20 rschmukler [https://github.com/rschmukler]

0.3.2 / 2013-09-06

		added; geometry support for near()

0.3.1 / 2013-08-22

		fixed; update retains key order #19

0.3.0 / 2013-08-22

		less hardcoded isNode env detection #18 vshulyak [https://github.com/vshulyak]

		added; validation of findAndModify varients

		clone update doc before execution

		stricter env checks

0.2.7 / 2013-08-2

		Now support GeoJSON point values for Query#near

0.2.6 / 2013-07-30

		internally, ‘asc’ and ‘desc’ for sorts are now converted into 1 and -1, respectively

0.2.5 / 2013-07-30

		updated docs

		changed internal representation of sort to use objects instead of arrays

0.2.4 / 2013-07-25

		updated; sliced to 0.0.5

0.2.3 / 2013-07-09

		now using a callback in collection.find instead of directly calling toArray() on the cursor ebensing [https://github.com/ebensing]

0.2.2 / 2013-07-09

		now exposing mongodb export to allow for better testing ebensing [https://github.com/ebensing]

0.2.1 / 2013-07-08

		select no longer accepts arrays as parameters ebensing [https://github.com/ebensing]

0.2.0 / 2013-07-05

		use $geoWithin by default

0.1.2 / 2013-07-02

		added use$geoWithin flag ebensing [https://github.com/ebensing]

		fix read preferences typo ebensing [https://github.com/ebensing]

		fix reference to old param name in exists() ebensing [https://github.com/ebensing]

0.1.1 / 2013-06-24

		fixed; $intersects -> $geoIntersects #14 ebensing [https://github.com/ebensing]

		fixed; Retain key order when copying objects #15 ebensing [https://github.com/ebensing]

		bump mongodb dev dep

0.1.0 / 2013-05-06

		findAndModify; return the query

		move mquery.proto.canMerge to mquery.canMerge

		overwrite option now works with non-empty objects

		use strict mode

		validate count options

		validate distinct options

		add aggregate to base collection methods

		clone merge arguments

		clone merged update arguments

		move subclass to mquery.prototype.toConstructor

		fixed; maxScan casing

		use regexp-clone

		added; geometry/intersects support

		support $and

		near: do not use “radius”

		callbacks always fire on next turn of loop

		defined collection interface

		remove time from tests

		clarify goals

		updated docs;

0.0.1 / 2012-12-15

		initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Chokidar

A neat wrapper around node.js fs.watch / fs.watchFile / fsevents.

[image: NPM] [https://nodei.co/npm/chokidar/]
[image: NPM] [https://nodei.co/npm/chokidar/]

Why?

Node.js fs.watch:

		Doesn’t report filenames on OS X.

		Doesn’t report events at all when using editors like Sublime on OS X.

		Often reports events twice.

		Emits most changes as rename.

		Has a lot of other issues [https://github.com/joyent/node/search?q=fs.watch&type=Issues]

		Does not provide an easy way to recursively watch file trees.

Node.js fs.watchFile:

		Almost as bad at event handling.

		Also does not provide any recursive watching.

		Results in high CPU utilization.

Other node.js watching libraries:

		Are not using ultra-fast non-polling fsevents watcher implementation on OS X

Chokidar resolves these problems.

It is used in
brunch [http://brunch.io],
karma [http://karma-runner.github.io],
PM2 [https://github.com/Unitech/PM2],
socketstream [http://www.socketstream.org],
derby [http://derbyjs.com/],
watchify [https://github.com/substack/watchify],
and many others [https://www.npmjs.org/browse/depended/chokidar/].
It has proven itself in production environments.

Getting started

Install chokidar via node.js package manager:

npm install chokidar

Then just require the package in your code:

var chokidar = require('chokidar');

var watcher = chokidar.watch('file or dir', {ignored: /[\/\\]\./, persistent: true});

watcher
 .on('add', function(path) {console.log('File', path, 'has been added');})
 .on('addDir', function(path) {console.log('Directory', path, 'has been added');})
 .on('change', function(path) {console.log('File', path, 'has been changed');})
 .on('unlink', function(path) {console.log('File', path, 'has been removed');})
 .on('unlinkDir', function(path) {console.log('Directory', path, 'has been removed');})
 .on('error', function(error) {console.error('Error happened', error);})
 .on('ready', function() {console.info('Initial scan complete. Ready for changes.')})

// 'add', 'addDir' and 'change' events also receive stat() results as second argument.
// http://nodejs.org/api/fs.html#fs_class_fs_stats
watcher.on('change', function(path, stats) {
 console.log('File', path, 'changed size to', stats.size);
});

watcher.add('new-file');
watcher.add(['new-file-2', 'new-file-3']);

// Only needed if watching is persistent.
watcher.close();

// One-liner
require('chokidar').watch('.', {ignored: /[\/\\]\./}).on('all', function(event, path) {
 console.log(event, path);
});

API

		chokidar.watch(paths, options): takes paths to be watched recursively and options:
		options.ignored (regexp or function) files to be ignored.
This function or regexp is tested against the whole path,
not just filename. If it is a function with two arguments, it gets called
twice per path - once with a single argument (the path), second time with
two arguments (the path and the fs.Stats [http://nodejs.org/api/fs.html#fs_class_fs_stats]
object of that path).

		options.persistent (default: false). Indicates whether the process
should continue to run as long as files are being watched.

		options.ignorePermissionErrors (default: false). Indicates
whether to watch files that don’t have read permissions.

		options.ignoreInitial (default: false). Indicates whether chokidar
should ignore the initial add events or not.

		options.interval (default: 100). Interval of file system polling.

		options.binaryInterval (default: 300). Interval of file system
polling for binary files (see extensions in src/is-binary).

		options.useFsEvents (default: true on OS X). Whether to use the fsevents watching interface if
available. When true and fsevents is available, it supercedes the usePolling setting.

		options.usePolling (default: false on Windows, true on Linux and OS X). Whether to use fs.watchFile
(backed by polling), or fs.watch. If polling leads to high CPU utilization,
consider setting this to false.

chokidar.watch() produces an instance of FSWatcher. Methods of FSWatcher:

		.add(file / files): Add directories / files for tracking.
Takes an array of strings (file paths) or just one path.

		.on(event, callback): Listen for an FS event.
Available events: add, addDir, change, unlink, unlinkDir, ready, error.
Additionally all is available which gets emitted with the underlying event name
and path for every event other than ready and error.

		.close(): Removes all listeners from watched files.

License

The MIT license.

Copyright (c) 2014 Paul Miller (http://paulmillr.com) & Elan Shanker

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mongoose/node_modules/mquery/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

#mquery

mquery is a fluent mongodb query builder designed to run in multiple environments. As of v0.1, mquery runs on Node.js only with support for the MongoDB shell and browser environments planned for upcoming releases.

##Features

		fluent query builder api

		custom base query support

		MongoDB 2.4 geoJSON support

		method + option combinations validation

		node.js driver compatibility

		environment detection

		debug [https://github.com/visionmedia/debug] support

		separated collection implementations for maximum flexibility

[image: Build Status] [https://travis-ci.org/aheckmann/mquery]

##Use

require('mongodb').connect(uri, function (err, db) {
 if (err) return handleError(err);

 // get a collection
 var collection = db.collection('artists');

 // pass it to the constructor
 mquery(collection).find({..}, callback);

 // or pass it to the collection method
 mquery().find({..}).collection(collection).exec(callback)

 // or better yet, create a custom query constructor that has it always set
 var Artist = mquery(collection).toConstructor();
 Artist().find(..).where(..).exec(callback)
})

mquery requires a collection object to work with. In the example above we just pass the collection object created using the official MongoDB driver [https://github.com/mongodb/node-mongodb-native].

##Fluent API

		find

		findOne

		count

		remove

		update

		findOneAndUpdate

		findOneAndRemove

		distinct

		exec

		all

		and

		box

		circle

		elemMatch

		equals

		exists

		geometry

		gt

		gte

		in

		intersects

		lt

		lte

		maxDistance

		mod

		ne

		nin

		nor

		near

		or

		polygon

		regex

		select

		selected

		selectedInclusively

		selectedExclusively

		size

		slice

		within

		where

		$where

		batchSize

		comment

		hint

		limit

		maxScan

		maxTime

		skip

		sort

		read

		slaveOk

		snapshot

		tailable

Helpers

		collection

		merge

		setOptions

		mquery.canMerge

		mquery.use$geoWithin

###find()

Declares this query a find query. Optionally pass a match clause and / or callback. If a callback is passed the query is executed.

mquery().find()
mquery().find(match)
mquery().find(callback)
mquery().find(match, function (err, docs) {
 assert(Array.isArray(docs));
})

###findOne()

Declares this query a findOne query. Optionally pass a match clause and / or callback. If a callback is passed the query is executed.

mquery().findOne()
mquery().findOne(match)
mquery().findOne(callback)
mquery().findOne(match, function (err, doc) {
 if (doc) {
 // the document may not be found
 console.log(doc);
 }
})

###count()

Declares this query a count query. Optionally pass a match clause and / or callback. If a callback is passed the query is executed.

mquery().count()
mquery().count(match)
mquery().count(callback)
mquery().count(match, function (err, number){
 console.log('we found %d matching documents', number);
})

###remove()

Declares this query a remove query. Optionally pass a match clause and / or callback. If a callback is passed the query is executed.

mquery().remove()
mquery().remove(match)
mquery().remove(callback)
mquery().remove(match, function (err){})

###update()

Declares this query an update query. Optionally pass an update document, match clause, options or callback. If a callback is passed, the query is executed. To force execution without passing a callback, run update(true).

mquery().update()
mquery().update(match, updateDocument)
mquery().update(match, updateDocument, options)

// the following all execute the command
mquery().update(callback)
mquery().update({$set: updateDocument, callback)
mquery().update(match, updateDocument, callback)
mquery().update(match, updateDocument, options, function (err, result){})
mquery().update(true) // executes (unsafe write)

#####the update document

All paths passed that are not $atomic operations will become $set ops. For example:

mquery(collection).where({ _id: id }).update({ title: 'words' }, callback)

becomes

collection.update({ _id: id }, { $set: { title: 'words' }}, callback)

This behavior can be overridden using the overwrite option (see below).

#####options

Options are passed to the setOptions() method.

		overwrite

Passing an empty object { } as the update document will result in a no-op unless the overwrite option is passed. Without the overwrite option, the update operation will be ignored and the callback executed without sending the command to MongoDB to prevent accidently overwritting documents in the collection.

var q = mquery(collection).where({ _id: id }).setOptions({ overwrite: true });
q.update({ }, callback); // overwrite with an empty doc

The overwrite option isn’t just for empty objects, it also provides a means to override the default $set conversion and send the update document as is.

// create a base query
var base = mquery({ _id: 108 }).collection(collection).toConstructor();

base().findOne(function (err, doc) {
 console.log(doc); // { _id: 108, name: 'cajon' })

 base().setOptions({ overwrite: true }).update({ changed: true }, function (err) {
 base.findOne(function (err, doc) {
 console.log(doc); // { _id: 108, changed: true }) - the doc was overwritten
 });
 });
})

		multi

Updates only modify a single document by default. To update multiple documents, set the multi option to true.

mquery()
 .collection(coll)
 .update({ name: /^match/ }, { $addToSet: { arr: 4 }}, { multi: true }, callback)

// another way of doing it
mquery({ name: /^match/ })
 .collection(coll)
 .setOptions({ multi: true })
 .update({ $addToSet: { arr: 4 }}, callback)

// update multiple documents with an empty doc
var q = mquery(collection).where({ name: /^match/ });
q.setOptions({ multi: true, overwrite: true })
q.update({ });
q.update(function (err, result) {
 console.log(arguments);
});

###findOneAndUpdate()

Declares this query a findAndModify with update query. Optionally pass a match clause, update document, options, or callback. If a callback is passed, the query is executed.

When executed, the first matching document (if found) is modified according to the update document and passed back to the callback.

#####options

Options are passed to the setOptions() method.

		new: boolean - true to return the modified document rather than the original. defaults to true

		upsert: boolean - creates the object if it doesn’t exist. defaults to false

		sort: if multiple docs are found by the match condition, sets the sort order to choose which doc to update

query.findOneAndUpdate()
query.findOneAndUpdate(updateDocument)
query.findOneAndUpdate(match, updateDocument)
query.findOneAndUpdate(match, updateDocument, options)

// the following all execute the command
query.findOneAndUpdate(callback)
query.findOneAndUpdate(updateDocument, callback)
query.findOneAndUpdate(match, updateDocument, callback)
query.findOneAndUpdate(match, updateDocument, options, function (err, doc) {
 if (doc) {
 // the document may not be found
 console.log(doc);
 }
})

###findOneAndRemove()

Declares this query a findAndModify with remove query. Optionally pass a match clause, options, or callback. If a callback is passed, the query is executed.

When executed, the first matching document (if found) is modified according to the update document, removed from the collection and passed to the callback.

#####options

Options are passed to the setOptions() method.

		sort: if multiple docs are found by the condition, sets the sort order to choose which doc to modify and remove

A.where().findOneAndRemove()
A.where().findOneAndRemove(match)
A.where().findOneAndRemove(match, options)

// the following all execute the command
A.where().findOneAndRemove(callback)
A.where().findOneAndRemove(match, callback)
A.where().findOneAndRemove(match, options, function (err, doc) {
 if (doc) {
 // the document may not be found
 console.log(doc);
 }
})

###distinct()

Declares this query a distinct query. Optionally pass the distinct field, a match clause or callback. If a callback is passed the query is executed.

mquery().distinct()
mquery().distinct(match)
mquery().distinct(match, field)
mquery().distinct(field)

// the following all execute the command
mquery().distinct(callback)
mquery().distinct(field, callback)
mquery().distinct(match, callback)
mquery().distinct(match, field, function (err, result) {
 console.log(result);
})

###exec()

Executes the query.

mquery().findOne().where('route').intersects(polygon).exec(function (err, docs){})

###all()

Specifies an $all query condition

mquery().where('permission').all(['read', 'write'])

MongoDB documentation [http://docs.mongodb.org/manual/reference/operator/all/]

###and()

Specifies arguments for an $and condition

mquery().and([{ color: 'green' }, { status: 'ok' }])

MongoDB documentation [http://docs.mongodb.org/manual/reference/operator/and/]

###box()

Specifies a $box condition

var lowerLeft = [40.73083, -73.99756]
var upperRight= [40.741404, -73.988135]

mquery().where('location').within().box(lowerLeft, upperRight)

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/box/]

###circle()

Specifies a $center or $centerSphere condition.

var area = { center: [50, 50], radius: 10, unique: true }
query.where('loc').within().circle(area)
query.circle('loc', area);

// for spherical calculations
var area = { center: [50, 50], radius: 10, unique: true, spherical: true }
query.where('loc').within().circle(area)
query.circle('loc', area);

		MongoDB Documentation - center [http://docs.mongodb.org/manual/reference/operator/center/]

		MongoDB Documentation - centerSphere [http://docs.mongodb.org/manual/reference/operator/centerSphere/]

###elemMatch()

Specifies an $elemMatch condition

query.where('comment').elemMatch({ author: 'autobot', votes: {$gte: 5}})

query.elemMatch('comment', function (elem) {
 elem.where('author').equals('autobot');
 elem.where('votes').gte(5);
})

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/elemMatch/]

###equals()

Specifies the complementary comparison value for the path specified with where().

mquery().where('age').equals(49);

// is the same as

mquery().where({ 'age': 49 });

###exists()

Specifies an $exists condition

// { name: { $exists: true }}
mquery().where('name').exists()
mquery().where('name').exists(true)
mquery().exists('name')

// { name: { $exists: false }}
mquery().where('name').exists(false);
mquery().exists('name', false);

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/exists/]

###geometry()

Specifies a $geometry condition

var polyA = [[[10, 20], [10, 40], [30, 40], [30, 20]]]
query.where('loc').within().geometry({ type: 'Polygon', coordinates: polyA })

// or
var polyB = [[0, 0], [1, 1]]
query.where('loc').within().geometry({ type: 'LineString', coordinates: polyB })

// or
var polyC = [0, 0]
query.where('loc').within().geometry({ type: 'Point', coordinates: polyC })

// or
query.where('loc').intersects().geometry({ type: 'Point', coordinates: polyC })

// or
query.where('loc').near().geometry({ type: 'Point', coordinates: [3,5] })

geometry() must come after intersects(), within(), or near().

The object argument must contain type and coordinates properties.

		type String

		coordinates Array

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/geometry/]

###gt()

Specifies a $gt query condition.

mquery().where('clicks').gt(999)

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/gt/]

###gte()

Specifies a $gte query condition.

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/gte/]

mquery().where('clicks').gte(1000)

###in()

Specifies an $in query condition.

mquery().where('author_id').in([3, 48901, 761])

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/in/]

###intersects()

Declares an $geoIntersects query for geometry().

query.where('path').intersects().geometry({
 type: 'LineString'
 , coordinates: [[180.0, 11.0], [180, 9.0]]
})

// geometry arguments are supported
query.where('path').intersects({
 type: 'LineString'
 , coordinates: [[180.0, 11.0], [180, 9.0]]
})

Must be used after where().

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/geoIntersects/]

###lt()

Specifies a $lt query condition.

mquery().where('clicks').lt(50)

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/lt/]

###lte()

Specifies a $lte query condition.

mquery().where('clicks').lte(49)

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/lte/]

###maxDistance()

Specifies a $maxDistance query condition.

mquery().where('location').near({ center: [139, 74.3] }).maxDistance(5)

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/maxDistance/]

###mod()

Specifies a $mod condition

mquery().where('count').mod(2, 0)

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/mod/]

###ne()

Specifies a $ne query condition.

mquery().where('status').ne('ok')

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/ne/]

###nin()

Specifies an $nin query condition.

mquery().where('author_id').nin([3, 48901, 761])

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/nin/]

###nor()

Specifies arguments for an $nor condition.

mquery().nor([{ color: 'green' }, { status: 'ok' }])

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/nor/]

###near()

Specifies arguments for a $near or $nearSphere condition.

These operators return documents sorted by distance.

####Example

query.where('loc').near({ center: [10, 10] });
query.where('loc').near({ center: [10, 10], maxDistance: 5 });
query.near('loc', { center: [10, 10], maxDistance: 5 });

// GeoJSON
query.where('loc').near({ center: { type: 'Point', coordinates: [10, 10] }});
query.where('loc').near({ center: { type: 'Point', coordinates: [10, 10] }, maxDistance: 5, spherical: true });
query.where('loc').near().geometry({ type: 'Point', coordinates: [10, 10] });

// For a $nearSphere condition, pass the `spherical` option.
query.near({ center: [10, 10], maxDistance: 5, spherical: true });

MongoDB Documentation [http://www.mongodb.org/display/DOCS/Geospatial+Indexing]

###or()

Specifies arguments for an $or condition.

mquery().or([{ color: 'red' }, { status: 'emergency' }])

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/or/]

###polygon()

Specifies a $polygon condition

mquery().where('loc').within().polygon([10,20], [13, 25], [7,15])
mquery().polygon('loc', [10,20], [13, 25], [7,15])

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/polygon/]

###regex()

Specifies a $regex query condition.

mquery().where('name').regex(/^sixstepsrecords/)

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/regex/]

###select()

Specifies which document fields to include or exclude

// 1 means include, 0 means exclude
mquery().select({ name: 1, address: 1, _id: 0 })

// or

mquery().select('name address -_id')

#####String syntax

When passing a string, prefixing a path with - will flag that path as excluded. When a path does not have the - prefix, it is included.

// include a and b, exclude c
query.select('a b -c');

// or you may use object notation, useful when
// you have keys already prefixed with a "-"
query.select({a: 1, b: 1, c: 0});

Cannot be used with distinct().

###selected()

Determines if the query has selected any fields.

var query = mquery();
query.selected() // false
query.select('-name');
query.selected() // true

###selectedInclusively()

Determines if the query has selected any fields inclusively.

var query = mquery().select('name');
query.selectedInclusively() // true

var query = mquery();
query.selected() // false
query.select('-name');
query.selectedInclusively() // false
query.selectedExclusively() // true

###selectedExclusively()

Determines if the query has selected any fields exclusively.

var query = mquery().select('-name');
query.selectedExclusively() // true

var query = mquery();
query.selected() // false
query.select('name');
query.selectedExclusively() // false
query.selectedInclusively() // true

###size()

Specifies a $size query condition.

mquery().where('someArray').size(6)

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/size/]

###slice()

Specifies a $slice projection for a path

mquery().where('comments').slice(5)
mquery().where('comments').slice(-5)
mquery().where('comments').slice([-10, 5])

MongoDB Documentation [http://docs.mongodb.org/manual/reference/projection/slice/]

###within()

Sets a $geoWithin or $within argument for geo-spatial queries.

mquery().within().box()
mquery().within().circle()
mquery().within().geometry()

mquery().where('loc').within({ center: [50,50], radius: 10, unique: true, spherical: true });
mquery().where('loc').within({ box: [[40.73, -73.9], [40.7, -73.988]] });
mquery().where('loc').within({ polygon: [[],[],[],[]] });

mquery().where('loc').within([], [], []) // polygon
mquery().where('loc').within([], []) // box
mquery().where('loc').within({ type: 'LineString', coordinates: [...] }); // geometry

As of mquery 2.0, $geoWithin is used by default. This impacts you if running MongoDB < 2.4. To alter this behavior, see mquery.use$geoWithin.

Must be used after where().

MongoDB Documentation [http://docs.mongodb.org/manual/reference/operator/geoWithin/]

###where()

Specifies a path for use with chaining

// instead of writing:
mquery().find({age: {$gte: 21, $lte: 65}});

// we can instead write:
mquery().where('age').gte(21).lte(65);

// passing query conditions is permitted too
mquery().find().where({ name: 'vonderful' })

// chaining
mquery()
.where('age').gte(21).lte(65)
.where({ 'name': /^vonderful/i })
.where('friends').slice(10)
.exec(callback)

###$where()

Specifies a $where condition.

Use $where when you need to select documents using a JavaScript expression.

query.$where('this.comments.length > 10 || this.name.length > 5').exec(callback)

query.$where(function () {
 return this.comments.length > 10 || this.name.length > 5;
})

Only use $where when you have a condition that cannot be met using other MongoDB operators like $lt. Be sure to read about all of its caveats [http://docs.mongodb.org/manual/reference/operator/where/] before using.

###batchSize()

Specifies the batchSize option.

query.batchSize(100)

Cannot be used with distinct().

MongoDB documentation [http://docs.mongodb.org/manual/reference/method/cursor.batchSize/]

###comment()

Specifies the comment option.

query.comment('login query');

Cannot be used with distinct().

MongoDB documentation [http://docs.mongodb.org/manual/reference/operator/]

###hint()

Sets query hints.

mquery().hint({ indexA: 1, indexB: -1 })

Cannot be used with distinct().

MongoDB documentation [http://docs.mongodb.org/manual/reference/operator/hint/]

###limit()

Specifies the limit option.

query.limit(20)

Cannot be used with distinct().

MongoDB documentation [http://docs.mongodb.org/manual/reference/method/cursor.limit/]

###maxScan()

Specifies the maxScan option.

query.maxScan(100)

Cannot be used with distinct().

MongoDB documentation [http://docs.mongodb.org/manual/reference/operator/maxScan/]

###maxTime()

Specifies the maxTimeMS option.

query.maxTime(100)

MongoDB documentation [http://docs.mongodb.org/manual/reference/method/cursor.maxTimeMS/]

###skip()

Specifies the skip option.

query.skip(100).limit(20)

Cannot be used with distinct().

MongoDB documentation [http://docs.mongodb.org/manual/reference/method/cursor.skip/]

###sort()

Sets the query sort order.

If an object is passed, key values allowed are asc, desc, ascending, descending, 1, and -1.

If a string is passed, it must be a space delimited list of path names. The sort order of each path is ascending unless the path name is prefixed with - which will be treated as descending.

// these are equivalent
query.sort({ field: 'asc', test: -1 });
query.sort('field -test');

Cannot be used with distinct().

MongoDB documentation [http://docs.mongodb.org/manual/reference/method/cursor.sort/]

###read()

Sets the readPreference option for the query.

mquery().read('primary')
mquery().read('p') // same as primary

mquery().read('primaryPreferred')
mquery().read('pp') // same as primaryPreferred

mquery().read('secondary')
mquery().read('s') // same as secondary

mquery().read('secondaryPreferred')
mquery().read('sp') // same as secondaryPreferred

mquery().read('nearest')
mquery().read('n') // same as nearest

#####Preferences:

		primary - (default) Read from primary only. Operations will produce an error if primary is unavailable. Cannot be combined with tags.

		secondary - Read from secondary if available, otherwise error.

		primaryPreferred - Read from primary if available, otherwise a secondary.

		secondaryPreferred - Read from a secondary if available, otherwise read from the primary.

		nearest - All operations read from among the nearest candidates, but unlike other modes, this option will include both the primary and all secondaries in the random selection.

Aliases

		p primary

		pp primaryPreferred

		s secondary

		sp secondaryPreferred

		n nearest

#####Preference Tags:

To keep the separation of concerns between mquery and your driver
clean, mquery#read() no longer handles specifying a second tags argument as of version 0.5.
If you need to specify tags, pass any non-string argument as the first argument.
mquery will pass this argument untouched to your collections methods later.
For example:

// example of specifying tags using the Node.js driver
var ReadPref = require('mongodb').ReadPreference;
var preference = new ReadPref('secondary', [{ dc:'sf', s: 1 },{ dc:'ma', s: 2 }]);
mquery(..).read(preference).exec();

Read more about how to use read preferences here [http://docs.mongodb.org/manual/applications/replication/#read-preference] and here [http://mongodb.github.com/node-mongodb-native/driver-articles/anintroductionto1_1and2_2.html#read-preferences].

###slaveOk()

Sets the slaveOk option. true allows reading from secondaries.

deprecated use read() preferences instead if on mongodb >= 2.2

query.slaveOk() // true
query.slaveOk(true)
query.slaveOk(false)

MongoDB documentation [http://docs.mongodb.org/manual/reference/method/rs.slaveOk/]

###snapshot()

Specifies this query as a snapshot query.

mquery().snapshot() // true
mquery().snapshot(true)
mquery().snapshot(false)

Cannot be used with distinct().

MongoDB documentation [http://docs.mongodb.org/manual/reference/operator/snapshot/]

###tailable()

Sets tailable option.

mquery().tailable() <== true
mquery().tailable(true)
mquery().tailable(false)

Cannot be used with distinct().

MongoDB Documentation [http://docs.mongodb.org/manual/tutorial/create-tailable-cursor/]

##Helpers

###collection()

Sets the querys collection.

mquery().collection(aCollection)

###merge(object)

Merges other mquery or match condition objects into this one. When an muery instance is passed, its match conditions, field selection and options are merged.

var drum = mquery({ type: 'drum' }).collection(instruments);
var redDrum = mqery({ color: 'red' }).merge(drum);
redDrum.count(function (err, n) {
 console.log('there are %d red drums', n);
})

Internally uses mquery.canMerge to determine validity.

###setOptions(options)

Sets query options.

mquery().setOptions({ collection: coll, limit: 20 })

#####options

		tailable *

		sort *

		limit *

		skip *

		maxScan *

		maxTime *

		batchSize *

		comment *

		snapshot *

		hint *

		slaveOk *

		safe [http://docs.mongodb.org/manual/reference/write-concern/]: Boolean - passed through to the collection. Setting to true is equivalent to { w: 1 }

		collection: the collection to query against

* denotes a query helper method is also available

###mquery.canMerge(conditions)

Determines if conditions can be merged using mquery().merge().

var query = mquery({ type: 'drum' });
var okToMerge = mquery.canMerge(anObject)
if (okToMerge) {
 query.merge(anObject);
}

##mquery.use$geoWithin

MongoDB 2.4 introduced the $geoWithin operator which replaces and is 100% backward compatible with $within. As of mquery 0.2, we default to using $geoWithin for all within() calls.

If you are running MongoDB < 2.4 this will be problematic. To force mquery to be backward compatible and always use $within, set the mquery.use$geoWithin flag to false.

mquery.use$geoWithin = false;

##Custom Base Queries

Often times we want custom base queries that encapsulate predefined criteria. With mquery this is easy. First create the query you want to reuse and call its toConstructor() method which returns a new subclass of mquery that retains all options and criteria of the original.

var greatMovies = mquery(movieCollection).where('rating').gte(4.5).toConstructor();

// use it!
greatMovies().count(function (err, n) {
 console.log('There are %d great movies', n);
});

greatMovies().where({ name: /^Life/ }).select('name').find(function (err, docs) {
 console.log(docs);
});

##Validation

Method and options combinations are checked for validity at runtime to prevent creation of invalid query constructs. For example, a distinct query does not support specifying options like hint or field selection. In this case an error will be thrown so you can catch these mistakes in development.

##Debug support

Debug mode is provided through the use of the debug [https://github.com/visionmedia/debug] module. To enable:

DEBUG=mquery node yourprogram.js

Read the debug module documentation for more details.

General compatibility

ObjectIds

mquery clones query arguments before passing them to a collection method for execution.
This prevents accidental side-affects to the objects you pass.
To clone ObjectIds we need to make some assumptions.

First, to check if an object is an ObjectId, we check its constructors name. If it matches either
ObjectId or ObjectID we clone it.

To clone ObjectIds, we call its optional clone method. If a clone method does not exist, we fall
back to calling new obj.constructor(obj.id). We assume, for compatibility with the
Node.js driver, that the ObjectId instance has a public id property and that
when creating an ObjectId instance we can pass that id as an argument.

Read Preferences

mquery supports specifying Read Preferences to control from which MongoDB node your query will read.
The Read Preferences spec also support specifying tags. To pass tags, some
drivers (Node.js driver) require passing a special constructor that handles both the read preference and its tags.
If you need to specify tags, pass an instance of your drivers ReadPreference constructor or roll your own. mquery will store whatever you provide and pass later to your collection during execution.

##Future goals

		mongo shell compatibility

		browser compatibility

Installation

$ npm install mquery

License

MIT [https://github.com/aheckmann/mquery/blob/master/LICENSE]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/log4js/node_modules/semver/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

semver(1) – The semantic versioner for npm

Usage

$ npm install semver

semver.valid('1.2.3') // '1.2.3'
semver.valid('a.b.c') // null
semver.clean(' =v1.2.3 ') // '1.2.3'
semver.satisfies('1.2.3', '1.x || >=2.5.0 || 5.0.0 - 7.2.3') // true
semver.gt('1.2.3', '9.8.7') // false
semver.lt('1.2.3', '9.8.7') // true

As a command-line utility:

$ semver -h

Usage: semver -v <version> [-r <range>]
Test if version(s) satisfy the supplied range(s),
and sort them.

Multiple versions or ranges may be supplied.

Program exits successfully if any valid version satisfies
all supplied ranges, and prints all satisfying versions.

If no versions are valid, or ranges are not satisfied,
then exits failure.

Versions are printed in ascending order, so supplying
multiple versions to the utility will just sort them.

Versions

A version is the following things, in this order:

		a number (Major)

		a period

		a number (minor)

		a period

		a number (patch)

		OPTIONAL: a hyphen, followed by a number (build)

		OPTIONAL: a collection of pretty much any non-whitespace characters
(tag)

A leading "=" or "v" character is stripped off and ignored.

Comparisons

The ordering of versions is done using the following algorithm, given
two versions and asked to find the greater of the two:

		If the majors are numerically different, then take the one
with a bigger major number. 2.3.4 > 1.3.4

		If the minors are numerically different, then take the one
with the bigger minor number. 2.3.4 > 2.2.4

		If the patches are numerically different, then take the one with the
bigger patch number. 2.3.4 > 2.3.3

		If only one of them has a build number, then take the one with the
build number. 2.3.4-0 > 2.3.4

		If they both have build numbers, and the build numbers are numerically
different, then take the one with the bigger build number.
2.3.4-10 > 2.3.4-9

		If only one of them has a tag, then take the one without the tag.
2.3.4 > 2.3.4-beta

		If they both have tags, then take the one with the lexicographically
larger tag. 2.3.4-beta > 2.3.4-alpha

		At this point, they’re equal.

Ranges

The following range styles are supported:

		>1.2.3 Greater than a specific version.

		<1.2.3 Less than

		1.2.3 - 2.3.4 := >=1.2.3 <=2.3.4

		~1.2.3 := >=1.2.3 <1.3.0

		~1.2 := >=1.2.0 <1.3.0

		~1 := >=1.0.0 <2.0.0

		1.2.x := >=1.2.0 <1.3.0

		1.x := >=1.0.0 <2.0.0

Ranges can be joined with either a space (which implies “and”) or a
|| (which implies “or”).

Functions

		valid(v): Return the parsed version, or null if it’s not valid.

		inc(v, release): Return the version incremented by the release type
(major, minor, patch, or build), or null if it’s not valid.

Comparison

		gt(v1, v2): v1 > v2

		gte(v1, v2): v1 >= v2

		lt(v1, v2): v1 < v2

		lte(v1, v2): v1 <= v2

		eq(v1, v2): v1 == v2 This is true if they’re logically equivalent,
even if they’re not the exact same string. You already know how to
compare strings.

		neq(v1, v2): v1 != v2 The opposite of eq.

		cmp(v1, comparator, v2): Pass in a comparison string, and it’ll call
the corresponding function above. "===" and "!==" do simple
string comparison, but are included for completeness. Throws if an
invalid comparison string is provided.

		compare(v1, v2): Return 0 if v1 == v2, or 1 if v1 is greater, or -1 if
v2 is greater. Sorts in ascending order if passed to Array.sort().

		rcompare(v1, v2): The reverse of compare. Sorts an array of versions
in descending order when passed to Array.sort().

Ranges

		validRange(range): Return the valid range or null if it’s not valid

		satisfies(version, range): Return true if the version satisfies the
range.

		maxSatisfying(versions, range): Return the highest version in the list
that satisfies the range, or null if none of them do.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/log4js/node_modules/async/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Async.js

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with node.js [http://nodejs.org], it can also be used directly in the
browser. Also supports component [https://github.com/component/component].

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, each…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Common Pitfalls

Binding a context to an iterator

This section is really about bind, not about async. If you are wondering how to
make async execute your iterators in a given context, or are confused as to why
a method of another library isn’t working as an iterator, study this example:

// Here is a simple object with an (unnecessarily roundabout) squaring method
var AsyncSquaringLibrary = {
 squareExponent: 2,
 square: function(number, callback){
 var result = Math.pow(number, this.squareExponent);
 setTimeout(function(){
 callback(null, result);
 }, 200);
 }
};

async.map([1, 2, 3], AsyncSquaringLibrary.square, function(err, result){
 // result is [NaN, NaN, NaN]
 // This fails because the `this.squareExponent` expression in the square
 // function is not evaluated in the context of AsyncSquaringLibrary, and is
 // therefore undefined.
});

async.map([1, 2, 3], AsyncSquaringLibrary.square.bind(AsyncSquaringLibrary), function(err, result){
 // result is [1, 4, 9]
 // With the help of bind we can attach a context to the iterator before
 // passing it to async. Now the square function will be executed in its
 // 'home' AsyncSquaringLibrary context and the value of `this.squareExponent`
 // will be as expected.
});

Download

The source is available for download from
GitHub [http://github.com/caolan/async].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 29.6kb Uncompressed

In the Browser

So far it’s been tested in IE6, IE7, IE8, FF3.6 and Chrome 5. Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

		each

		eachSeries

		eachLimit

		map

		mapSeries

		mapLimit

		filter

		filterSeries

		reject

		rejectSeries

		reduce

		reduceRight

		detect

		detectSeries

		sortBy

		some

		every

		concat

		concatSeries

Control Flow

		series

		parallel

		parallelLimit

		whilst

		doWhilst

		until

		doUntil

		forever

		waterfall

		compose

		applyEach

		applyEachSeries

		queue

		cargo

		auto

		iterator

		apply

		nextTick

		times

		timesSeries

Utils

		memoize

		unmemoize

		log

		dir

		noConflict

Collections

[bookmark: forEach]
[bookmark: each]

each(arr, iterator, callback)

Applies an iterator function to each item in an array, in parallel.
The iterator is called with an item from the list and a callback for when it
has finished. If the iterator passes an error to this callback, the main
callback for the each function is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.each(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: forEachSeries]
[bookmark: eachSeries]

eachSeries(arr, iterator, callback)

The same as each only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. This means the iterator functions will complete in order.

[bookmark: forEachLimit]
[bookmark: eachLimit]

eachLimit(arr, limit, iterator, callback)

The same as each only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.eachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in the given array through
the iterator function. The iterator is called with an item from the array and a
callback for when it has finished processing. The callback takes 2 arguments,
an error and the transformed item from the array. If the iterator passes an
error to this callback, the main callback for the map function is immediately
called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order, however
the results array will be in the same order as the original array.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: mapLimit]

mapLimit(arr, limit, iterator, callback)

The same as map only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.mapLimit(['file1','file2','file3'], 1, fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

alias: selectSeries

The same as filter only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as reject, only the iterator is applied to each item in the array
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

aliases: inject, foldl

Reduces a list of values into a single value using an async iterator to return
each successive step. Memo is the initial state of the reduction. This
function only operates in series. For performance reasons, it may make sense to
split a call to this function into a parallel map, then use the normal
Array.prototype.reduce on the results. This function is for situations where
each step in the reduction needs to be async, if you can get the data before
reducing it then it’s probably a good idea to do so.

Arguments

		arr - An array to iterate over.

		memo - The initial state of the reduction.

		iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback(err, reduction) which accepts an optional error as its first
argument, and the state of the reduction as the second. If an error is
passed to the callback, the reduction is stopped and the main callback is
immediately called with the error.

		callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on the items in the array in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in a list that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original array (in terms of order) that passes the test.

If order within the original array is important then look at detectSeries.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], fs.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in the array
in series. This means the result is always the first in the original array (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each value through an async iterator.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, sortValue) which must be called once it
has completed with an error (which can be null) and a value to use as the sort
criteria.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is the items from
the original array sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies an iterator to each item in a list, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of the arguments passed to the iterator function.

Arguments

		arr - An array to iterate over

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, results) which must be called once it
has completed with an error (which can be null) and an array of results.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as async.concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run an array of functions in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run and the callback for the series is
immediately called with the value of the error. Once the tasks have completed,
the results are passed to the final callback as an array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.series.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 }
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run an array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.parallel.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 }
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: parallel]

parallelLimit(tasks, limit, [callback])

The same as parallel only the tasks are executed in parallel with a maximum of “limit”
tasks executing at any time.

Note that the tasks are not executed in batches, so there is no guarantee that
the first “limit” tasks will complete before any others are started.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		limit - The maximum number of tasks to run at any time.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls the callback when stopped,
or an error occurs.

Arguments

		test() - synchronous truth test to perform before each execution of fn.

		fn(callback) - A function to call each time the test passes. The function is
passed a callback(err) which must be called once it has completed with an
optional error argument.

		callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: doWhilst]

doWhilst(fn, test, callback)

The post check version of whilst. To reflect the difference in the order of operations test and fn arguments are switched. doWhilst is to whilst as do while is to while in plain JavaScript.

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn, until test returns true. Calls the callback when stopped,
or an error occurs.

The inverse of async.whilst.

[bookmark: doUntil]

doUntil(fn, test, callback)

Like doWhilst except the test is inverted. Note the argument ordering differs from until.

[bookmark: forever]

forever(fn, callback)

Calls the asynchronous function ‘fn’ repeatedly, in series, indefinitely.
If an error is passed to fn’s callback then ‘callback’ is called with the
error, otherwise it will never be called.

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs an array of functions in series, each passing their results to the next in
the array. However, if any of the functions pass an error to the callback, the
next function is not executed and the main callback is immediately called with
the error.

Arguments

		tasks - An array of functions to run, each function is passed a
callback(err, result1, result2, ...) it must call on completion. The first
argument is an error (which can be null) and any further arguments will be
passed as arguments in order to the next task.

		callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: compose]

compose(fn1, fn2...)

Creates a function which is a composition of the passed asynchronous
functions. Each function consumes the return value of the function that
follows. Composing functions f(), g() and h() would produce the result of
f(g(h())), only this version uses callbacks to obtain the return values.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

function add1(n, callback) {
 setTimeout(function () {
 callback(null, n + 1);
 }, 10);
}

function mul3(n, callback) {
 setTimeout(function () {
 callback(null, n * 3);
 }, 10);
}

var add1mul3 = async.compose(mul3, add1);

add1mul3(4, function (err, result) {
 // result now equals 15
});

[bookmark: applyEach]

applyEach(fns, args..., callback)

Applies the provided arguments to each function in the array, calling the
callback after all functions have completed. If you only provide the first
argument then it will return a function which lets you pass in the
arguments as if it were a single function call.

Arguments

		fns - the asynchronous functions to all call with the same arguments

		args... - any number of separate arguments to pass to the function

		callback - the final argument should be the callback, called when all
functions have completed processing

Example

async.applyEach([enableSearch, updateSchema], 'bucket', callback);

// partial application example:
async.each(
 buckets,
 async.applyEach([enableSearch, updateSchema]),
 callback
);

[bookmark: applyEachSeries]

applyEachSeries(arr, iterator, callback)

The same as applyEach only the functions are applied in series.

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue will be processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one is available. Once
a worker has completed a task, the task’s callback is called.

Arguments

		worker(task, callback) - An asynchronous function for processing a queued
task, which must call its callback(err) argument when finished, with an
optional error as an argument.

		concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		unshift(task, [callback]) - add a new task to the front of the queue.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

// add some items to the front of the queue

q.unshift({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

[bookmark: cargo]

cargo(worker, [payload])

Creates a cargo object with the specified payload. Tasks added to the
cargo will be processed altogether (up to the payload limit). If the
worker is in progress, the task is queued until it is available. Once
the worker has completed some tasks, each callback of those tasks is called.

Arguments

		worker(tasks, callback) - An asynchronous function for processing an array of
queued tasks, which must call its callback(err) argument when finished, with
an optional error as an argument.

		payload - An optional integer for determining how many tasks should be
processed per round; if omitted, the default is unlimited.

Cargo objects

The cargo object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		payload - an integer for determining how many tasks should be
process per round. This property can be changed after a cargo is created to
alter the payload on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a cargo object with payload 2

var cargo = async.cargo(function (tasks, callback) {
 for(var i=0; i<tasks.length; i++){
 console.log('hello ' + tasks[i].name);
 }
 callback();
}, 2);

// add some items

cargo.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
cargo.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});
cargo.push({name: 'baz'}, function (err) {
 console.log('finished processing baz');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running functions based on their requirements.
Each function can optionally depend on other functions being completed first,
and each function is run as soon as its requirements are satisfied. If any of
the functions pass an error to their callback, that function will not complete
(so any other functions depending on it will not run) and the main callback
will be called immediately with the error. Functions also receive an object
containing the results of functions which have completed so far.

Note, all functions are called with a results object as a second argument,
so it is unsafe to pass functions in the tasks object which cannot handle the
extra argument. For example, this snippet of code:

async.auto({
 readData: async.apply(fs.readFile, 'data.txt', 'utf-8')
}, callback);

will have the effect of calling readFile with the results object as the last
argument, which will fail:

fs.readFile('data.txt', 'utf-8', cb, {});

Instead, wrap the call to readFile in a function which does not forward the
results object:

async.auto({
 readData: function(cb, results){
 fs.readFile('data.txt', 'utf-8', cb);
 }
}, callback);

Arguments

		tasks - An object literal containing named functions or an array of
requirements, with the function itself the last item in the array. The key
used for each function or array is used when specifying requirements. The
function receives two arguments: (1) a callback(err, result) which must be
called when finished, passing an error (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions.

		callback(err, results) - An optional callback which is called when all the
tasks have been completed. The callback will receive an error as an argument
if any tasks pass an error to their callback. Results will always be passed
but if an error occurred, no other tasks will be performed, and the results
object will only contain partial results.

Example

async.auto({
 get_data: function(callback){
 // async code to get some data
 },
 make_folder: function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 },
 write_file: ['get_data', 'make_folder', function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, filename);
 }],
 email_link: ['write_file', function(callback, results){
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 }]
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 // async code to get some data
 },
 function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 }
],
function(err, results){
 async.series([
 function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 },
 function(callback){
 // once the file is written let's email a link to it...
 }
]);
});

For a complicated series of async tasks using the auto function makes adding
new tasks much easier and makes the code more readable.

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the array,
returning a continuation to call the next one after that. It’s also possible to
‘peek’ the next iterator by doing iterator.next().

This function is used internally by the async module but can be useful when
you want to manually control the flow of functions in series.

Arguments

		tasks - An array of functions to run.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied, a useful
shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 }
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls the callback on a later loop around the event loop. In node.js this just
calls process.nextTick, in the browser it falls back to setImmediate(callback)
if available, otherwise setTimeout(callback, 0), which means other higher priority
events may precede the execution of the callback.

This is used internally for browser-compatibility purposes.

Arguments

		callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two']
});
call_order.push('one')

[bookmark: times]

times(n, callback)

Calls the callback n times and accumulates results in the same manner
you would use with async.map.

Arguments

		n - The number of times to run the function.

		callback - The function to call n times.

Example

// Pretend this is some complicated async factory
var createUser = function(id, callback) {
 callback(null, {
 id: 'user' + id
 })
}
// generate 5 users
async.times(5, function(n, next){
 createUser(n, function(err, user) {
 next(err, user)
 })
}, function(err, users) {
 // we should now have 5 users
});

[bookmark: timesSeries]

timesSeries(n, callback)

The same as times only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

The cache of results is exposed as the memo property of the function returned
by memoize.

Arguments

		fn - the function you to proxy and cache results from.

		hasher - an optional function for generating a custom hash for storing
results, it has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Comes handy in tests.

Arguments

		fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/passport/node_modules/pause/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

pause

Pause streams...

License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/log4js/node_modules/readable-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readable-stream

Node-core streams for userland

[image: NPM] [https://nodei.co/npm/readable-stream/]
[image: NPM] [https://nodei.co/npm/readable-stream/]

This package is a mirror of the Streams2 and Streams3 implementations in Node-core.

If you want to guarantee a stable streams base, regardless of what version of Node you, or the users of your libraries are using, use readable-stream only and avoid the “stream” module in Node-core.

readable-stream comes in two major versions, v1.0.x and v1.1.x. The former tracks the Streams2 implementation in Node 0.10, including bug-fixes and minor improvements as they are added. The latter tracks Streams3 as it develops in Node 0.11; we will likely see a v1.2.x branch for Node 0.12.

readable-stream uses proper patch-level versioning so if you pin to "~1.0.0" you’ll get the latest Node 0.10 Streams2 implementation, including any fixes and minor non-breaking improvements. The patch-level versions of 1.0.x and 1.1.x should mirror the patch-level versions of Node-core releases. You should prefer the 1.0.x releases for now and when you’re ready to start using Streams3, pin to "~1.1.0"

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/morgan/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

morgan

![NPM Version][npm-image] [https://npmjs.org/package/morgan]
![NPM Downloads][downloads-image] [https://npmjs.org/package/morgan]
![Build Status][travis-image] [https://travis-ci.org/expressjs/morgan]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/morgan?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

HTTP request logger middleware for node.js

Named after Dexter [http://en.wikipedia.org/wiki/Dexter_Morgan], a show you should not watch until completion.

API

var morgan = require('morgan')

morgan(format, options)

Create a new morgan logger middleware function using the given format and options.
The format argument may be a string of a predefined name (see below for the names),
a string of a format string, or a function that will produce a log entry.

Options

Morgan accepts these properties in the options object.

buffer

Buffer duration before writing logs to the stream, defaults to false. When
set to true, defaults to 1000 ms.

immediate

Write log line on request instead of response. This means that a requests will
be logged even if the server crashes, but data from the response (like the
response code, content length, etc.) cannot be logged.

skip

Function to determine if logging is skipped, defaults to false. This function
will be called as skip(req, res).

// EXAMPLE: only log error responses
morgan('combined', {
 skip: function (req, res) { return res.statusCode < 400 }
})

stream

Output stream for writing log lines, defaults to process.stdout.

Predefined Formats

There are various pre-defined formats provided:

combined

Standard Apache combined log output.

:remote-addr - :remote-user [:date] ":method :url HTTP/:http-version" :status :res[content-length] ":referrer" ":user-agent"

common

Standard Apache common log output.

:remote-addr - :remote-user [:date] ":method :url HTTP/:http-version" :status :res[content-length]

dev

Concise output colored by response status for development use. The :status
token will be colored red for server error codes, yellow for client error
codes, cyan for redirection codes, and uncolored for all other codes.

:method :url :status :response-time ms - :res[content-length]

short

Shorter than default, also including response time.

:remote-addr :remote-user :method :url HTTP/:http-version :status :res[content-length] - :response-time ms

tiny

The minimal output.

:method :url :status :res[content-length] - :response-time ms

Tokens

		:req[header] ex: :req[Accept]

		:res[header] ex: :res[Content-Length]

		:http-version

		:response-time

		:remote-addr

		:remote-user

		:date

		:method

		:url

		:referrer

		:user-agent

		:status

To define a token, simply invoke morgan.token() with the name and a callback function. The value returned is then available as ”:type” in this case:

morgan.token('type', function(req, res){ return req.headers['content-type']; })

Examples

express/connect

Simple app that will log all request in the Apache combined format to STDOUT

var express = require('express')
var morgan = require('morgan')

var app = express()

app.use(morgan('combined'))

app.get('/', function (req, res) {
 res.send('hello, world!')
})

vanilla http server

Simple app that will log all request in the Apache combined format to STDOUT

var finalhandler = require('finalhandler')
var http = require('http')
var morgan = require('morgan')

// create "middleware"
var logger = morgan('combined')

http.createServer(function (req, res) {
 var done = finalhandler(req, res)
 logger(req, res, function (err) {
 if (err) return done(err)

 // respond to request
 res.setHeader('content-type', 'text/plain')
 res.end('hello, world!')
 })
})

write logs to a file

Simple app that will log all request in the Apache combined format to the file “access.log”

var express = require('express')
var fs = require('fs')
var morgan = require('morgan')

var app = express()

// create a write stream (in append mode)
var accessLogStream = fs.createWriteStream(__dirname + '/access.log', {flags: 'a'})

// setup the logger
app.use(morgan('combined', {stream: accessLogStream}))

app.get('/', function (req, res) {
 res.send('hello, world!')
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/morgan/node_modules/on-finished/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.0 / 2014-08-16

		Check if socket is detached

		Return undefined for isFinished if state unknown

2.0.0 / 2014-08-16

		Add isFinished function

		Move to jshttp organization

		Remove support for plain socket argument

		Rename to on-finished

		Support both req and res as arguments

		deps: ee-first@1.0.5

1.2.2 / 2014-06-10

		Reduce listeners added to emitters
		avoids “event emitter leak” warnings when used multiple times on same request

1.2.1 / 2014-06-08

		Fix returned value when already finished

1.2.0 / 2014-06-05

		Call callback when called on already-finished socket

1.1.4 / 2014-05-27

		Support node.js 0.8

1.1.3 / 2014-04-30

		Make sure errors passed as instanceof Error

1.1.2 / 2014-04-18

		Default the socket to passed-in object

1.1.1 / 2014-01-16

		Rename module to finished

1.1.0 / 2013-12-25

		Call callback when called on already-errored socket

1.0.1 / 2013-12-20

		Actually pass the error to the callback

1.0.0 / 2013-12-20

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/morgan/node_modules/basic-auth/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

basic-auth

Generic basic auth Authorization header field parser for whatever.

Installation

$ npm install basic-auth

Example

Pass a node request or koa Context object to the module exported. If
parsing fails undefined is returned, otherwise an object with
.name and .pass.

var auth = require('basic-auth');
var user = auth(req);
// => { name: 'something', pass: 'whatever' }

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/morgan/node_modules/on-finished/node_modules/ee-first/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

EE First

![NPM version][npm-image] [https://npmjs.org/package/ee-first]
![Build status][travis-image] [https://travis-ci.org/jonathanong/ee-first]
![Test coverage][coveralls-image] [https://coveralls.io/r/jonathanong/ee-first?branch=master]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/ee-first]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Get the first event in a set of event emitters and event pairs,
then clean up after itself.

Install

$ npm install ee-first

API

var first = require('ee-first')

first(arr, listener)

Invoke listener on the first event from the list specified in arr. arr is
an array of arrays, with each array in the format [ee, ...event]. listener
will be called only once, the first time any of the given events are emitted. If
error is one of the listened events, then if that fires first, the listener
will be given the err argument.

The listener is invoked as listener(err, ee, event, args), where err is the
first argument emitted from an error event, if applicable; ee is the event
emitter that fired; event is the string event name that fired; and args is an
array of the arguments that were emitted on the event.

var ee1 = new EventEmitter()
var ee2 = new EventEmitter()

first([
 [ee1, 'close', 'end', 'error'],
 [ee2, 'error']
], function (err, ee, event, args) {
 // listener invoked
})

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/morgan/node_modules/on-finished/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

on-finished

[image: NPM Version] [https://www.npmjs.org/package/on-finished]
[image: Node.js Version] [http://nodejs.org/download/]
[image: Build Status] [https://travis-ci.org/jshttp/on-finished]
[image: Coverage Status] [https://coveralls.io/r/jshttp/on-finished]

Execute a callback when a request closes, finishes, or errors.

Install

$ npm install on-finished

API

var onFinished = require('on-finished')

onFinished(res, listener)

Attach a listener to listen for the response to finish. The listener will
be invoked only once when the response finished. If the response finished
to to an error, the first argument will contain the error.

Listening to the end of a response would be used to close things associated
with the response, like open files.

onFinished(res, function (err) {
 // clean up open fds, etc.
})

onFinished(req, listener)

Attach a listener to listen for the request to finish. The listener will
be invoked only once when the request finished. If the request finished
to to an error, the first argument will contain the error.

Listening to the end of a request would be used to know when to continue
after reading the data.

var data = ''

req.setEncoding('utf8')
res.on('data', function (str) {
 data += str
})

onFinished(req, function (err) {
 // data is read unless there is err
})

onFinished.isFinished(res)

Determine if res is already finished. This would be useful to check and
not even start certain operations if the response has already finished.

onFinished.isFinished(req)

Determine if req is already finished. This would be useful to check and
not even start certain operations if the request has already finished.

Example

The following code ensures that file descriptors are always closed
once the response finishes.

var destroy = require('destroy')
var http = require('http')
var onFinished = require('finished')

http.createServer(function onRequest(req, res) {
 var stream = fs.createReadStream('package.json')
 stream.pipe(res)
 onFinished(res, function (err) {
 destroy(stream)
 })
})

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/fresh/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

fresh

![NPM Version][npm-image] [https://npmjs.org/package/fresh]
![NPM Downloads][downloads-image] [https://npmjs.org/package/fresh]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/fresh]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/fresh?branch=master]

HTTP response freshness testing

Installation

$ npm install fresh

API

var fresh = require('fresh')

fresh(req, res)

Check freshness of req and res headers.

When the cache is “fresh” true is returned,
otherwise false is returned to indicate that
the cache is now stale.

Example

var req = { 'if-none-match': 'tobi' };
var res = { 'etag': 'luna' };
fresh(req, res);
// => false

var req = { 'if-none-match': 'tobi' };
var res = { 'etag': 'tobi' };
fresh(req, res);
// => true

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/fresh/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.2.4 / 2014-09-07

		Support Node.js 0.6

0.2.3 / 2014-09-07

		Move repository to jshttp

0.2.2 / 2014-02-19

		Revert “Fix for blank page on Safari reload”

0.2.1 / 2014-01-29

		fix: support max-age=0 for end-to-end revalidation

0.2.0 / 2013-08-11

		fix: return false for no-cache

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

body-parser

![NPM Version][npm-image] [https://npmjs.org/package/body-parser]
![NPM Downloads][downloads-image] [https://npmjs.org/package/body-parser]
![Build Status][travis-image] [https://travis-ci.org/expressjs/body-parser]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/body-parser?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Node.js body parsing middleware.

This does not handle multipart bodies, due to their complex and typically large nature. For multipart bodies, you may be interested in the following modules:

		busboy [https://www.npmjs.org/package/busboy#readme] and connect-busboy [https://www.npmjs.org/package/connect-busboy#readme]

		multiparty [https://www.npmjs.org/package/multiparty#readme] and connect-multiparty [https://www.npmjs.org/package/connect-multiparty#readme]

		formidable [https://www.npmjs.org/package/formidable#readme]

		multer [https://www.npmjs.org/package/multer#readme]

Other body parsers you might be interested in:

		body [https://www.npmjs.org/package/body#readme]

		co-body [https://www.npmjs.org/package/co-body#readme]

Installation

$ npm install body-parser

API

var bodyParser = require('body-parser')

bodyParser.json(options)

Returns middleware that only parses json. This parser accepts any Unicode encoding of the body and supports automatic inflation of gzip and deflate encodings.

The options are:

		strict - only parse objects and arrays. (default: true)

		inflate - if deflated bodies will be inflated. (default: true)

		limit - maximum request body size. (default: <100kb>)

		reviver - passed to JSON.parse()

		type - request content-type to parse (default: json)

		verify - function to verify body content

The type argument is passed directly to the type-is [https://www.npmjs.org/package/type-is#readme] library. This can be an extension name (like json), a mime type (like application/json), or a mime time with a wildcard (like */json).

The verify argument, if supplied, is called as verify(req, res, buf, encoding), where buf is a Buffer of the raw request body and encoding is the encoding of the request. The parsing can be aborted by throwing an error.

The reviver argument is passed directly to JSON.parse as the second argument. You can find more information on this argument in the MDN documentation about JSON.parse [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter].

bodyParser.raw(options)

Returns middleware that parses all bodies as a Buffer. This parser supports automatic inflation of gzip and deflate encodings.

The options are:

		inflate - if deflated bodies will be inflated. (default: true)

		limit - maximum request body size. (default: <100kb>)

		type - request content-type to parse (default: application/octet-stream)

		verify - function to verify body content

The type argument is passed directly to the type-is [https://www.npmjs.org/package/type-is#readme] library. This can be an extension name (like bin), a mime type (like application/octet-stream), or a mime time with a wildcard (like application/*).

The verify argument, if supplied, is called as verify(req, res, buf, encoding), where buf is a Buffer of the raw request body and encoding is the encoding of the request. The parsing can be aborted by throwing an error.

bodyParser.text(options)

Returns middleware that parses all bodies as a string. This parser supports automatic inflation of gzip and deflate encodings.

The options are:

		defaultCharset - the default charset to parse as, if not specified in content-type. (default: utf-8)

		inflate - if deflated bodies will be inflated. (default: true)

		limit - maximum request body size. (default: <100kb>)

		type - request content-type to parse (default: text/plain)

		verify - function to verify body content

The type argument is passed directly to the type-is [https://www.npmjs.org/package/type-is#readme] library. This can be an extension name (like txt), a mime type (like text/plain), or a mime time with a wildcard (like text/*).

The verify argument, if supplied, is called as verify(req, res, buf, encoding), where buf is a Buffer of the raw request body and encoding is the encoding of the request. The parsing can be aborted by throwing an error.

bodyParser.urlencoded(options)

Returns middleware that only parses urlencoded bodies. This parser accepts only UTF-8 encoding of the body and supports automatic inflation of gzip and deflate encodings.

The options are:

		extended - parse extended syntax with the qs [https://www.npmjs.org/package/qs#readme] module. (default: true)

		inflate - if deflated bodies will be inflated. (default: true)

		limit - maximum request body size. (default: <100kb>)

		parameterLimit - maximum number of parameters. (default: 1000)

		type - request content-type to parse (default: urlencoded)

		verify - function to verify body content

The extended argument allows to choose between parsing the urlencoded data with the querystring library (when false) or the qs library (when true). The “extended” syntax allows for rich objects and arrays to be encoded into the urlencoded format, allowing for a JSON-like experience with urlencoded. For more information, please see the qs library [https://www.npmjs.org/package/qs#readme].

The parameterLimit argument controls the maximum number of parameters that are allowed in the urlencoded data. If a request contains more parameters than this value, a 415 will be returned to the client.

The type argument is passed directly to the type-is [https://www.npmjs.org/package/type-is#readme] library. This can be an extension name (like urlencoded), a mime type (like application/x-www-form-urlencoded), or a mime time with a wildcard (like */x-www-form-urlencoded).

The verify argument, if supplied, is called as verify(req, res, buf, encoding), where buf is a Buffer of the raw request body and encoding is the encoding of the request. The parsing can be aborted by throwing an error.

req.body

A new body object containing the parsed data is populated on the request object after the middleware.

Examples

express/connect top-level generic

This example demonstrates adding a generic JSON and urlencoded parser as a top-level middleware, which will parse the bodies of all incoming requests. This is the simplest setup.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// parse application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({ extended: false }))

// parse application/json
app.use(bodyParser.json())

app.use(function (req, res) {
 res.setHeader('Content-Type', 'text/plain')
 res.write('you posted:\n')
 res.end(JSON.stringify(req.body, null, 2))
})

express route-specific

This example demonstrates adding body parsers specifically to the routes that need them. In general, this is the most recommend way to use body-parser with express.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// create application/json parser
var jsonParser = bodyParser.json()

// create application/x-www-form-urlencoded parser
var urlencodedParser = bodyParser.urlencoded({ extended: false })

// POST /login gets urlencoded bodies
app.post('/login', urlencodedParser, function (req, res) {
 if (!req.body) return res.sendStatus(400)
 res.send('welcome, ' + res.body.username)
})

// POST /api/users gets JSON bodies
app.post('/api/users', jsonParser, function (req, res) {
 if (!req.body) return res.sendStatus(400)
 // create user in req.body
})

change content-type for parsers

All the parsers accept a type option which allows you to change the Content-Type that the middleware will parse.

// parse various different custom JSON types as JSON
app.use(bodyParser.json({ type: 'application/*+json' }))

// parse some custom thing into a Buffer
app.use(bodyParser.raw({ type: 'application/vnd.custom-type' }))

// parse an HTML body into a string
app.use(bodyParser.text({ type: 'text/html' }))

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.8.4 / 2014-09-23

		fix content encoding to be case-insensitive

1.8.3 / 2014-09-19

		deps: qs@2.2.4
		Fix issue with object keys starting with numbers truncated

1.8.2 / 2014-09-15

		deps: depd@0.4.5

1.8.1 / 2014-09-07

		deps: media-typer@0.3.0

		deps: type-is@~1.5.1

1.8.0 / 2014-09-05

		make empty-body-handling consistent between chunked requests
		empty json produces {}

		empty raw produces new Buffer(0)

		empty text produces ''

		empty urlencoded produces {}

		deps: qs@2.2.3
		Fix issue where first empty value in array is discarded

		deps: type-is@~1.5.0
		fix hasbody to be true for content-length: 0

1.7.0 / 2014-09-01

		add parameterLimit option to urlencoded parser

		change urlencoded extended array limit to 100

		respond with 415 when over parameterLimit in urlencoded

1.6.7 / 2014-08-29

		deps: qs@2.2.2
		Remove unnecessary cloning

1.6.6 / 2014-08-27

		deps: qs@2.2.0
		Array parsing fix

		Performance improvements

1.6.5 / 2014-08-16

		deps: on-finished@2.1.0

1.6.4 / 2014-08-14

		deps: qs@1.2.2

1.6.3 / 2014-08-10

		deps: qs@1.2.1

1.6.2 / 2014-08-07

		deps: qs@1.2.0
		Fix parsing array of objects

1.6.1 / 2014-08-06

		deps: qs@1.1.0
		Accept urlencoded square brackets

		Accept empty values in implicit array notation

1.6.0 / 2014-08-05

		deps: qs@1.0.2
		Complete rewrite

		Limits array length to 20

		Limits object depth to 5

		Limits parameters to 1,000

1.5.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

1.5.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

1.5.0 / 2014-07-20

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		deps: iconv-lite@0.4.4
		Added encoding UTF-7

		deps: raw-body@1.3.0
		deps: iconv-lite@0.4.4

		Added encoding UTF-7

		Fix Cannot switch to old mode now error on Node.js 0.10+

		deps: type-is@~1.3.2

1.4.3 / 2014-06-19

		deps: type-is@1.3.1
		fix global variable leak

1.4.2 / 2014-06-19

		deps: type-is@1.3.0
		improve type parsing

1.4.1 / 2014-06-19

		fix urlencoded extended deprecation message

1.4.0 / 2014-06-19

		add text parser

		add raw parser

		check accepted charset in content-type (accepts utf-8)

		check accepted encoding in content-encoding (accepts identity)

		deprecate bodyParser() middleware; use .json() and .urlencoded() as needed

		deprecate urlencoded() without provided extended option

		lazy-load urlencoded parsers

		parsers split into files for reduced mem usage

		support gzip and deflate bodies
		set inflate: false to turn off

		deps: raw-body@1.2.2
		Support all encodings from iconv-lite

1.3.1 / 2014-06-11

		deps: type-is@1.2.1
		Switch dependency from mime to mime-types@1.0.0

1.3.0 / 2014-05-31

		add extended option to urlencoded parser

1.2.2 / 2014-05-27

		deps: raw-body@1.1.6
		assert stream encoding on node.js 0.8

		assert stream encoding on node.js < 0.10.6

		deps: bytes@1

1.2.1 / 2014-05-26

		invoke next(err) after request fully read
		prevents hung responses and socket hang ups

1.2.0 / 2014-05-11

		add verify option

		deps: type-is@1.2.0
		support suffix matching

1.1.2 / 2014-05-11

		improve json parser speed

1.1.1 / 2014-05-11

		fix repeated limit parsing with every request

1.1.0 / 2014-05-10

		add type option

		deps: pin for safety and consistency

1.0.2 / 2014-04-14

		use type-is module

1.0.1 / 2014-03-20

		lower default limits to 100kb

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/body-parser/node_modules/iconv-lite/Changelog.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.4.4 / 2014-07-16

		added encodings UTF-7 (RFC2152) and UTF-7-IMAP (RFC3501 Section 5.1.3)

		fixed streaming base64 encoding

0.4.3 / 2014-06-14

		added encodings UTF-16BE and UTF-16 with BOM

0.4.2 / 2014-06-12

		don’t throw exception if extendNodeEncodings() is called more than once

0.4.1 / 2014-06-11

		codepage 808 added

0.4.0 / 2014-06-10

		code is rewritten from scratch

		all widespread encodings are supported

		streaming interface added

		browserify compatibility added

		(optional) extend core primitive encodings to make usage even simpler

		moved from vows to mocha as the testing framework

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/useragent/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

useragent - high performance user agent parser for Node.js

Useragent originated as port of browserscope.org [http://www.browserscope.org/]‘s user agent
parser project also known as ua-parser. Useragent allows you to parse user agent
string with high accuracy by using hand tuned dedicated regular expressions for
browser matching. This database is needed to ensure that every browser is
correctly parsed as every browser vendor implements it’s own user agent schema.
This is why regular user agent parsers have major issues because they will
most likely parse out the wrong browser name or confuse the render engine version
with the actual version of the browser.

Build status [image: BuildStatus] [http://travis-ci.org/3rd-Eden/useragent]

High performance

The module has been developed with a benchmark driven approach. It has a
pre-compiled library that contains all the Regular Expressions and uses deferred
or on demand parsing for Operating System and device information. All this
engineering effort has been worth it as this benchmark shows:

Starting the benchmark, parsing 62 useragent strings per run

Executed benchmark against node module: "useragent"
Count (61), Cycles (5), Elapsed (5.559), Hz (1141.3739447904327)

Executed benchmark against node module: "useragent_parser"
Count (29), Cycles (3), Elapsed (5.448), Hz (545.6817291171243)

Executed benchmark against node module: "useragent-parser"
Count (16), Cycles (4), Elapsed (5.48), Hz (304.5373431830105)

Executed benchmark against node module: "ua-parser"
Count (54), Cycles (3), Elapsed (5.512), Hz (1018.7561434659247)

Module: "useragent" is the user agent fastest parser.

Installation

Installation is done using the Node Package Manager (NPM). If you don’t have
NPM installed on your system you can download it from
npmjs.org [http://npmjs.org]

npm install useragent --save

The --save flag tells NPM to automatically add it to your package.json file.

API

Include the useragent parser in you node.js application:

var useragent = require('useragent');

The useragent library allows you do use the automatically installed RegExp
library or you can fetch it live from the remote servers. So if you are
paranoid and always want your RegExp library to be up to date to match with
agent the widest range of useragent strings you can do:

var useragent = require('useragent');
useragent(true);

This will async load the database from the server and compile it to a proper
JavaScript supported format. If it fails to compile or load it from the remote
location it will just fall back silently to the shipped version. If you want to
use this feature you need to add yamlparser and request to your package.json

npm install yamlparser --save
npm install request --save

useragent.parse(useragent string[, js useragent]);

This is the actual user agent parser, this is where all the magic is happening.
The function accepts 2 arguments, both should be a string. The first argument
should the user agent string that is known on the server from the
req.headers.useragent header. The other argument is optional and should be
the user agent string that you see in the browser, this can be send from the
browser using a xhr request or something like this. This allows you detect if
the user is browsing the web using the Chrome Frame extension.

The parser returns a Agent instance, this allows you to output user agent
information in different predefined formats. See the Agent section for more
information.

var agent = useragent.parse(req.headers['user-agent']);

// example for parsing both the useragent header and a optional js useragent
var agent2 = useragent.parse(req.headers['user-agent'], req.query.jsuseragent);

The parse method returns a Agent instance which contains all details about the
user agent. See the Agent section of the API documentation for the available
methods.

useragent.lookup(useragent string[, js useragent]);

This provides the same functionality as above, but it caches the user agent
string and it’s parsed result in memory to provide faster lookups in the
future. This can be handy if you expect to parse a lot of user agent strings.

It uses the same arguments as the useragent.parse method and returns exactly
the same result, but it’s just cached.

var agent = useragent.lookup(req.headers['user-agent']);

And this is a serious performance improvement as shown in this benchmark:

Executed benchmark against method: "useragent.parse"
Count (49), Cycles (3), Elapsed (5.534), Hz (947.6844321931629)

Executed benchmark against method: "useragent.lookup"
Count (11758), Cycles (3), Elapsed (5.395), Hz (229352.03831239208)

useragent.fromJSON(obj);

Transforms the JSON representation of a Agent instance back in to a working
Agent instance

var agent = useragent.parse(req.headers['user-agent'])
 , another = useragent.fromJSON(JSON.stringify(agent));

console.log(agent == another);

useragent.is(useragent string).browsername;

This api provides you with a quick and dirty browser lookup. The underlying
code is usually found on client side scripts so it’s not the same quality as
our useragent.parse method but it might be needed for legacy reasons.

useragent.is returns a object with potential matched browser names

useragent.is(req.headers['user-agent']).firefox // true
useragent.is(req.headers['user-agent']).safari // false
var ua = useragent.is(req.headers['user-agent'])

// the object
{
 version: '3'
 webkit: false
 opera: false
 ie: false
 chrome: false
 safari: false
 mobile_safari: false
 firefox: true
 mozilla: true
 android: false
}

Agents, OperatingSystem and Device instances

Most of the methods mentioned above return a Agent instance. The Agent exposes
the parsed out information from the user agent strings. This allows us to
extend the agent with more methods that do not necessarily need to be in the
core agent instance, allowing us to expose a plugin interface for third party
developers and at the same time create a uniform interface for all versioning.

The Agent has the following property

		family The browser family, or browser name, it defaults to Other.

		major The major version number of the family, it defaults to 0.

		minor The minor version number of the family, it defaults to 0.

		patch The patch version number of the family, it defaults to 0.

In addition to the properties mentioned above, it also has 2 special properties,
which are:

		os OperatingSystem instance

		device Device instance

When you access those 2 properties the agent will do on demand parsing of the
Operating System or/and Device information.

The OperatingSystem has the same properties as the Agent, for the Device we
don’t have any versioning information available, so only the family property is
set there. If we cannot find the family, they will default to Other.

The following methods are available:

Agent.toAgent();

Returns the family and version number concatinated in a nice human readable
string.

var agent = useragent.parse(req.headers['user-agent']);
agent.toAgent(); // 'Chrome 15.0.874'

Agent.toString();

Returns the results of the Agent.toAgent() but also adds the parsed operating
system to the string in a human readable format.

var agent = useragent.parse(req.headers['user-agent']);
agent.toString(); // 'Chrome 15.0.874 / Mac OS X 10.8.1'

// as it's a to string method you can also concat it with another string
'your useragent is ' + agent;
// 'your useragent is Chrome 15.0.874 / Mac OS X 10.8.1'

Agent.toVersion();

Returns the version of the browser in a human readable string.

var agent = useragent.parse(req.headers['user-agent']);
agent.toVersion(); // '15.0.874'

Agent.toJSON();

Generates a JSON representation of the Agent. By using the toJSON method we
automatically allow it to be stringified when supplying as to the
JSON.stringify method.

var agent = useragent.parse(req.headers['user-agent']);
agent.toJSON(); // returns an object

JSON.stringify(agent);

OperatingSystem.toString();

Generates a stringified version of operating system;

var agent = useragent.parse(req.headers['user-agent']);
agent.os.toString(); // 'Mac OSX 10.8.1'

OperatingSystem.toVersion();

Generates a stringified version of operating system’s version;

var agent = useragent.parse(req.headers['user-agent']);
agent.os.toVersion(); // '10.8.1'

OperatingSystem.toJSON();

Generates a JSON representation of the OperatingSystem. By using the toJSON
method we automatically allow it to be stringified when supplying as to the
JSON.stringify method.

var agent = useragent.parse(req.headers['user-agent']);
agent.os.toJSON(); // returns an object

JSON.stringify(agent.os);

Device.toString();

Generates a stringified version of device;

var agent = useragent.parse(req.headers['user-agent']);
agent.device.toString(); // 'Asus A100'

Device.toVersion();

Generates a stringified version of device’s version;

var agent = useragent.parse(req.headers['user-agent']);
agent.device.toVersion(); // '' , no version found but could also be '0.0.0'

Device.toJSON();

Generates a JSON representation of the Device. By using the toJSON method we
automatically allow it to be stringified when supplying as to the
JSON.stringify method.

var agent = useragent.parse(req.headers['user-agent']);
agent.device.toJSON(); // returns an object

JSON.stringify(agent.device);

Adding more features to the useragent

As I wanted to keep the core of the user agent parser as clean and fast as
possible I decided to move some of the initially planned features to a new
plugin file.

These extensions to the Agent prototype can be loaded by requiring the
useragent/features file:

var useragent = require('useragent');
require('useragent/features');

The initial release introduces 1 new method, satisfies, which allows you to see
if the version number of the browser satisfies a certain range. It uses the
semver library to do all the range calculations but here is a small summary of
the supported range styles:

		>1.2.3 Greater than a specific version.

		<1.2.3 Less than.

		1.2.3 - 2.3.4 := >=1.2.3 <=2.3.4.

		~1.2.3 := >=1.2.3 <1.3.0.

		~1.2 := >=1.2.0 <2.0.0.

		~1 := >=1.0.0 <2.0.0.

		1.2.x := >=1.2.0 <1.3.0.

		1.x := >=1.0.0 <2.0.0.

As it requires the semver module to function you need to install it
seperately:

npm install semver --save

Agent.satisfies(‘range style here’);

Check if the agent matches the supplied range.

var agent = useragent.parse(req.headers['user-agent']);
agent.satisfies('15.x || >=19.5.0 || 25.0.0 - 17.2.3'); // true
agent.satisfies('>16.12.0'); // false

Migrations

For small changes between version please review the changelog.

Upgrading from 1.10 to 2.0.0

		useragent.fromAgent has been removed.

		agent.toJSON now returns an Object, use JSON.stringify(agent) for the old
behaviour.

		agent.os is now an OperatingSystem instance with version numbers. If you
still a string only representation do agent.os.toString().

		semver has been removed from the dependencies, so if you are using the
require('useragent/features') you need to add it to your own dependencies

Upgrading from 0.1.2 to 1.0.0

		useragent.browser(ua) has been renamed to useragent.is(ua).

		useragent.parser(ua, jsua) has been renamed to useragent.parse(ua, jsua).

		result.pretty() has been renamed to result.toAgent().

		result.V1 has been renamed to result.major.

		result.V2 has been renamed to result.minor.

		result.V3 has been renamed to result.patch.

		result.prettyOS() has been removed.

		result.match has been removed.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/useragent/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Version 2.0

		v2.0.0 breaking
		Added support for Operating System version parsing

		Added support for Device parsing

		Introduced deferred OnDemand parsing for Operating and Devices

		The Agent#toJSON method now returns an object instread of JSON string. Use
JSON.stringify(agent) instead.

		Removed the fromAgent method

		semver is removed from the dependencies, if you use the useragent/features
you should add it to your own dependencies.

		v2.0.1
		Fixed broken reference to the update module.

		Updated with some new parsers.

		v2.0.2
		Use LRU-cache for the lookups so it doesn’t create a memory “leak” #22

		Updated with some new parsers.

		v2.0.3
		Updated regexp library with new parsers as Opera’s latest browser which runs
WebKit was detected as Chrome Mobile.

		v2.0.4
		Added support for IE11 and PhantomJS. In addition to that when you run the
updater without the correct dependencies it will just output an error
instead of throwing an error.

		v2.0.5
		Upgraded the regular expressions to support Opera Next

		v2.0.6
		Only write the parse file when there isn’t an error. #30

		Output an error in the console when we fail to compile new parsers #30

Version 1.0

		v1.1.0
		Removed the postupdate hook, it was causing to much issues #9

		v1.0.6
		Updated the agent parser, JHint issues and leaking globals.

		v1.0.5
		Potential fix for #11 where it doesn’t install the stuff in windows this also
brings a fresh update of the agents.js.

		v1.0.3
		Rewritten the is method so it doesn’t display IE as true for firefox, chrome
etc fixes #10 and #7.

		v1.0.3
		A fix for bug #6, updated the semver dependency for browserify support.

		v1.0.2
		Don’t throw errors when .parse is called without a useragent string. It now
defaults to a empty Agent instance.

		v1.0.1
		Added support for cURL, Wget and thunderbird using a custom useragent
definition file.

		v1.0.0 breaking
		Complete rewrite of the API and major performance improvements.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/source-map/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Change Log

0.1.40

		Performance improvements for parsing source maps in SourceMapConsumer.

0.1.39

		Fix a bug where setting a source’s contents to null before any source content
had been set before threw a TypeError. See issue #131.

0.1.38

		Fix a bug where finding relative paths from an empty path were creating
absolute paths. See issue #129.

0.1.37

		Fix a bug where if the source root was an empty string, relative source paths
would turn into absolute source paths. Issue #124.

0.1.36

		Allow the names mapping property to be an empty string. Issue #121.

0.1.35

		A third optional parameter was added to SourceNode.fromStringWithSourceMap
to specify a path that relative sources in the second parameter should be
relative to. Issue #105.

		If no file property is given to a SourceMapGenerator, then the resulting
source map will no longer have a null file property. The property will
simply not exist. Issue #104.

		Fixed a bug where consecutive newlines were ignored in SourceNodes.
Issue #116.

0.1.34

		Make SourceNode work with windows style (“\r\n”) newlines. Issue #103.

		Fix bug involving source contents and the
SourceMapGenerator.prototype.applySourceMap. Issue #100.

0.1.33

		Fix some edge cases surrounding path joining and URL resolution.

		Add a third parameter for relative path to
SourceMapGenerator.prototype.applySourceMap.

		Fix issues with mappings and EOLs.

0.1.32

		Fixed a bug where SourceMapConsumer couldn’t handle negative relative columns
(issue 92).

		Fixed test runner to actually report number of failed tests as its process
exit code.

		Fixed a typo when reporting bad mappings (issue 87).

0.1.31

		Delay parsing the mappings in SourceMapConsumer until queried for a source
location.

		Support Sass source maps (which at the time of writing deviate from the spec
in small ways) in SourceMapConsumer.

0.1.30

		Do not join source root with a source, when the source is a data URI.

		Extend the test runner to allow running single specific test files at a time.

		Performance improvements in SourceNode.prototype.walk and
SourceMapConsumer.prototype.eachMapping.

		Source map browser builds will now work inside Workers.

		Better error messages when attempting to add an invalid mapping to a
SourceMapGenerator.

0.1.29

		Allow duplicate entries in the names and sources arrays of source maps
(usually from TypeScript) we are parsing. Fixes github issue 72.

0.1.28

		Skip duplicate mappings when creating source maps from SourceNode; github
issue 75.

0.1.27

		Don’t throw an error when the file property is missing in SourceMapConsumer,
we don’t use it anyway.

0.1.26

		Fix SourceNode.fromStringWithSourceMap for empty maps. Fixes github issue 70.

0.1.25

		Make compatible with browserify

0.1.24

		Fix issue with absolute paths and file:// URIs. See
https://bugzilla.mozilla.org/show_bug.cgi?id=885597

0.1.23

		Fix issue with absolute paths and sourcesContent, github issue 64.

0.1.22

		Ignore duplicate mappings in SourceMapGenerator. Fixes github issue 21.

0.1.21

		Fixed handling of sources that start with a slash so that they are relative to
the source root’s host.

0.1.20

		Fixed github issue #43: absolute URLs aren’t joined with the source root
anymore.

0.1.19

		Using Travis CI to run tests.

0.1.18

		Fixed a bug in the handling of sourceRoot.

0.1.17

		Added SourceNode.fromStringWithSourceMap.

0.1.16

		Added missing documentation.

		Fixed the generating of empty mappings in SourceNode.

0.1.15

		Added SourceMapGenerator.applySourceMap.

0.1.14

		The sourceRoot is now handled consistently.

0.1.13

		Added SourceMapGenerator.fromSourceMap.

0.1.12

		SourceNode now generates empty mappings too.

0.1.11

		Added name support to SourceNode.

0.1.10

		Added sourcesContent support to the customer and generator.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/useragent/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/source-map/node_modules/amdefine/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

amdefine

A module that can be used to implement AMD’s define() in Node. This allows you
to code to the AMD API and have the module work in node programs without
requiring those other programs to use AMD.

Usage

1) Update your package.json to indicate amdefine as a dependency:

 "dependencies": {
 "amdefine": ">=0.1.0"
 }

Then run npm install to get amdefine into your project.

2) At the top of each module that uses define(), place this code:

if (typeof define !== 'function') { var define = require('amdefine')(module) }

Only use these snippets when loading amdefine. If you preserve the basic structure,
with the braces, it will be stripped out when using the RequireJS optimizer.

You can add spaces, line breaks and even require amdefine with a local path, but
keep the rest of the structure to get the stripping behavior.

As you may know, because if statements in JavaScript don’t have their own scope, the var
declaration in the above snippet is made whether the if expression is truthy or not. If
RequireJS is loaded then the declaration is superfluous because define is already already
declared in the same scope in RequireJS. Fortunately JavaScript handles multiple var
declarations of the same variable in the same scope gracefully.

If you want to deliver amdefine.js with your code rather than specifying it as a dependency
with npm, then just download the latest release and refer to it using a relative path:

Latest Version [https://github.com/jrburke/amdefine/raw/latest/amdefine.js]

amdefine/intercept

Consider this very experimental.

Instead of pasting the piece of text for the amdefine setup of a define
variable in each module you create or consume, you can use amdefine/intercept
instead. It will automatically insert the above snippet in each .js file loaded
by Node.

Warning: you should only use this if you are creating an application that
is consuming AMD style defined()’d modules that are distributed via npm and want
to run that code in Node.

For library code where you are not sure if it will be used by others in Node or
in the browser, then explicitly depending on amdefine and placing the code
snippet above is suggested path, instead of using amdefine/intercept. The
intercept module affects all .js files loaded in the Node app, and it is
inconsiderate to modify global state like that unless you are also controlling
the top level app.

Why distribute AMD-style nodes via npm?

npm has a lot of weaknesses for front-end use (installed layout is not great,
should have better support for the `baseUrl + moduleID + ‘.js’ style of loading,
single file JS installs), but some people want a JS package manager and are
willing to live with those constraints. If that is you, but still want to author
in AMD style modules to get dynamic require([]), better direct source usage and
powerful loader plugin support in the browser, then this tool can help.

amdefine/intercept usage

Just require it in your top level app module (for example index.js, server.js):

require('amdefine/intercept');

The module does not return a value, so no need to assign the result to a local
variable.

Then just require() code as you normally would with Node’s require(). Any .js
loaded after the intercept require will have the amdefine check injected in
the .js source as it is loaded. It does not modify the source on disk, just
prepends some content to the text of the module as it is loaded by Node.

How amdefine/intercept works

It overrides the Module._extensions['.js'] in Node to automatically prepend
the amdefine snippet above. So, it will affect any .js file loaded by your
app.

define() usage

It is best if you use the anonymous forms of define() in your module:

define(function (require) {
 var dependency = require('dependency');
});

or

define(['dependency'], function (dependency) {

});

RequireJS optimizer integration. [bookmark: optimizer]

[bookmark: optimizer]
[bookmark: optimizer]Version 1.0.3 of the RequireJS optimizer [http://requirejs.org/docs/optimization.html]
will have support for stripping the if (typeof define !== 'function') check
mentioned above, so you can include this snippet for code that runs in the
browser, but avoid taking the cost of the if() statement once the code is
optimized for deployment.

Node 0.4 Support

If you want to support Node 0.4, then add require as the second parameter to amdefine:

//Only if you want Node 0.4. If using 0.5 or later, use the above snippet.
if (typeof define !== 'function') { var define = require('amdefine')(module, require) }

Limitations

Synchronous vs Asynchronous

amdefine creates a define() function that is callable by your code. It will
execute and trace dependencies and call the factory function synchronously,
to keep the behavior in line with Node’s synchronous dependency tracing.

The exception: calling AMD’s callback-style require() from inside a factory
function. The require callback is called on process.nextTick():

define(function (require) {
 require(['a'], function(a) {
 //'a' is loaded synchronously, but
 //this callback is called on process.nextTick().
 });
});

Loader Plugins

Loader plugins are supported as long as they call their load() callbacks
synchronously. So ones that do network requests will not work. However plugins
like text [http://requirejs.org/docs/api.html#text] can load text files locally.

The plugin API’s load.fromText() is not supported in amdefine, so this means
transpiler plugins like the CoffeeScript loader plugin [https://github.com/jrburke/require-cs]
will not work. This may be fixable, but it is a bit complex, and I do not have
enough node-fu to figure it out yet. See the source for amdefine.js if you want
to get an idea of the issues involved.

Tests

To run the tests, cd to tests and run:

node all.js
node all-intercept.js

License

New BSD and MIT. Check the LICENSE file for all the details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/source-map/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Source Map

This is a library to generate and consume the source map format
described here [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit].

This library is written in the Asynchronous Module Definition format, and works
in the following environments:

		Modern Browsers supporting ECMAScript 5 (either after the build, or with an
AMD loader such as RequireJS)

		Inside Firefox (as a JSM file, after the build)

		With NodeJS versions 0.8.X and higher

Node

$ npm install source-map

Building from Source (for everywhere else)

Install Node and then run

$ git clone https://fitzgen@github.com/mozilla/source-map.git
$ cd source-map
$ npm link .

Next, run

$ node Makefile.dryice.js

This should spew a bunch of stuff to stdout, and create the following files:

		dist/source-map.js - The unminified browser version.

		dist/source-map.min.js - The minified browser version.

		dist/SourceMap.jsm - The JavaScript Module for inclusion in Firefox source.

Examples

Consuming a source map

var rawSourceMap = {
 version: 3,
 file: 'min.js',
 names: ['bar', 'baz', 'n'],
 sources: ['one.js', 'two.js'],
 sourceRoot: 'http://example.com/www/js/',
 mappings: 'CAAC,IAAI,IAAM,SAAUA,GAClB,OAAOC,IAAID;CCDb,IAAI,IAAM,SAAUE,GAClB,OAAOA'
};

var smc = new SourceMapConsumer(rawSourceMap);

console.log(smc.sources);
// ['http://example.com/www/js/one.js',
// 'http://example.com/www/js/two.js']

console.log(smc.originalPositionFor({
 line: 2,
 column: 28
}));
// { source: 'http://example.com/www/js/two.js',
// line: 2,
// column: 10,
// name: 'n' }

console.log(smc.generatedPositionFor({
 source: 'http://example.com/www/js/two.js',
 line: 2,
 column: 10
}));
// { line: 2, column: 28 }

smc.eachMapping(function (m) {
 // ...
});

Generating a source map

In depth guide:
Compiling to JavaScript, and Debugging with Source Maps [https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/]

With SourceNode (high level API)

function compile(ast) {
 switch (ast.type) {
 case 'BinaryExpression':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 [compile(ast.left), " + ", compile(ast.right)]
);
 case 'Literal':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 String(ast.value)
);
 // ...
 default:
 throw new Error("Bad AST");
 }
}

var ast = parse("40 + 2", "add.js");
console.log(compile(ast).toStringWithSourceMap({
 file: 'add.js'
}));
// { code: '40 + 2',
// map: [object SourceMapGenerator] }

With SourceMapGenerator (low level API)

var map = new SourceMapGenerator({
 file: "source-mapped.js"
});

map.addMapping({
 generated: {
 line: 10,
 column: 35
 },
 source: "foo.js",
 original: {
 line: 33,
 column: 2
 },
 name: "christopher"
});

console.log(map.toString());
// '{"version":3,"file":"source-mapped.js","sources":["foo.js"],"names":["christopher"],"mappings":";;;;;;;;;mCAgCEA"}'

API

Get a reference to the module:

// NodeJS
var sourceMap = require('source-map');

// Browser builds
var sourceMap = window.sourceMap;

// Inside Firefox
let sourceMap = {};
Components.utils.import('resource:///modules/devtools/SourceMap.jsm', sourceMap);

SourceMapConsumer

A SourceMapConsumer instance represents a parsed source map which we can query
for information about the original file positions by giving it a file position
in the generated source.

new SourceMapConsumer(rawSourceMap)

The only parameter is the raw source map (either as a string which can be
JSON.parse‘d, or an object). According to the spec, source maps have the
following attributes:

		version: Which version of the source map spec this map is following.

		sources: An array of URLs to the original source files.

		names: An array of identifiers which can be referrenced by individual
mappings.

		sourceRoot: Optional. The URL root from which all sources are relative.

		sourcesContent: Optional. An array of contents of the original source files.

		mappings: A string of base64 VLQs which contain the actual mappings.

		file: Optional. The generated filename this source map is associated with.

SourceMapConsumer.prototype.originalPositionFor(generatedPosition)

Returns the original source, line, and column information for the generated
source’s line and column positions provided. The only argument is an object with
the following properties:

		line: The line number in the generated source.

		column: The column number in the generated source.

and an object is returned with the following properties:

		source: The original source file, or null if this information is not
available.

		line: The line number in the original source, or null if this information is
not available.

		column: The column number in the original source, or null or null if this
information is not available.

		name: The original identifier, or null if this information is not available.

SourceMapConsumer.prototype.generatedPositionFor(originalPosition)

Returns the generated line and column information for the original source,
line, and column positions provided. The only argument is an object with
the following properties:

		source: The filename of the original source.

		line: The line number in the original source.

		column: The column number in the original source.

and an object is returned with the following properties:

		line: The line number in the generated source, or null.

		column: The column number in the generated source, or null.

SourceMapConsumer.prototype.sourceContentFor(source)

Returns the original source content for the source provided. The only
argument is the URL of the original source file.

SourceMapConsumer.prototype.eachMapping(callback, context, order)

Iterate over each mapping between an original source/line/column and a
generated line/column in this source map.

		callback: The function that is called with each mapping. Mappings have the
form { source, generatedLine, generatedColumn, originalLine, originalColumn, name }

		context: Optional. If specified, this object will be the value of this
every time that callback is called.

		order: Either SourceMapConsumer.GENERATED_ORDER or
SourceMapConsumer.ORIGINAL_ORDER. Specifies whether you want to iterate over
the mappings sorted by the generated file’s line/column order or the
original’s source/line/column order, respectively. Defaults to
SourceMapConsumer.GENERATED_ORDER.

SourceMapGenerator

An instance of the SourceMapGenerator represents a source map which is being
built incrementally.

new SourceMapGenerator([startOfSourceMap])

You may pass an object with the following properties:

		file: The filename of the generated source that this source map is
associated with.

		sourceRoot: A root for all relative URLs in this source map.

SourceMapGenerator.fromSourceMap(sourceMapConsumer)

Creates a new SourceMapGenerator based on a SourceMapConsumer

		sourceMapConsumer The SourceMap.

SourceMapGenerator.prototype.addMapping(mapping)

Add a single mapping from original source line and column to the generated
source’s line and column for this source map being created. The mapping object
should have the following properties:

		generated: An object with the generated line and column positions.

		original: An object with the original line and column positions.

		source: The original source file (relative to the sourceRoot).

		name: An optional original token name for this mapping.

SourceMapGenerator.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for an original source file.

		sourceFile the URL of the original source file.

		sourceContent the content of the source file.

SourceMapGenerator.prototype.applySourceMap(sourceMapConsumer[, sourceFile[, sourceMapPath]])

Applies a SourceMap for a source file to the SourceMap.
Each mapping to the supplied source file is rewritten using the
supplied SourceMap. Note: The resolution for the resulting mappings
is the minimium of this map and the supplied map.

		sourceMapConsumer: The SourceMap to be applied.

		sourceFile: Optional. The filename of the source file.
If omitted, sourceMapConsumer.file will be used, if it exists.
Otherwise an error will be thrown.

		sourceMapPath: Optional. The dirname of the path to the SourceMap
to be applied. If relative, it is relative to the SourceMap.

This parameter is needed when the two SourceMaps aren’t in the same
directory, and the SourceMap to be applied contains relative source
paths. If so, those relative source paths need to be rewritten
relative to the SourceMap.

If omitted, it is assumed that both SourceMaps are in the same directory,
thus not needing any rewriting. (Supplying '.' has the same effect.)

SourceMapGenerator.prototype.toString()

Renders the source map being generated to a string.

SourceNode

SourceNodes provide a way to abstract over interpolating and/or concatenating
snippets of generated JavaScript source code, while maintaining the line and
column information associated between those snippets and the original source
code. This is useful as the final intermediate representation a compiler might
use before outputting the generated JS and source map.

new SourceNode([line, column, source[, chunk[, name]]])

		line: The original line number associated with this source node, or null if
it isn’t associated with an original line.

		column: The original column number associated with this source node, or null
if it isn’t associated with an original column.

		source: The original source’s filename; null if no filename is provided.

		chunk: Optional. Is immediately passed to SourceNode.prototype.add, see
below.

		name: Optional. The original identifier.

SourceNode.fromStringWithSourceMap(code, sourceMapConsumer[, relativePath])

Creates a SourceNode from generated code and a SourceMapConsumer.

		code: The generated code

		sourceMapConsumer The SourceMap for the generated code

		relativePath The optional path that relative sources in sourceMapConsumer
should be relative to.

SourceNode.prototype.add(chunk)

Add a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.prepend(chunk)

Prepend a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for a source file. This will be added to the
SourceMap in the sourcesContent field.

		sourceFile: The filename of the source file

		sourceContent: The content of the source file

SourceNode.prototype.walk(fn)

Walk over the tree of JS snippets in this node and its children. The walking
function is called once for each snippet of JS and is passed that snippet and
the its original associated source’s line/column location.

		fn: The traversal function.

SourceNode.prototype.walkSourceContents(fn)

Walk over the tree of SourceNodes. The walking function is called for each
source file content and is passed the filename and source content.

		fn: The traversal function.

SourceNode.prototype.join(sep)

Like Array.prototype.join except for SourceNodes. Inserts the separator
between each of this source node’s children.

		sep: The separator.

SourceNode.prototype.replaceRight(pattern, replacement)

Call String.prototype.replace on the very right-most source snippet. Useful
for trimming whitespace from the end of a source node, etc.

		pattern: The pattern to replace.

		replacement: The thing to replace the pattern with.

SourceNode.prototype.toString()

Return the string representation of this source node. Walks over the tree and
concatenates all the various snippets together to one string.

SourceNode.prototype.toStringWithSourceMap([startOfSourceMap])

Returns the string representation of this tree of source nodes, plus a
SourceMapGenerator which contains all the mappings between the generated and
original sources.

The arguments are the same as those to new SourceMapGenerator.

Tests

[image: Build Status] [https://travis-ci.org/mozilla/source-map]

Install NodeJS version 0.8.0 or greater, then run node test/run-tests.js.

To add new tests, create a new file named test/test-<your new test name>.js
and export your test functions with names that start with “test”, for example

exports["test doing the foo bar"] = function (assert, util) {
 ...
};

The new test will be located automatically when you run the suite.

The util argument is the test utility module located at test/source-map/util.

The assert argument is a cut down version of node’s assert module. You have
access to the following assertion functions:

		doesNotThrow

		equal

		ok

		strictEqual

		throws

(The reason for the restricted set of test functions is because we need the
tests to run inside Firefox’s test suite as well and so the assert module is
shimmed in that environment. See build/assert-shim.js.)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Connect

![NPM Version][npm-image] [https://npmjs.org/package/connect]
![NPM Downloads][downloads-image] [https://npmjs.org/package/connect]
![Build Status][travis-image] [https://travis-ci.org/senchalabs/connect]
![Test Coverage][coveralls-image] [https://coveralls.io/r/senchalabs/connect]
![Gittip][gittip-image] [https://www.gittip.com/dougwilson/]

Connect is an extensible HTTP server framework for node [http://nodejs.org], providing high performance “plugins” known as middleware.

Connect is bundled with over 20 commonly used middleware, including
a logger, session support, cookie parser, and more [http://senchalabs.github.com/connect]. Be sure to view the 2.x documentation [http://www.senchalabs.org/connect/].

var connect = require('connect')
 , http = require('http');

var app = connect()
 .use(connect.favicon('public/favicon.ico'))
 .use(connect.logger('dev'))
 .use(connect.static('public'))
 .use(connect.directory('public'))
 .use(connect.cookieParser())
 .use(connect.session({ secret: 'my secret here' }))
 .use(function(req, res){
 res.end('Hello from Connect!\n');
 });

http.createServer(app).listen(3000);

Middleware

		basicAuth [http://www.senchalabs.org/connect/basicAuth.html]

		bodyParser [http://www.senchalabs.org/connect/bodyParser.html]

		compress [http://www.senchalabs.org/connect/compress.html]

		cookieParser [http://www.senchalabs.org/connect/cookieParser.html]

		cookieSession [http://www.senchalabs.org/connect/cookieSession.html]

		csrf [http://www.senchalabs.org/connect/csrf.html]

		directory [http://www.senchalabs.org/connect/directory.html]

		errorHandler [http://www.senchalabs.org/connect/errorHandler.html]

		favicon [http://www.senchalabs.org/connect/favicon.html]

		json [http://www.senchalabs.org/connect/json.html]

		limit [http://www.senchalabs.org/connect/limit.html] - deprecated, do not use

		logger [http://www.senchalabs.org/connect/logger.html]

		methodOverride [http://www.senchalabs.org/connect/methodOverride.html] - deprecated, use method-override [https://www.npmjs.org/package/method-override] instead

		multipart [http://www.senchalabs.org/connect/multipart.html] - deprecated, use connect-multiparty [https://www.npmjs.org/package/connect-multiparty] instead

		urlencoded [http://www.senchalabs.org/connect/urlencoded.html]

		query [http://www.senchalabs.org/connect/query.html]

		responseTime [http://www.senchalabs.org/connect/responseTime.html]

		session [http://www.senchalabs.org/connect/session.html]

		static [http://www.senchalabs.org/connect/static.html]

		staticCache [http://www.senchalabs.org/connect/staticCache.html] - deprecated, do not use

		subdomains [http://www.senchalabs.org/connect/subdomains.html]

		vhost [http://www.senchalabs.org/connect/vhost.html]

Running Tests

first:

$ npm install -d

then:

$ npm test

Contributors

https://github.com/senchalabs/connect/graphs/contributors

Node Compatibility

Connect < 1.x is compatible with node 0.2.x

Connect 1.x is compatible with node 0.4.x

Connect 2.x is compatible with node 0.8.x

Connect 3.x is compatible with node 0.10.x

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/graceful-fs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

graceful-fs

graceful-fs functions as a drop-in replacement for the fs module,
making various improvements.

The improvements are meant to normalize behavior across different
platforms and environments, and to make filesystem access more
resilient to errors.

Improvements over fs module

graceful-fs:

		Queues up open and readdir calls, and retries them once
something closes if there is an EMFILE error from too many file
descriptors.

		fixes lchmod for Node versions prior to 0.6.2.

		implements fs.lutimes if possible. Otherwise it becomes a noop.

		ignores EINVAL and EPERM errors in chown, fchown or
lchown if the user isn’t root.

		makes lchmod and lchown become noops, if not available.

		retries reading a file if read results in EAGAIN error.

On Windows, it retries renaming a file for up to one second if EACCESS
or EPERM error occurs, likely because antivirus software has locked
the directory.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/morgan/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.3.2 / 2014-09-27

		Fix req.ip integration when immediate: false

1.3.1 / 2014-09-14

		Remove un-used bytes dependency

		deps: depd@0.4.5

1.3.0 / 2014-09-01

		Assert if format is not a function or string

1.2.3 / 2014-08-16

		deps: on-finished@2.1.0

1.2.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

1.2.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

1.2.0 / 2014-07-19

		Add :remote-user token

		Add combined log format

		Add common log format

		Add morgan(format, options) function signature

		Deprecate default format – use combined format instead

		Deprecate not providing a format

		Remove non-standard grey color from dev format

1.1.1 / 2014-05-20

		simplify method to get remote address

1.1.0 / 2014-05-18

		“dev” format will use same tokens as other formats

		:response-time token is now empty when immediate used

		:response-time token is now monotonic

		:response-time token has precision to 1 μs

		fix :status + immediate output in node.js 0.8

		improve buffer option to prevent indefinite event loop holding

		deps: bytes@1.0.0
		add negative support

1.0.1 / 2014-05-04

		Make buffer unique per morgan instance

		deps: bytes@0.3.0
		added terabyte support

1.0.0 / 2014-02-08

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.26.6 / 2014-10-15

		deps: compression@~1.1.2
		deps: accepts@~1.1.2

		deps: compressible@~2.0.1

		deps: csurf@~1.6.2
		bump http-errors

		fix cookie name when using cookie: true

		deps: errorhandler@~1.2.2
		deps: accepts@~1.1.2

2.26.5 / 2014-10-08

		Fix accepting non-object arguments to logger

		deps: serve-static@~1.6.4
		Fix redirect loop when index file serving disabled

2.26.4 / 2014-10-02

		deps: morgan@~1.3.2
		Fix req.ip integration when immediate: false

		deps: type-is@~1.5.2
		deps: mime-types@~2.0.2

2.26.3 / 2014-09-24

		deps: body-parser@~1.8.4
		fix content encoding to be case-insensitive

		deps: serve-favicon@~2.1.5
		deps: etag@~1.4.0

		deps: serve-static@~1.6.3
		deps: send@0.9.3

2.26.2 / 2014-09-19

		deps: body-parser@~1.8.3
		deps: qs@2.2.4

		deps: qs@2.2.4
		Fix issue with object keys starting with numbers truncated

2.26.1 / 2014-09-15

		deps: body-parser@~1.8.2
		deps: depd@0.4.5

		deps: depd@0.4.5

		deps: express-session@~1.8.2
		Use crc instead of buffer-crc32 for speed

		deps: depd@0.4.5

		deps: morgan@~1.3.1
		Remove un-used bytes dependency

		deps: depd@0.4.5

		deps: serve-favicon@~2.1.4
		Fix content headers being sent in 304 response

		deps: etag@~1.3.1

		deps: serve-static@~1.6.2
		deps: send@0.9.2

2.26.0 / 2014-09-08

		deps: body-parser@~1.8.1
		add parameterLimit option to urlencoded parser

		change urlencoded extended array limit to 100

		make empty-body-handling consistent between chunked requests

		respond with 415 when over parameterLimit in urlencoded

		deps: media-typer@0.3.0

		deps: qs@2.2.3

		deps: type-is@~1.5.1

		deps: compression@~1.1.0
		deps: accepts@~1.1.0

		deps: compressible@~2.0.0

		deps: debug@~2.0.0

		deps: connect-timeout@~1.3.0
		deps: debug@~2.0.0

		deps: cookie-parser@~1.3.3
		deps: cookie-signature@1.0.5

		deps: cookie-signature@1.0.5

		deps: csurf@~1.6.1
		add ignoreMethods option

		bump cookie-signature

		csrf-tokens -> csrf

		set code property on CSRF token errors

		deps: debug@~2.0.0

		deps: errorhandler@~1.2.0
		Display error using util.inspect if no other representation

		deps: accepts@~1.1.0

		deps: express-session@~1.8.1
		Do not resave already-saved session at end of request

		Prevent session prototype methods from being overwritten

		deps: cookie-signature@1.0.5

		deps: debug@~2.0.0

		deps: finalhandler@0.2.0
		Set X-Content-Type-Options: nosniff header

		deps: debug@~2.0.0

		deps: fresh@0.2.4

		deps: media-typer@0.3.0
		Throw error when parameter format invalid on parse

		deps: method-override@~2.2.0
		deps: debug@~2.0.0

		deps: morgan@~1.3.0
		Assert if format is not a function or string

		deps: qs@2.2.3
		Fix issue where first empty value in array is discarded

		deps: serve-favicon@~2.1.3
		Accept string for maxAge (converted by ms)

		Use etag to generate ETag header

		deps: fresh@0.2.4

		deps: serve-index@~1.2.1
		Add debug messages

		Resolve relative paths at middleware setup

		deps: accepts@~1.1.0

		deps: serve-static@~1.6.1
		Add lastModified option

		deps: send@0.9.1

		deps: type-is@~1.5.1
		fix hasbody to be true for content-length: 0

		deps: media-typer@0.3.0

		deps: mime-types@~2.0.1

		deps: vhost@~3.0.0

2.25.10 / 2014-09-04

		deps: serve-static@~1.5.4
		deps: send@0.8.5

2.25.9 / 2014-08-29

		deps: body-parser@~1.6.7
		deps: qs@2.2.2

		deps: qs@2.2.2

2.25.8 / 2014-08-27

		deps: body-parser@~1.6.6
		deps: qs@2.2.0

		deps: csurf@~1.4.1

		deps: qs@2.2.0
		Array parsing fix

		Performance improvements

2.25.7 / 2014-08-18

		deps: body-parser@~1.6.5
		deps: on-finished@2.1.0

		deps: express-session@~1.7.6
		Fix exception on res.end(null) calls

		deps: morgan@~1.2.3
		deps: on-finished@2.1.0

		deps: serve-static@~1.5.3
		deps: send@0.8.3

2.25.6 / 2014-08-14

		deps: body-parser@~1.6.4
		deps: qs@1.2.2

		deps: qs@1.2.2

		deps: serve-static@~1.5.2
		deps: send@0.8.2

2.25.5 / 2014-08-11

		Fix backwards compatibility in logger

2.25.4 / 2014-08-10

		Fix query middleware breaking with argument
		It never really took one in the first place

		deps: body-parser@~1.6.3
		deps: qs@1.2.1

		deps: compression@~1.0.11
		deps: on-headers@~1.0.0

		deps: parseurl@~1.3.0

		deps: connect-timeout@~1.2.2
		deps: on-headers@~1.0.0

		deps: express-session@~1.7.5
		Fix parsing original URL

		deps: on-headers@~1.0.0

		deps: parseurl@~1.3.0

		deps: method-override@~2.1.3

		deps: on-headers@~1.0.0

		deps: parseurl@~1.3.0

		deps: qs@1.2.1

		deps: response-time@~2.0.1
		deps: on-headers@~1.0.0

		deps: serve-index@~1.1.6
		Fix URL parsing

		deps: serve-static@~1.5.1
		Fix parsing of weird req.originalUrl values

		deps: parseurl@~1.3.0
= deps: utils-merge@1.0.0

2.25.3 / 2014-08-07

		deps: multiparty@3.3.2
		Fix potential double-callback

2.25.2 / 2014-08-07

		deps: body-parser@~1.6.2
		deps: qs@1.2.0

		deps: qs@1.2.0
		Fix parsing array of objects

2.25.1 / 2014-08-06

		deps: body-parser@~1.6.1
		deps: qs@1.1.0

		deps: qs@1.1.0
		Accept urlencoded square brackets

		Accept empty values in implicit array notation

2.25.0 / 2014-08-05

		deps: body-parser@~1.6.0
		deps: qs@1.0.2

		deps: compression@~1.0.10
		Fix upper-case Content-Type characters prevent compression

		deps: compressible@~1.1.1

		deps: csurf@~1.4.0
		Support changing req.session after csurf middleware

		Calling res.csrfToken() after req.session.destroy() will now work

		deps: express-session@~1.7.4
		Fix res.end patch to call correct upstream res.write

		Fix response end delay for non-chunked responses

		deps: qs@1.0.2
		Complete rewrite

		Limits array length to 20

		Limits object depth to 5

		Limits parameters to 1,000

		deps: serve-static@~1.5.0
		Add extensions option

		deps: send@0.8.1

2.24.3 / 2014-08-04

		deps: serve-index@~1.1.5
		Fix Content-Length calculation for multi-byte file names

		deps: accepts@~1.0.7

		deps: serve-static@~1.4.4
		Fix incorrect 403 on Windows and Node.js 0.11

		deps: send@0.7.4

2.24.2 / 2014-07-27

		deps: body-parser@~1.5.2

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

		deps: express-session@~1.7.2

		deps: morgan@~1.2.2

		deps: serve-static@~1.4.2

2.24.1 / 2014-07-26

		deps: body-parser@~1.5.1

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

		deps: express-session@~1.7.1

		deps: morgan@~1.2.1

		deps: serve-index@~1.1.4

		deps: serve-static@~1.4.1

2.24.0 / 2014-07-22

		deps: body-parser@~1.5.0
		deps: depd@0.4.2

		deps: iconv-lite@0.4.4

		deps: raw-body@1.3.0

		deps: type-is@~1.3.2

		deps: compression@~1.0.9
		Add debug messages

		deps: accepts@~1.0.7

		deps: connect-timeout@~1.2.1
		Accept string for time (converted by ms)

		deps: debug@1.0.4

		deps: debug@1.0.4

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		deps: express-session@~1.7.0
		Improve session-ending error handling

		deps: debug@1.0.4

		deps: depd@0.4.2

		deps: finalhandler@0.1.0
		Respond after request fully read

		deps: debug@1.0.4

		deps: method-override@~2.1.2
		deps: debug@1.0.4

		deps: parseurl@~1.2.0

		deps: morgan@~1.2.0
		Add :remote-user token

		Add combined log format

		Add common log format

		Remove non-standard grey color from dev format

		deps: multiparty@3.3.1

		deps: parseurl@~1.2.0
		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

		deps: serve-static@~1.4.0
		Add dotfiles option

		deps: parseurl@~1.2.0

		deps: send@0.7.0

2.23.0 / 2014-07-10

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

		deps: express-session@~1.6.4

		deps: method-override@~2.1.0
		add simple debug output

		deps: methods@1.1.0

		deps: parseurl@~1.1.3

		deps: parseurl@~1.1.3
		faster parsing of href-only URLs

		deps: serve-static@~1.3.1
		deps: parseurl@~1.1.3

2.22.0 / 2014-07-03

		deps: csurf@~1.3.0
		Fix cookie.signed option to actually sign cookie

		deps: express-session@~1.6.1
		Fix res.end patch to return correct value

		Fix res.end patch to handle multiple res.end calls

		Reject cookies with missing signatures

		deps: multiparty@3.3.0
		Always emit close after all parts ended

		Fix callback hang in node.js 0.8 on errors

		deps: serve-static@~1.3.0
		Accept string for maxAge (converted by ms)

		Add setHeaders option

		Include HTML link in redirect response

		deps: send@0.5.0

2.21.1 / 2014-06-26

		deps: cookie-parser@1.3.2
		deps: cookie-signature@1.0.4

		deps: cookie-signature@1.0.4
		fix for timing attacks

		deps: express-session@~1.5.2
		deps: cookie-signature@1.0.4

		deps: type-is@~1.3.2
		more mime types

2.21.0 / 2014-06-20

		deprecate connect(middleware) – use app.use(middleware) instead

		deprecate connect.createServer() – use connect() instead

		fix res.setHeader() patch to work with get -> append -> set pattern

		deps: compression@~1.0.8

		deps: errorhandler@~1.1.1

		deps: express-session@~1.5.0
		Deprecate integration with cookie-parser middleware

		Deprecate looking for secret in req.secret

		Directly read cookies; cookie-parser no longer required

		Directly set cookies; res.cookie no longer required

		Generate session IDs with uid-safe, faster and even less collisions

		deps: serve-index@~1.1.3

2.20.2 / 2014-06-19

		deps: body-parser@1.4.3
		deps: type-is@1.3.1

2.20.1 / 2014-06-19

		deps: type-is@1.3.1
		fix global variable leak

2.20.0 / 2014-06-19

		deprecate verify option to json – use body-parser npm module instead

		deprecate verify option to urlencoded – use body-parser npm module instead

		deprecate things with depd module

		use finalhandler for final response handling

		use media-typer to parse content-type for charset

		deps: body-parser@1.4.2
		check accepted charset in content-type (accepts utf-8)

		check accepted encoding in content-encoding (accepts identity)

		deprecate urlencoded() without provided extended option

		lazy-load urlencoded parsers

		support gzip and deflate bodies

		set inflate: false to turn off

		deps: raw-body@1.2.2

		deps: type-is@1.3.0

		Support all encodings from iconv-lite

		deps: connect-timeout@1.1.1
		deps: debug@1.0.2

		deps: cookie-parser@1.3.1
		export parsing functions

		req.cookies and req.signedCookies are now plain objects

		slightly faster parsing of many cookies

		deps: csurf@1.2.2

		deps: errorhandler@1.1.0
		Display error on console formatted like throw

		Escape HTML in stack trace

		Escape HTML in title

		Fix up edge cases with error sent in response

		Set X-Content-Type-Options: nosniff header

		Use accepts for negotiation

		deps: express-session@1.4.0
		Add genid option to generate custom session IDs

		Add saveUninitialized option to control saving uninitialized sessions

		Add unset option to control unsetting req.session

		Generate session IDs with rand-token by default; reduce collisions

		Integrate with express “trust proxy” by default

		deps: buffer-crc32@0.2.3

		deps: debug@1.0.2

		deps: multiparty@3.2.9

		deps: serve-index@1.1.2
		deps: batch@0.5.1

		deps: type-is@1.3.0
		improve type parsing

		deps: vhost@2.0.0
		Accept RegExp object for hostname

		Provide req.vhost object

		Support IPv6 literal in Host header

2.19.6 / 2014-06-11

		deps: body-parser@1.3.1
		deps: type-is@1.2.1

		deps: compression@1.0.7
		use vary module for better Vary behavior

		deps: accepts@1.0.3

		deps: compressible@1.1.0

		deps: debug@1.0.2

		deps: serve-index@1.1.1
		deps: accepts@1.0.3

		deps: serve-static@1.2.3
		Do not throw un-catchable error on file open race condition

		deps: send@0.4.3

2.19.5 / 2014-06-09

		deps: csurf@1.2.1
		refactor to use csrf-tokens@~1.0.2

		deps: debug@1.0.1

		deps: serve-static@1.2.2
		fix “event emitter leak” warnings

		deps: send@0.4.2

		deps: type-is@1.2.1
		Switch dependency from mime to mime-types@1.0.0

2.19.4 / 2014-06-05

		deps: errorhandler@1.0.2
		Pass on errors from reading error files

		deps: method-override@2.0.2
		use vary module for better Vary behavior

		deps: serve-favicon@2.0.1
		Reduce byte size of ETag header

2.19.3 / 2014-06-03

		deps: compression@1.0.6
		fix listeners for delayed stream creation

		fix regression for certain stream.pipe(res) situations

		fix regression when negotiation fails

2.19.2 / 2014-06-03

		deps: compression@1.0.4
		fix adding Vary when value stored as array

		fix back-pressure behavior

		fix length check for res.end

2.19.1 / 2014-06-02

		fix deprecated utils.escape

2.19.0 / 2014-06-02

		deprecate methodOverride() – use method-override npm module instead

		deps: body-parser@1.3.0
		add extended option to urlencoded parser

		deps: method-override@2.0.1
		set Vary header

		deps: methods@1.0.1

		deps: multiparty@3.2.8

		deps: response-time@2.0.0
		add digits argument

		do not override existing X-Response-Time header

		timer not subject to clock drift

		timer resolution down to nanoseconds

		deps: serve-static@1.2.1
		send max-age in Cache-Control in correct format

		use escape-html for escaping

		deps: send@0.4.1

2.18.0 / 2014-05-29

		deps: compression@1.0.3

		deps: serve-index@1.1.0
		Fix content negotiation when no Accept header

		Properly support all HTTP methods

		Support vanilla node.js http servers

		Treat ENAMETOOLONG as code 414

		Use accepts for negotiation

		deps: serve-static@1.2.0
		Calculate ETag with md5 for reduced collisions

		Fix wrong behavior when index file matches directory

		Ignore stream errors after request ends

		Skip directories in index file search

		deps: send@0.4.0

2.17.3 / 2014-05-27

		deps: express-session@1.2.1
		Fix resave such that resave: true works

2.17.2 / 2014-05-27

		deps: body-parser@1.2.2
		invoke next(err) after request fully read

		deps: raw-body@1.1.6

		deps: method-override@1.0.2
		Handle req.body key referencing array or object

		Handle multiple HTTP headers

2.17.1 / 2014-05-21

		fix res.charset appending charset when content-type has one

2.17.0 / 2014-05-20

		deps: express-session@1.2.0
		Add resave option to control saving unmodified sessions

		deps: morgan@1.1.1
		“dev” format will use same tokens as other formats

		:response-time token is now empty when immediate used

		:response-time token is now monotonic

		:response-time token has precision to 1 μs

		fix :status + immediate output in node.js 0.8

		improve buffer option to prevent indefinite event loop holding

		simplify method to get remote address

		deps: bytes@1.0.0

		deps: serve-index@1.0.3
		Fix error from non-statable files in HTML view

2.16.2 / 2014-05-18

		fix edge-case in res.appendHeader that would append in wrong order

		deps: method-override@1.0.1

2.16.1 / 2014-05-17

		remove usages of res.headerSent from core

2.16.0 / 2014-05-17

		deprecate res.headerSent – use res.headersSent

		deprecate res.on("header") – use on-headers module instead

		fix connect.version to reflect the actual version

		json: use body-parser
		add type option

		fix repeated limit parsing with every request

		improve parser speed

		urlencoded: use body-parser
		add type option

		fix repeated limit parsing with every request

		dep: bytes@1.0.0
		add negative support

		dep: cookie-parser@1.1.0
		deps: cookie@0.1.2

		dep: csurf@1.2.0
		add support for double-submit cookie

		dep: express-session@1.1.0
		Add name option; replacement for key option

		Use setImmediate in MemoryStore for node.js >= 0.10

2.15.0 / 2014-05-04

		Add simple res.cookie support

		Add res.appendHeader

		Call error stack even when response has been sent

		Patch res.headerSent to return Boolean

		Patch res.headersSent for node.js 0.8

		Prevent default 404 handler after response sent

		dep: compression@1.0.2
		support headers given to res.writeHead

		deps: bytes@0.3.0

		deps: negotiator@0.4.3

		dep: connect-timeout@1.1.0
		Add req.timedout property

		Add respond option to constructor

		Clear timer on socket destroy

		deps: debug@0.8.1

		dep: debug@^0.8.0
		add enable() method

		change from stderr to stdout

		dep: errorhandler@1.0.1
		Clean up error CSS

		Do not respond after headers sent

		dep: express-session@1.0.4
		Remove import of setImmediate

		Use res.cookie() instead of res.setHeader()

		deps: cookie@0.1.2

		deps: debug@0.8.1

		dep: morgan@1.0.1
		Make buffer unique per morgan instance

		deps: bytes@0.3.0

		dep: serve-favicon@2.0.0
		Accept Buffer of icon as first argument

		Non-GET and HEAD requests are denied

		Send valid max-age value

		Support conditional requests

		Support max-age=0

		Support OPTIONS method

		Throw if path argument is directory

		dep: serve-index@1.0.2
		Add stylesheet option

		deps: negotiator@0.4.3

2.14.5 / 2014-04-24

		dep: raw-body@1.1.4
		allow true as an option

		deps: bytes@0.3.0

		dep: serve-static@1.1.0
		Accept options directly to send module

		deps: send@0.3.0

2.14.4 / 2014-04-07

		dep: bytes@0.3.0
		added terabyte support

		dep: csurf@1.1.0
		add constant-time string compare

		dep: serve-static@1.0.4
		Resolve relative paths at middleware setup

		Use parseurl to parse the URL from request

		fix node.js 0.8 compatibility with memory session

2.14.3 / 2014-03-18

		dep: static-favicon@1.0.2
		Fixed content of default icon

2.14.2 / 2014-03-11

		dep: static-favicon@1.0.1
		Fixed path to default icon

2.14.1 / 2014-03-06

		dep: fresh@0.2.2
		no real changes

		dep: serve-index@1.0.1
		deps: negotiator@0.4.2

		dep: serve-static@1.0.2
		deps: send@0.2.0

2.14.0 / 2014-03-05

		basicAuth: use basic-auth-connect

		cookieParser: use cookie-parser

		compress: use compression

		csrf: use csurf

		dep: cookie-signature@1.0.3

		directory: use serve-index

		errorHandler: use errorhandler

		favicon: use static-favicon

		logger: use morgan

		methodOverride: use method-override

		responseTime: use response-time

		session: use express-session

		static: use serve-static

		timeout: use connect-timeout

		vhost: use vhost

2.13.1 / 2014-03-05

		cookieSession: compare full value rather than crc32

		deps: raw-body@1.1.3

2.13.0 / 2014-02-14

		fix typo in memory store warning #974 @rvagg

		compress: use compressible

		directory: add template option #990 @gottaloveit @Earl-Brown

		csrf: prevent deprecated warning with old sessions

2.12.0 / 2013-12-10

		bump qs

		directory: sort folders before files

		directory: add folder icons

		directory: de-duplicate icons, details/mobile views #968 @simov

		errorHandler: end default 404 handler with a newline #972 @rlidwka

		session: remove long cookie expire check #870 @undoZen

2.11.2 / 2013-12-01

		bump raw-body

2.11.1 / 2013-11-27

		bump raw-body

		errorHandler: use res.setHeader() instead of res.writeHead() #949 @lo1tuma

2.11.0 / 2013-10-29

		update bytes

		update uid2

		update negotiator

		sessions: add rolling session option #944 @ilmeo

		sessions: property set cookies when given FQDN

		cookieSessions: properly set cookies when given FQDN #948 @bmancini55

		proto: fix FQDN mounting when multiple handlers #945 @bmancini55

2.10.1 / 2013-10-23

		fixed; fixed a bug with static middleware at root and trailing slashes #942 (@dougwilson)

2.10.0 / 2013-10-22

		fixed: set headers written by writeHead before emitting ‘header’

		fixed: mounted path should ignore querystrings on FQDNs #940 (@dougwilson)

		fixed: parsing protocol-relative URLs with @ as pathnames #938 (@dougwilson)

		fixed: fix static directory redirect for mount’s root #937 (@dougwilson)

		fixed: setting set-cookie header when mixing arrays and strings #893 (@anuj123)

		bodyParser: optional verify function for urlencoded and json parsers for signing request bodies

		compress: compress checks content-length to check threshold

		compress: expose res.flush() for flushing responses

		cookieParser: pass options into node-cookie #803 (@cauldrath)

		errorHandler: replace \ns with
s in error handler

2.9.2 / 2013-10-18

		warn about multiparty and limit middleware deprecation for v3

		fix fully qualified domain name mounting. #920 (@dougwilson)

		directory: Fix potential security issue with serving files outside the root. #929 (@dougwilson)

		logger: store IP at beginning in case socket prematurely closes #930 (@dougwilson)

2.9.1 / 2013-10-15

		update multiparty

		compress: Set vary header only if Content-Type passes filter #904

		directory: Fix directory middleware URI escaping #917 (@dougwilson)

		directory: Fix directory seperators for Windows #914 (@dougwilson)

		directory: Keep query string intact during directory redirect #913 (@dougwilson)

		directory: Fix paths in links #730 (@JacksonTian)

		errorHandler: Don’t escape text/plain as HTML #875 (@johan)

		logger: Write ‘0’ instead of ‘-‘ when response time is zero #910 (@dougwilson)

		logger: Log even when connections are aborted #760 (@dylanahsmith)

		methodOverride: Check req.body is an object #907 (@kbjr)

		multipart: Add .type back to file parts for backwards compatibility #912 (@dougwilson)

		multipart: Allow passing options to the Multiparty constructor #902 (@niftylettuce)

2.9.0 / 2013-09-07

		multipart: add docs regarding tmpfiles

		multipart: add .name back to file parts

		multipart: use multiparty instead of formidable

2.8.8 / 2013-09-02

		csrf: change to math.random() salt and remove csrfToken() callback

2.8.7 / 2013-08-28

		csrf: prevent salt generation on every request, and add async req.csrfToken(fn)

2.8.6 / 2013-08-28

		csrf: refactor to use HMAC tokens (BREACH attack)

		compress: add compression of SVG and common font files by default.

2.8.5 / 2013-08-11

		add: compress Dart source files by default

		update fresh

2.8.4 / 2013-07-08

		update send

2.8.3 / 2013-07-04

		add a name back to static middleware (“staticMiddleware”)

		fix .hasBody() utility to require transfer-encoding or content-length

2.8.2 / 2013-07-03

		update send

		update cookie dep.

		add better debug() for middleware

		add whitelisting of supported methods to methodOverride()

2.8.1 / 2013-06-27

		fix: escape req.method in 404 response

2.8.0 / 2013-06-26

		add threshold option to compress() to prevent compression of small responses

		add support for vendor JSON mime types in json()

		add X-Forwarded-Proto initial https proxy support

		change static redirect to 303

		change octal escape sequences for strict mode

		change: replace utils.uid() with uid2 lib

		remove other “static” function name. Fixes #794

		fix: hasBody() should return false if Content-Length: 0

2.7.11 / 2013-06-02

		update send

2.7.10 / 2013-05-21

		update qs

		update formidable

		fix: write/end to noop() when request aborted

2.7.9 / 2013-05-07

		update qs

		drop support for node < v0.8

2.7.8 / 2013-05-03

		update qs

2.7.7 / 2013-04-29

		update qs dependency

		remove “static” function name. Closes #794

		update node-formidable

		update buffer-crc32

2.7.6 / 2013-04-15

		revert cookie signature which was creating session race conditions

2.7.5 / 2013-04-12

		update cookie-signature

		limit: do not consume request in node 0.10.x

2.7.4 / 2013-04-01

		session: add long expires check and prevent excess set-cookie

		session: add console.error() of session#save() errors

2.7.3 / 2013-02-19

		add name to compress middleware

		add appending Accept-Encoding to Vary when set but missing

		add tests for csrf middleware

		add ‘next’ support for connect() server handler

		change utils.uid() to return url-safe chars. Closes #753

		fix treating ‘.’ as a regexp in vhost()

		fix duplicate bytes dep in package.json. Closes #743

		fix #733 - parse x-forwarded-proto in a more generally compatibly way

		revert “add support for next(status[, msg])”; makes composition hard

2.7.2 / 2013-01-04

		add support for next(status[, msg]) back

		add utf-8 meta tag to support foreign characters in filenames/directories

		change timeout() 408 to 503

		replace ‘node-crc’ with ‘buffer-crc32’, fixes licensing

		fix directory.html IE support

2.7.1 / 2012-12-05

		add directory() tests

		add support for bodyParser to ignore Content-Type if no body is present (jquery primarily does this poorely)

		fix errorHandler signature

2.7.0 / 2012-11-13

		add support for leading JSON whitespace

		add logging of req.ip when present

		add basicAuth support for :-delimited string

		update cookie module. Closes #688

2.6.2 / 2012-11-01

		add debug() for disconnected session store

		fix session regeneration bug. Closes #681

2.6.1 / 2012-10-25

		add passing of connect.timeout() errors to next()

		replace signature utils with cookie-signature module

2.6.0 / 2012-10-09

		add defer option to multipart() [Blake Miner]

		fix mount path case sensitivity. Closes #663

		fix default of ascii encoding from logger(), now utf8. Closes #293

2.5.0 / 2012-09-27

		add err.status = 400 to multipart() errors

		add double-encoding protection to compress(). Closes #659

		add graceful handling cookie parsing errors [shtylman]

		fix typo X-Response-time to X-Response-Time

2.4.6 / 2012-09-18

		update qs

2.4.5 / 2012-09-03

		add session store “connect” / “disconnect” support [louischatriot]

		fix :url log token

2.4.4 / 2012-08-21

		fix static() pause regression from “send” integration

2.4.3 / 2012-08-07

		fix .write() encoding for zlib inconstancy. Closes #561

2.4.2 / 2012-07-25

		remove limit default from urlencoded()

		remove limit default from json()

		remove limit default from multipart()

		fix cookieSession() clear cookie path / domain bug. Closes #636

2.4.1 / 2012-07-24

		fix options mutation in static()

2.4.0 / 2012-07-23

		add connect.timeout()

		add GET / HEAD check to directory(). Closes #634

		add “pause” util dep

		update send dep for normalization bug

2.3.9 / 2012-07-16

		add more descriptive invalid json error message

		update send dep for root normalization regression

		fix staticCache fresh dep

2.3.8 / 2012-07-12

		fix connect.static() 404 regression, pass next(). Closes #629

2.3.7 / 2012-07-05

		add json() utf-8 illustration test. Closes #621

		add “send” dependency

		change connect.static() internals to use “send”

		fix session() req.session generation with pathname mismatch

		fix cookieSession() req.session generation with pathname mismatch

		fix mime export. Closes #618

2.3.6 / 2012-07-03

		Fixed cookieSession() with cookieParser() secret regression. Closes #602

		Fixed set-cookie header fields on cookie.path mismatch. Closes #615

2.3.5 / 2012-06-28

		Remove logger() mount check

		Fixed staticCache() dont cache responses with set-cookie. Closes #607

		Fixed staticCache() when Cookie is present

2.3.4 / 2012-06-22

		Added err.buf to urlencoded() and json()

		Update cookie to 0.0.4. Closes #604

		Fixed: only send 304 if original response in 2xx or 304 [timkuijsten]

2.3.3 / 2012-06-11

		Added ETags back to static() [timkuijsten]

		Replaced utils.parseRange() with range-parser module

		Replaced utils.parseBytes() with bytes module

		Replaced utils.modified() with fresh module

		Fixed cookieSession() regression with invalid cookie signing [shtylman]

2.3.2 / 2012-06-08

		expose mime module

		Update crc dep (which bundled nodeunit)

2.3.1 / 2012-06-06

		Added secret option to cookieSession middleware [shtylman]

		Added secret option to session middleware [shtylman]

		Added req.remoteUser back to basicAuth() as alias of req.user

		Performance: improve signed cookie parsing

		Update cookie dependency [shtylman]

2.3.0 / 2012-05-20

		Added limit option to json()

		Added limit option to urlencoded()

		Added limit option to multipart()

		Fixed: remove socket error event listener on callback

		Fixed ENOTDIR error on static middleware

2.2.2 / 2012-05-07

		Added support to csrf middle for pre-flight CORS requests

		Updated engines to allow newer version of node

		Removed duplicate repo prop. Closes #560

2.2.1 / 2012-04-28

		Fixed static() redirect when mounted. Closes #554

2.2.0 / 2012-04-25

		Added make benchmark

		Perf: memoize url parsing (~20% increase)

		Fixed connect(fn, fn2, ...). Closes #549

2.1.3 / 2012-04-20

		Added optional json() reviver function to be passed to JSON.parse [jed]

		Fixed: emit drain in compress middleware [nsabovic]

2.1.2 / 2012-04-11

		Fixed cookieParser() req.cookies regression

2.1.1 / 2012-04-11

		Fixed session() browser-session length cookies & examples

		Fixed: make query() “self-aware” [jed]

2.1.0 / 2012-04-05

		Added debug() calls to .use() (DEBUG=connect:displatcher)

		Added urlencoded() support for GET

		Added json() support for GET. Closes #497

		Added strict option to json()

		Changed: session() only set-cookie when modified

		Removed Session#lastAccess property. Closes #399

2.0.3 / 2012-03-20

		Added: cookieSession() only sets cookie on change. Closes #442

		Added connect:dispatcher debug() probes

2.0.2 / 2012-03-04

		Added test for ENAMETOOLONG now that node is fixed

		Fixed static() index “/” check on windows. Closes #498

		Fixed Content-Range behaviour to match RFC2616 [matthiasdg / visionmedia]

2.0.1 / 2012-02-29

		Added test coverage for vhost() middleware

		Changed cookieParser() signed cookie support to use SHA-2 [senotrusov]

		Fixed static() Range: respond with 416 when unsatisfiable

		Fixed vhost() middleware. Closes #494

2.0.0 / 2011-10-05

		Added cookieSession() middleware for cookie-only sessions

		Added compress() middleware for gzip / deflate support

		Added session() “proxy” setting to trust X-Forwarded-Proto

		Added json() middleware to parse “application/json”

		Added urlencoded() middleware to parse “application/x-www-form-urlencoded”

		Added multipart() middleware to parse “multipart/form-data”

		Added cookieParser(secret) support so anything using this middleware may access signed cookies

		Added signed cookie support to cookieParser()

		Added support for JSON-serialized cookies to cookieParser()

		Added err.status support in Connect’s default end-point

		Added X-Cache MISS / HIT to staticCache()

		Added public res.headerSent checking nodes res._headerSent until node does

		Changed basicAuth() req.remoteUser to req.user

		Changed: default session() to a browser-session cookie. Closes #475

		Changed: no longer lowercase cookie names

		Changed bodyParser() to use json(), urlencoded(), and multipart()

		Changed: errorHandler() is now a development-only middleware

		Changed middleware to next() errors when possible so applications can unify logging / handling

		Removed http[s].Server inheritance, now just a function, making it easy to have an app providing both http and https

		Removed .createServer() (use connect())

		Removed secret option from session(), use cookieParser(secret)

		Removed connect.session.ignore array support

		Removed router() middleware. Closes #262

		Fixed: set-cookie only once for browser-session cookies

		Fixed FQDN support. dont add leading “/”

		Fixed 404 XSS attack vector. Closes #473

		Fixed HEAD support for 404s and 500s generated by Connect’s end-point

1.8.5 / 2011-12-22

		Fixed: actually allow empty body for json

1.8.4 / 2011-12-22

		Changed: allow empty body for json/urlencoded requests. Backport for #443

1.8.3 / 2011-12-16

		Fixed static() index.html support on windows

1.8.2 / 2011-12-03

		Fixed potential security issue, store files in req.files. Closes #431 [reported by dobesv]

1.8.1 / 2011-11-21

		Added nesting support for multipart/form-data [jackyz]

1.8.0 / 2011-11-17

		Added multipart/form-data support to bodyParser() using formidable

1.7.3 / 2011-11-11

		Fixed req.body, always default to {}

		Fixed HEAD support for 404s and 500s

1.7.2 / 2011-10-24

		“node”: “>= 0.4.1 < 0.7.0”

		Added static() redirect option. Closes #398

		Changed limit(): respond with 413 when content-length exceeds the limit

		Removed socket error listener in static(). Closes #389

		Fixed staticCache() Age header field

		Fixed race condition causing errors reported in #329.

1.7.1 / 2011-09-12

		Added: make Store inherit from EventEmitter

		Added session Store#load(sess, fn) to fetch a Session instance

		Added backpressure support to staticCache()

		Changed res.socket.destroy() to req.socket.destroy()

1.7.0 / 2011-08-31

		Added staticCache() middleware, a memory cache for static()

		Added public res.headerSent checking nodes res._headerSent (remove when node adds this)

		Changed: ignore error handling middleware when header is sent

		Changed: dispatcher errors after header is sent destroy the sock

1.6.4 / 2011-08-26

		Revert “Added double-next reporting”

1.6.3 / 2011-08-26

		Added double-next() reporting

		Added immediate option to logger(). Closes #321

		Dependency qs >= 0.3.1

1.6.2 / 2011-08-11

		Fixed connect.static() null byte vulnerability

		Fixed connect.directory() null byte vulnerability

		Changed: 301 redirect in static() to postfix “/” on directory. Closes #289

1.6.1 / 2011-08-03

		Added: allow retval == null from logger callback to ignore line

		Added getOnly option to connect.static.send()

		Added response “header” event allowing augmentation

		Added X-CSRF-Token header field check

		Changed dep qs >= 0.3.0

		Changed: persist csrf token. Closes #322

		Changed: sort directory middleware files alphabetically

1.6.0 / 2011-07-10

		Added :response-time to “dev” logger format

		Added simple csrf() middleware. Closes #315

		Fixed res._headers logger regression. Closes #318

		Removed support for multiple middleware being passed to .use()

1.5.2 / 2011-07-06

		Added filter function option to directory() [David Rio Deiros]

		Changed: re-write of the logger() middleware, with extensible tokens and formats

		Changed: static.send() ”..” in path without root considered malicious

		Fixed quotes in docs. Closes #312

		Fixed urls when mounting directory(), use originalUrl [Daniel Dickison]

1.5.1 / 2011-06-20

		Added malicious path check to directory() middleware

		Added utils.forbidden(res)

		Added connect.query() middleware

1.5.0 / 2011-06-20

		Added connect.directory() middleware for serving directory listings

1.4.6 / 2011-06-18

		Fixed connect.static() root with ..

		Fixed connect.static() EBADF

1.4.5 / 2011-06-17

		Fixed EBADF in connect.static(). Closes #297

1.4.4 / 2011-06-16

		Changed connect.static() to check resolved dirname. Closes #294

1.4.3 / 2011-06-06

		Fixed fd leak in connect.static() when the socket is closed

		Fixed; bodyParser() ignoring GET/HEAD. Closes #285

1.4.2 / 2011-05-27

		Changed to devDependencies

		Fixed stream creation on static() HEAD request. [Andreas Lind Petersen]

		Fixed Win32 support for static()

		Fixed monkey-patch issue. Closes #261

1.4.1 / 2011-05-08

		Added “hidden” option to static(). ignores hidden files by default. Closes * Added; expose connect.static.mime.define(). Closes #251

		Fixed errorHandler middleware for missing stack traces. [aseemk]
#274

1.4.0 / 2011-04-25

		Added route-middleware next('route') support to jump passed the route itself

		Added Content-Length support to limit()

		Added route-specific middleware support (used to be in express)

		Changed; refactored duplicate session logic

		Changed; prevent redefining store.generate per request

		Fixed; static() does not set Content-Type when explicitly set [nateps]

		Fixed escape errorHandler() {error} contents

		NOTE: router will be removed in 2.0

1.3.0 / 2011-04-06

		Added router.remove(path[, method]) to remove a route

1.2.3 / 2011-04-05

		Fixed basicAuth realm issue when passing strings. Closes #253

1.2.2 / 2011-04-05

		Added basicAuth(username, password) support

		Added errorHandler.title defaulting to “Connect”

		Changed errorHandler css

1.2.1 / 2011-03-30

		Fixed logger() https remoteAddress logging [Alexander Simmerl]

1.2.0 / 2011-03-30

		Added router.lookup(path[, method])

		Added router.match(url[, method])

		Added basicAuth async support. Closes #223

1.1.5 / 2011-03-27

		Added; allow logger() callback function to return an empty string to ignore logging

		Fixed; utilizing mime.charsets.lookup() for static(). Closes 245

1.1.4 / 2011-03-23

		Added logger() support for format function

		Fixed logger() to support mess of writeHead()/progressive api for node 0.4.x

1.1.3 / 2011-03-21

		Changed; limit() now calls req.destroy()

1.1.2 / 2011-03-21

		Added request “limit” event to limit() middleware

		Changed; limit() middleware will next(err) on failure

1.1.1 / 2011-03-18

		Fixed session middleware for HTTPS. Closes #241 [reported by mt502]

1.1.0 / 2011-03-17

		Added Session#reload(fn)

1.0.6 / 2011-03-09

		Fixed res.setHeader() patch, preserve casing

1.0.5 / 2011-03-09

		Fixed; logger() using req.originalUrl instead of req.url

1.0.4 / 2011-03-09

		Added res.charset

		Added conditional sessions example

		Added support for session.ignore to be replaced. Closes #227

		Fixed Cache-Control delimiters. Closes #228

1.0.3 / 2011-03-03

		Fixed; static.send() invokes callback with connection error

1.0.2 / 2011-03-02

		Fixed exported connect function

		Fixed package.json; node “>= 0.4.1 < 0.5.0”

1.0.1 / 2011-03-02

		Added Session#save(fn). Closes #213

		Added callback support to connect.static.send() for express

		Added connect.static.send() “path” option

		Fixed content-type in static() for index.html

1.0.0 / 2011-03-01

		Added stack, message, and dump errorHandler option aliases

		Added req.originalMethod to methodOverride

		Added favicon() maxAge option support

		Added connect() alternative to connect.createServer()

		Added new documentation [http://senchalabs.github.com/connect]

		Added Range support to static()

		Added HTTPS support

		Rewrote session middleware. The session API now allows for
session-specific cookies, so you may alter each individually.
Click to view the new session api [http://senchalabs.github.com/connect/middleware-session.html].

		Added middleware self-awareness. This helps prevent
middleware breakage when used within mounted servers.
For example cookieParser() will not parse cookies more
than once even when within a mounted server.

		Added new examples in the ./examples directory

		Added limit() [http://senchalabs.github.com/connect/middleware-limit.html] middleware

		Added profiler() [http://senchalabs.github.com/connect/middleware-profiler.html] middleware

		Added responseTime() [http://senchalabs.github.com/connect/middleware-responseTime.html] middleware

		Renamed staticProvider to static

		Renamed bodyDecoder to bodyParser

		Renamed cookieDecoder to cookieParser

		Fixed ETag quotes. [reported by papandreou]

		Fixed If-None-Match comma-delimited ETag support. [reported by papandreou]

		Fixed; only set req.originalUrl once. Closes #124

		Fixed symlink support for static(). Closes #123

0.5.10 / 2011-02-14

		Fixed SID space issue. Closes #196

		Fixed; proxy res.end() to commit session data

		Fixed directory traversal attack in staticProvider. Closes #198

0.5.9 / 2011-02-09

		qs >= 0.0.4

0.5.8 / 2011-02-04

		Added qs dependency

		Fixed router race-condition causing possible failure
when next()ing to one or more routes with parallel
requests

0.5.7 / 2011-02-01

		Added onvhost() call so Express (and others) can know when they are

		Revert “Added stylus support” (use the middleware which ships with stylus)

		Removed custom Server#listen() to allow regular http.Server#listen() args to work properly

		Fixed long standing router issue (#83) that causes ‘.’ to be disallowed within named placeholders in routes [Andreas Lind Petersen]

		Fixed utils.uid() length error [Jxck]
mounted

0.5.6 / 2011-01-23

		Added stylus support to compiler

		favicon.js cleanup

		compiler.js cleanup

		bodyDecoder.js cleanup

0.5.5 / 2011-01-13

		Changed; using sha256 HMAC instead of md5. [Paul Querna]

		Changed; generated a longer random UID, without time influence. [Paul Querna]

		Fixed; session middleware throws when secret is not present. [Paul Querna]

0.5.4 / 2011-01-07

		Added; throw when router path or callback is missing

		Fixed; next(err) on cookie parse exception instead of ignoring

		Revert “Added utils.pathname(), memoized url.parse(str).pathname”

0.5.3 / 2011-01-05

		Added docs/api.html

		Added utils.pathname(), memoized url.parse(str).pathname

		Fixed session.id issue. Closes #183

		Changed; Defaulting staticProvider maxAge to 0 not 1 year. Closes #179

		Removed bad outdated docs, we need something new / automated eventually

0.5.2 / 2010-12-28

		Added default OPTIONS support to router middleware

0.5.1 / 2010-12-28

		Added req.session.id mirroring req.sessionID

		Refactored router, exposing connect.router.methods

		Exclude non-lib files from npm

		Removed imposed headers X-Powered-By, Server, etc

0.5.0 / 2010-12-06

		Added ./index.js

		Added route segment precondition support and example

		Added named capture group support to router

0.4.0 / 2010-11-29

		Added basicAuth middleware

		Added more HTTP methods to the router middleware

0.3.0 / 2010-07-21

		Added staticGzip middleware

		Added connect.utils to expose utils

		Added connect.session.Session

		Added connect.session.Store

		Added connect.session.MemoryStore

		Added connect.middleware to expose the middleware getters

		Added buffer option to logger for performance increase

		Added favicon middleware for serving your own favicon or the connect default

		Added option support to staticProvider, can now pass root and lifetime.

		Added; mounted Server instances now have the route property exposed for reflection

		Added support for callback as first arg to Server#use()

		Added support for next(true) in router to bypass match attempts

		Added Server#listen() host support

		Added Server#route when Server#use() is called with a route on a Server instance

		Added methodOverride X-HTTP-Method-Override support

		Refactored session internals, adds secret option

		Renamed lifetime option to maxAge in staticProvider

		Removed connect(1), it is now spark(1) [http://github.com/senchalabs/spark]

		Removed connect(1) dependency on examples, they can all now run with node(1)

		Remove a typo that was leaking a global.

		Removed Object.prototype forEach() and map() methods

		Removed a few utils not used

		Removed connect.createApp()

		Removed res.simpleBody()

		Removed format middleware

		Removed flash middleware

		Removed redirect middleware

		Removed jsonrpc middleware, use visionmedia/connect-jsonrpc [http://github.com/visionmedia/connect-jsonrpc]

		Removed pubsub middleware

		Removed need for params.{captures,splat} in router middleware, params is an array

		Changed; compiler no longer 404s

		Changed; router signature now matches connect middleware signature

		Fixed a require in session for default MemoryStore

		Fixed nasty request body bug in router. Closes #54

		Fixed less support in compiler

		Fixed bug preventing proper bubbling of exceptions in mounted servers

		Fixed bug in Server#use() preventing Server instances as the first arg

		Fixed ENOENT special case, is now treated as any other exception

		Fixed spark env support

0.2.1 / 2010-07-09

		Added support for router next() to continue calling matched routes

		Added mime type for cache.manifest files.

		Changed compiler middleware to use async require

		Changed session api, stores now only require #get(), and #set()

		Fixed cacheManifest by adding utils.find() back

0.2.0 / 2010-07-01

		Added calls to Session() casts the given object as a Session instance

		Added passing of next() to router callbacks. Closes #46

		Changed; MemoryStore#destroy() removes req.session

		Changed res.redirect("back") to default to “/” when Referr?er is not present

		Fixed staticProvider urlencoded paths issue. Closes #47

		Fixed staticProvider middleware responding to GET requests

		Fixed jsonrpc middleware Accept header check. Closes #43

		Fixed logger format option

		Fixed typo in compiler middleware preventing the dest option from working

0.1.0 / 2010-06-25

		Revamped the api, view the Connect documentation [http://extjs.github.com/Connect/index.html#Middleware-Authoring] for more info (hover on the right for menu)

		Added extended api docs [http://extjs.github.com/Connect/api.html]

		Added docs for several more middleware layers

		Added connect.Server#use()

		Added compiler middleware which provides arbitrary static compilation

		Added req.originalUrl

		Removed blog example

		Removed sass middleware (use compiler)

		Removed less middleware (use compiler)

		Renamed middleware to be camelcase, body-decoder is now bodyDecoder etc.

		Fixed req.url mutation bug when matching connect.Server#use() routes

		Fixed mkdir -p implementation used in bin/connect. Closes #39

		Fixed bug in bodyDecoder throwing exceptions on request empty bodies

		make install installing lib to $LIB_PREFIX aka $HOME/.node_libraries

0.0.6 / 2010-06-22

		Added static middleware usage example

		Added support for regular expressions as paths for router

		Added util.merge()

		Increased performance of static by ~ 200 rps

		Renamed the rest middleware to router

		Changed rest api to accept a callback function

		Removed router middleware

		Removed proto.js, only Object#forEach() remains

0.0.5 / 2010-06-21

		Added Server#use() which contains the Layer normalization logic

		Added documentation for several middleware

		Added several new examples

		Added less middleware

		Added repl middleware

		Added vhost middleware

		Added flash middleware

		Added cookie middleware

		Added session middleware

		Added utils.htmlEscape()

		Added utils.base64Decode()

		Added utils.base64Encode()

		Added utils.uid()

		Added bin/connect app path and –config path support for .js suffix, although optional. Closes #26

		Moved mime code to utils.mime, ex utils.mime.types, and utils.mime.type()

		Renamed req.redirect() to res.redirect(). Closes #29

		Fixed sass 404 on ENOENT

		Fixed +new Date duplication. Closes #24

0.0.4 / 2010-06-16

		Added workerPidfile() to bin/connect

		Added –workers support to bin/connect stop and status commands

		Added redirect middleware

		Added better –config support to bin/connect. All flags can be utilized

		Added auto-detection of ./config.js

		Added config example

		Added net.Server support to bin/connect

		Writing worker pids relative to env.pidfile

		s/parseQuery/parse/g

		Fixed npm support

0.0.3 / 2010-06-16

		Fixed node dependency in package.json, now “>= 0.1.98-0” to support HEAD

0.0.2 / 2010-06-15

		Added -V, --version to bin/connect

		Added utils.parseCookie()

		Added utils.serializeCookie()

		Added utils.toBoolean()

		Added sass middleware

		Added cookie middleware

		Added format middleware

		Added lint middleware

		Added rest middleware

		Added ./package.json (npm install connect)

		Added handleError() support

		Added process.connectEnv

		Added custom log format support to log middleware

		Added arbitrary env variable support to bin/connect (ext: –logFormat ”:method :url”)

		Added -w, –workers to bin/connect

		Added bin/connect support for –user NAME and –group NAME

		Fixed url re-writing support

0.0.1 / 2010-06-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/chokidar/node_modules/async-each/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

async-each

No-bullshit, ultra-simple, 35-lines-of-code async parallel forEach function for JavaScript.

We don’t need junky 30K async libs. Really.

For browsers and node.js.

Installation

		Just include async-each before your scripts.

		npm install async-each if you’re using node.js.

		component install paulmillr/async-each if you’re using component(1) [https://github.com/component/component].

		bower install async-each if you’re using Twitter Bower [http://bower.io].

Usage

		each(array, iterator, callback); — Array, Function, (optional) Function

		iterator(item, next) receives current item and a callback that will mark the item as done. next callback receives optional error, transformedItem arguments.

		callback(error, transformedArray) optionally receives first error and transformed result Array.

Node.js:

var each = require('async-each');
each(['a.js', 'b.js', 'c.js'], fs.readFile, function(error, contents) {
 if (error) console.error(error);
 console.log('Contents for a, b and c:', contents);
});

Browser:

// component(1)
var each = require('async-each');
each(list, fn, callback);

// Default:
window.asyncEach(list, fn, callback);

License

The MIT License (MIT)

Copyright (c) 2013 Paul Miller (http://paulmillr.com/)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/contextify/node_modules/bindings/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-bindings

Helper module for loading your native module’s .node file

This is a helper module for authors of Node.js native addon modules.
It is basically the “swiss army knife” of require()ing your native module’s
.node file.

Throughout the course of Node’s native addon history, addons have ended up being
compiled in a variety of different places, depending on which build tool and which
version of node was used. To make matters worse, now the gyp build tool can
produce either a Release or Debug build, each being built into different
locations.

This module checks all the possible locations that a native addon would be built
at, and returns the first one that loads successfully.

Installation

Install with npm:

$ npm install bindings

Or add it to the "dependencies" section of your package.json file.

Example

require()ing the proper bindings file for the current node version, platform
and architecture is as simple as:

var bindings = require('bindings')('binding.node')

// Use your bindings defined in your C files
bindings.your_c_function()

Nice Error Output

When the .node file could not be loaded, node-bindings throws an Error with
a nice error message telling you exactly what was tried. You can also check the
err.tries Array property.

Error: Could not load the bindings file. Tried:
 → /Users/nrajlich/ref/build/binding.node
 → /Users/nrajlich/ref/build/Debug/binding.node
 → /Users/nrajlich/ref/build/Release/binding.node
 → /Users/nrajlich/ref/out/Debug/binding.node
 → /Users/nrajlich/ref/Debug/binding.node
 → /Users/nrajlich/ref/out/Release/binding.node
 → /Users/nrajlich/ref/Release/binding.node
 → /Users/nrajlich/ref/build/default/binding.node
 → /Users/nrajlich/ref/compiled/0.8.2/darwin/x64/binding.node
 at bindings (/Users/nrajlich/ref/node_modules/bindings/bindings.js:84:13)
 at Object.<anonymous> (/Users/nrajlich/ref/lib/ref.js:5:47)
 at Module._compile (module.js:449:26)
 at Object.Module._extensions..js (module.js:467:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)
 ...

License

(The MIT License)

Copyright (c) 2012 Nathan Rajlich

<

nathan@tootallnate.net>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/findup-sync/node_modules/glob/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #htmlparser2

[image: NPM version] [https://npmjs.org/package/htmlparser2]
[image: Downloads] [https://npmjs.org/package/htmlparser2]
[image: Build Status] [http://travis-ci.org/fb55/htmlparser2]
[image: Coverage] [https://coveralls.io/r/fb55/htmlparser2]

A forgiving HTML/XML/RSS parser written in JS for NodeJS. The parser can handle streams (chunked data) and supports custom handlers for writing custom DOMs/output.

##Installing
npm install htmlparser2

A live demo of htmlparser2 is available at http://demos.forbeslindesay.co.uk/htmlparser2/

##Usage

var htmlparser = require("htmlparser2");
var parser = new htmlparser.Parser({
 onopentag: function(name, attribs){
 if(name === "script" && attribs.type === "text/javascript"){
 console.log("JS! Hooray!");
 }
 },
 ontext: function(text){
 console.log("-->", text);
 },
 onclosetag: function(tagname){
 if(tagname === "script"){
 console.log("That's it?!");
 }
 }
});
parser.write("Xyz <script type='text/javascript'>var foo = '<<bar>>';</ script>");
parser.end();

Output (simplified):

--> Xyz
JS! Hooray!
--> var foo = '<<bar>>';
That's it?!

Read more about the parser in the wiki [https://github.com/fb55/htmlparser2/wiki/Parser-options].

##Get a DOM
The DomHandler (known as DefaultHandler in the original htmlparser module) produces a DOM (document object model) that can be manipulated using the DomUtils [https://github.com/fb55/DomUtils] helper.

The DomHandler, while still bundled with this module, was moved to its own module [https://github.com/fb55/domhandler]. Have a look at it for further information.

##Parsing RSS/RDF/Atom Feeds

new htmlparser.FeedHandler(function(<error> error, <object> feed){
 ...
});

##Performance

After having some artificial benchmarks for some time, @AndreasMadsen published his htmlparser-benchmark [https://github.com/AndreasMadsen/htmlparser-benchmark], which benchmarks HTML parses based on real-world websites.

At the time of writing, the latest versions of all supported parsers show the following performance characteristics on Travis CI [https://travis-ci.org/AndreasMadsen/htmlparser-benchmark/builds/10805007] (please note that Travis doesn’t guarantee equal conditions for all tests):

gumbo-parser : 34.9208 ms/file ± 21.4238
html-parser : 24.8224 ms/file ± 15.8703
html5 : 419.597 ms/file ± 264.265
htmlparser : 60.0722 ms/file ± 384.844
htmlparser2-dom: 12.0749 ms/file ± 6.49474
htmlparser2 : 7.49130 ms/file ± 5.74368
hubbub : 30.4980 ms/file ± 16.4682
libxmljs : 14.1338 ms/file ± 18.6541
parse5 : 22.0439 ms/file ± 15.3743
sax : 49.6513 ms/file ± 26.6032

##How is this different from node-htmlparser [https://github.com/tautologistics/node-htmlparser]?
This is a fork of the htmlparser module. The main difference is that this is intended to be used only with node (it runs on other platforms using browserify [https://github.com/substack/node-browserify]). htmlparser2 was rewritten multiple times and, while it maintains an API that’s compatible with htmlparser in most cases, the projects don’t share any code anymore.

The parser now provides a callback interface close to sax.js [https://github.com/isaacs/sax-js] (originally targeted at readabilitySAX [https://github.com/fb55/readabilitysax]). As a result, old handlers won’t work anymore.

The DefaultHandler and the RssHandler were renamed to clarify their purpose (to DomHandler and FeedHandler). The old names are still available when requiring htmlparser2, so your code should work as expected.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/xmlhttprequest/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-XMLHttpRequest

node-XMLHttpRequest is a wrapper for the built-in http client to emulate the
browser XMLHttpRequest object.

This can be used with JS designed for browsers to improve reuse of code and
allow the use of existing libraries.

Note: This library currently conforms to XMLHttpRequest 1 [http://www.w3.org/TR/XMLHttpRequest/]. Version 2.0 will target XMLHttpRequest Level 2 [http://www.w3.org/TR/XMLHttpRequest2/].

Usage

Here’s how to include the module in your project and use as the browser-based
XHR object.

var XMLHttpRequest = require("xmlhttprequest").XMLHttpRequest;
var xhr = new XMLHttpRequest();

Note: use the lowercase string “xmlhttprequest” in your require(). On
case-sensitive systems (eg Linux) using uppercase letters won’t work.

Versions

Prior to 1.4.0 version numbers were arbitrary. From 1.4.0 on they conform to
the standard major.minor.bugfix. 1.x shouldn’t necessarily be considered
stable just because it’s above 0.x.

Since the XMLHttpRequest API is stable this library’s API is stable as
well. Major version numbers indicate significant core code changes.
Minor versions indicate minor core code changes or better conformity to
the W3C spec.

License

MIT license. See LICENSE for full details.

Supports

		Async and synchronous requests

		GET, POST, PUT, and DELETE requests

		All spec methods (open, send, abort, getRequestHeader,
getAllRequestHeaders, event methods)

		Requests to all domains

Known Issues / Missing Features

For a list of open issues or to report your own visit the github issues
page [https://github.com/driverdan/node-XMLHttpRequest/issues].

		Local file access may have unexpected results for non-UTF8 files

		Synchronous requests don’t set headers properly

		Synchronous requests freeze node while waiting for response (But that’s what you want, right? Stick with async!).

		Some events are missing, such as abort

		getRequestHeader is case-sensitive

		Cookies aren’t persisted between requests

		Missing XML support

		Missing basic auth

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/with/node_modules/uglify-js/node_modules/async/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Async.js

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with node.js [http://nodejs.org], it can also be used directly in the
browser. Also supports component [https://github.com/component/component].

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, each…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Common Pitfalls

Binding a context to an iterator

This section is really about bind, not about async. If you are wondering how to
make async execute your iterators in a given context, or are confused as to why
a method of another library isn’t working as an iterator, study this example:

// Here is a simple object with an (unnecessarily roundabout) squaring method
var AsyncSquaringLibrary = {
 squareExponent: 2,
 square: function(number, callback){
 var result = Math.pow(number, this.squareExponent);
 setTimeout(function(){
 callback(null, result);
 }, 200);
 }
};

async.map([1, 2, 3], AsyncSquaringLibrary.square, function(err, result){
 // result is [NaN, NaN, NaN]
 // This fails because the `this.squareExponent` expression in the square
 // function is not evaluated in the context of AsyncSquaringLibrary, and is
 // therefore undefined.
});

async.map([1, 2, 3], AsyncSquaringLibrary.square.bind(AsyncSquaringLibrary), function(err, result){
 // result is [1, 4, 9]
 // With the help of bind we can attach a context to the iterator before
 // passing it to async. Now the square function will be executed in its
 // 'home' AsyncSquaringLibrary context and the value of `this.squareExponent`
 // will be as expected.
});

Download

The source is available for download from
GitHub [http://github.com/caolan/async].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 29.6kb Uncompressed

In the Browser

So far it’s been tested in IE6, IE7, IE8, FF3.6 and Chrome 5. Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

		each

		eachSeries

		eachLimit

		map

		mapSeries

		mapLimit

		filter

		filterSeries

		reject

		rejectSeries

		reduce

		reduceRight

		detect

		detectSeries

		sortBy

		some

		every

		concat

		concatSeries

Control Flow

		series

		parallel

		parallelLimit

		whilst

		doWhilst

		until

		doUntil

		forever

		waterfall

		compose

		applyEach

		applyEachSeries

		queue

		cargo

		auto

		iterator

		apply

		nextTick

		times

		timesSeries

Utils

		memoize

		unmemoize

		log

		dir

		noConflict

Collections

[bookmark: forEach]
[bookmark: each]

each(arr, iterator, callback)

Applies an iterator function to each item in an array, in parallel.
The iterator is called with an item from the list and a callback for when it
has finished. If the iterator passes an error to this callback, the main
callback for the each function is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.each(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: forEachSeries]
[bookmark: eachSeries]

eachSeries(arr, iterator, callback)

The same as each only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. This means the iterator functions will complete in order.

[bookmark: forEachLimit]
[bookmark: eachLimit]

eachLimit(arr, limit, iterator, callback)

The same as each only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.eachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in the given array through
the iterator function. The iterator is called with an item from the array and a
callback for when it has finished processing. The callback takes 2 arguments,
an error and the transformed item from the array. If the iterator passes an
error to this callback, the main callback for the map function is immediately
called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order, however
the results array will be in the same order as the original array.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: mapLimit]

mapLimit(arr, limit, iterator, callback)

The same as map only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.mapLimit(['file1','file2','file3'], 1, fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

alias: selectSeries

The same as filter only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as reject, only the iterator is applied to each item in the array
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

aliases: inject, foldl

Reduces a list of values into a single value using an async iterator to return
each successive step. Memo is the initial state of the reduction. This
function only operates in series. For performance reasons, it may make sense to
split a call to this function into a parallel map, then use the normal
Array.prototype.reduce on the results. This function is for situations where
each step in the reduction needs to be async, if you can get the data before
reducing it then it’s probably a good idea to do so.

Arguments

		arr - An array to iterate over.

		memo - The initial state of the reduction.

		iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback(err, reduction) which accepts an optional error as its first
argument, and the state of the reduction as the second. If an error is
passed to the callback, the reduction is stopped and the main callback is
immediately called with the error.

		callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on the items in the array in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in a list that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original array (in terms of order) that passes the test.

If order within the original array is important then look at detectSeries.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], fs.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in the array
in series. This means the result is always the first in the original array (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each value through an async iterator.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, sortValue) which must be called once it
has completed with an error (which can be null) and a value to use as the sort
criteria.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is the items from
the original array sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies an iterator to each item in a list, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of the arguments passed to the iterator function.

Arguments

		arr - An array to iterate over

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, results) which must be called once it
has completed with an error (which can be null) and an array of results.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as async.concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run an array of functions in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run and the callback for the series is
immediately called with the value of the error. Once the tasks have completed,
the results are passed to the final callback as an array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.series.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 }
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run an array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.parallel.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 }
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: parallel]

parallelLimit(tasks, limit, [callback])

The same as parallel only the tasks are executed in parallel with a maximum of “limit”
tasks executing at any time.

Note that the tasks are not executed in batches, so there is no guarantee that
the first “limit” tasks will complete before any others are started.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		limit - The maximum number of tasks to run at any time.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls the callback when stopped,
or an error occurs.

Arguments

		test() - synchronous truth test to perform before each execution of fn.

		fn(callback) - A function to call each time the test passes. The function is
passed a callback(err) which must be called once it has completed with an
optional error argument.

		callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: doWhilst]

doWhilst(fn, test, callback)

The post check version of whilst. To reflect the difference in the order of operations test and fn arguments are switched. doWhilst is to whilst as do while is to while in plain JavaScript.

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn, until test returns true. Calls the callback when stopped,
or an error occurs.

The inverse of async.whilst.

[bookmark: doUntil]

doUntil(fn, test, callback)

Like doWhilst except the test is inverted. Note the argument ordering differs from until.

[bookmark: forever]

forever(fn, callback)

Calls the asynchronous function ‘fn’ repeatedly, in series, indefinitely.
If an error is passed to fn’s callback then ‘callback’ is called with the
error, otherwise it will never be called.

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs an array of functions in series, each passing their results to the next in
the array. However, if any of the functions pass an error to the callback, the
next function is not executed and the main callback is immediately called with
the error.

Arguments

		tasks - An array of functions to run, each function is passed a
callback(err, result1, result2, ...) it must call on completion. The first
argument is an error (which can be null) and any further arguments will be
passed as arguments in order to the next task.

		callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: compose]

compose(fn1, fn2...)

Creates a function which is a composition of the passed asynchronous
functions. Each function consumes the return value of the function that
follows. Composing functions f(), g() and h() would produce the result of
f(g(h())), only this version uses callbacks to obtain the return values.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

function add1(n, callback) {
 setTimeout(function () {
 callback(null, n + 1);
 }, 10);
}

function mul3(n, callback) {
 setTimeout(function () {
 callback(null, n * 3);
 }, 10);
}

var add1mul3 = async.compose(mul3, add1);

add1mul3(4, function (err, result) {
 // result now equals 15
});

[bookmark: applyEach]

applyEach(fns, args..., callback)

Applies the provided arguments to each function in the array, calling the
callback after all functions have completed. If you only provide the first
argument then it will return a function which lets you pass in the
arguments as if it were a single function call.

Arguments

		fns - the asynchronous functions to all call with the same arguments

		args... - any number of separate arguments to pass to the function

		callback - the final argument should be the callback, called when all
functions have completed processing

Example

async.applyEach([enableSearch, updateSchema], 'bucket', callback);

// partial application example:
async.each(
 buckets,
 async.applyEach([enableSearch, updateSchema]),
 callback
);

[bookmark: applyEachSeries]

applyEachSeries(arr, iterator, callback)

The same as applyEach only the functions are applied in series.

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue will be processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one is available. Once
a worker has completed a task, the task’s callback is called.

Arguments

		worker(task, callback) - An asynchronous function for processing a queued
task, which must call its callback(err) argument when finished, with an
optional error as an argument.

		concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		unshift(task, [callback]) - add a new task to the front of the queue.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

// add some items to the front of the queue

q.unshift({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

[bookmark: cargo]

cargo(worker, [payload])

Creates a cargo object with the specified payload. Tasks added to the
cargo will be processed altogether (up to the payload limit). If the
worker is in progress, the task is queued until it is available. Once
the worker has completed some tasks, each callback of those tasks is called.

Arguments

		worker(tasks, callback) - An asynchronous function for processing an array of
queued tasks, which must call its callback(err) argument when finished, with
an optional error as an argument.

		payload - An optional integer for determining how many tasks should be
processed per round; if omitted, the default is unlimited.

Cargo objects

The cargo object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		payload - an integer for determining how many tasks should be
process per round. This property can be changed after a cargo is created to
alter the payload on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a cargo object with payload 2

var cargo = async.cargo(function (tasks, callback) {
 for(var i=0; i<tasks.length; i++){
 console.log('hello ' + tasks[i].name);
 }
 callback();
}, 2);

// add some items

cargo.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
cargo.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});
cargo.push({name: 'baz'}, function (err) {
 console.log('finished processing baz');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running functions based on their requirements.
Each function can optionally depend on other functions being completed first,
and each function is run as soon as its requirements are satisfied. If any of
the functions pass an error to their callback, that function will not complete
(so any other functions depending on it will not run) and the main callback
will be called immediately with the error. Functions also receive an object
containing the results of functions which have completed so far.

Note, all functions are called with a results object as a second argument,
so it is unsafe to pass functions in the tasks object which cannot handle the
extra argument. For example, this snippet of code:

async.auto({
 readData: async.apply(fs.readFile, 'data.txt', 'utf-8')
}, callback);

will have the effect of calling readFile with the results object as the last
argument, which will fail:

fs.readFile('data.txt', 'utf-8', cb, {});

Instead, wrap the call to readFile in a function which does not forward the
results object:

async.auto({
 readData: function(cb, results){
 fs.readFile('data.txt', 'utf-8', cb);
 }
}, callback);

Arguments

		tasks - An object literal containing named functions or an array of
requirements, with the function itself the last item in the array. The key
used for each function or array is used when specifying requirements. The
function receives two arguments: (1) a callback(err, result) which must be
called when finished, passing an error (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions.

		callback(err, results) - An optional callback which is called when all the
tasks have been completed. The callback will receive an error as an argument
if any tasks pass an error to their callback. Results will always be passed
but if an error occurred, no other tasks will be performed, and the results
object will only contain partial results.

Example

async.auto({
 get_data: function(callback){
 // async code to get some data
 },
 make_folder: function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 },
 write_file: ['get_data', 'make_folder', function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, filename);
 }],
 email_link: ['write_file', function(callback, results){
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 }]
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 // async code to get some data
 },
 function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 }
],
function(err, results){
 async.series([
 function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 },
 function(callback){
 // once the file is written let's email a link to it...
 }
]);
});

For a complicated series of async tasks using the auto function makes adding
new tasks much easier and makes the code more readable.

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the array,
returning a continuation to call the next one after that. It’s also possible to
‘peek’ the next iterator by doing iterator.next().

This function is used internally by the async module but can be useful when
you want to manually control the flow of functions in series.

Arguments

		tasks - An array of functions to run.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied, a useful
shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 }
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls the callback on a later loop around the event loop. In node.js this just
calls process.nextTick, in the browser it falls back to setImmediate(callback)
if available, otherwise setTimeout(callback, 0), which means other higher priority
events may precede the execution of the callback.

This is used internally for browser-compatibility purposes.

Arguments

		callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two']
});
call_order.push('one')

[bookmark: times]

times(n, callback)

Calls the callback n times and accumulates results in the same manner
you would use with async.map.

Arguments

		n - The number of times to run the function.

		callback - The function to call n times.

Example

// Pretend this is some complicated async factory
var createUser = function(id, callback) {
 callback(null, {
 id: 'user' + id
 })
}
// generate 5 users
async.times(5, function(n, next){
 createUser(n, function(err, user) {
 next(err, user)
 })
}, function(err, users) {
 // we should now have 5 users
});

[bookmark: timesSeries]

timesSeries(n, callback)

The same as times only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

The cache of results is exposed as the memo property of the function returned
by memoize.

Arguments

		fn - the function you to proxy and cache results from.

		hasher - an optional function for generating a custom hash for storing
results, it has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Comes handy in tests.

Arguments

		fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/findup-sync/node_modules/glob/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/domhandler/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #DOMHandler [image: Build Status] [http://travis-ci.org/fb55/DomHandler]

The DOM handler (formally known as DefaultHandler) creates a tree containing all nodes of a page. The tree may be manipulated using the DOMUtils library.

##Usage

var handler = new DomHandler([<func> callback(err, dom),] [<obj> options]);
// var parser = new Parser(handler[, options]);

##Example

var htmlparser = require("htmlparser2");
var rawHtml = "Xyz <script language= javascript>var foo = '<<bar>>';< / script><!--<!-- Waah! -- -->";
var handler = new htmlparser.DomHandler(function (error, dom) {
 if (error)
 [...do something for errors...]
 else
 [...parsing done, do something...]
 console.log(dom);
});
var parser = new htmlparser.Parser(handler);
parser.write(rawHtml);
parser.done();

Output:

[{
 data: 'Xyz ',
 type: 'text'
}, {
 type: 'script',
 name: 'script',
 attribs: {
 language: 'javascript'
 },
 children: [{
 data: 'var foo = \'<bar>\';<',
 type: 'text'
 }]
}, {
 data: '<!-- Waah! -- ',
 type: 'comment'
}]

##Option: normalizeWhitespace
Indicates whether the whitespace in text nodes should be normalized (= all whitespace should be replaced with single spaces). The default value is “false”.

The following HTML will be used:

this is the text

###Example: true

[{
 type: 'tag',
 name: 'font',
 children: [{
 data: ' ',
 type: 'text'
 }, {
 type: 'tag',
 name: 'br'
 }, {
 data: 'this is the text ',
 type: 'text'
 }, {
 type: 'tag',
 name: 'font'
 }]
}]

###Example: false

[{
 type: 'tag',
 name: 'font',
 children: [{
 data: '\n\t',
 type: 'text'
 }, {
 type: 'tag',
 name: 'br'
 }, {
 data: 'this is the text\n',
 type: 'text'
 }, {
 type: 'tag',
 name: 'font'
 }]
}]

##Option: withStartIndices
Indicates whether a startIndex property will be added to nodes. When the parser is used in a non-streaming fashion, startIndex is an integer indicating the position of the start of the node in the document. The default value is “false”.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/findup-sync/node_modules/glob/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/domelementtype/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 all the types of nodes in htmlparser2’s dom

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/with/node_modules/uglify-js/node_modules/source-map/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Source Map

This is a library to generate and consume the source map format
described here [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit].

This library is written in the Asynchronous Module Definition format, and works
in the following environments:

		Modern Browsers supporting ECMAScript 5 (either after the build, or with an
AMD loader such as RequireJS)

		Inside Firefox (as a JSM file, after the build)

		With NodeJS versions 0.8.X and higher

Node

$ npm install source-map

Building from Source (for everywhere else)

Install Node and then run

$ git clone https://fitzgen@github.com/mozilla/source-map.git
$ cd source-map
$ npm link .

Next, run

$ node Makefile.dryice.js

This should spew a bunch of stuff to stdout, and create the following files:

		dist/source-map.js - The unminified browser version.

		dist/source-map.min.js - The minified browser version.

		dist/SourceMap.jsm - The JavaScript Module for inclusion in Firefox source.

Examples

Consuming a source map

var rawSourceMap = {
 version: 3,
 file: 'min.js',
 names: ['bar', 'baz', 'n'],
 sources: ['one.js', 'two.js'],
 sourceRoot: 'http://example.com/www/js/',
 mappings: 'CAAC,IAAI,IAAM,SAAUA,GAClB,OAAOC,IAAID;CCDb,IAAI,IAAM,SAAUE,GAClB,OAAOA'
};

var smc = new SourceMapConsumer(rawSourceMap);

console.log(smc.sources);
// ['http://example.com/www/js/one.js',
// 'http://example.com/www/js/two.js']

console.log(smc.originalPositionFor({
 line: 2,
 column: 28
}));
// { source: 'http://example.com/www/js/two.js',
// line: 2,
// column: 10,
// name: 'n' }

console.log(smc.generatedPositionFor({
 source: 'http://example.com/www/js/two.js',
 line: 2,
 column: 10
}));
// { line: 2, column: 28 }

smc.eachMapping(function (m) {
 // ...
});

Generating a source map

In depth guide:
Compiling to JavaScript, and Debugging with Source Maps [https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/]

With SourceNode (high level API)

function compile(ast) {
 switch (ast.type) {
 case 'BinaryExpression':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 [compile(ast.left), " + ", compile(ast.right)]
);
 case 'Literal':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 String(ast.value)
);
 // ...
 default:
 throw new Error("Bad AST");
 }
}

var ast = parse("40 + 2", "add.js");
console.log(compile(ast).toStringWithSourceMap({
 file: 'add.js'
}));
// { code: '40 + 2',
// map: [object SourceMapGenerator] }

With SourceMapGenerator (low level API)

var map = new SourceMapGenerator({
 file: "source-mapped.js"
});

map.addMapping({
 generated: {
 line: 10,
 column: 35
 },
 source: "foo.js",
 original: {
 line: 33,
 column: 2
 },
 name: "christopher"
});

console.log(map.toString());
// '{"version":3,"file":"source-mapped.js","sources":["foo.js"],"names":["christopher"],"mappings":";;;;;;;;;mCAgCEA"}'

API

Get a reference to the module:

// NodeJS
var sourceMap = require('source-map');

// Browser builds
var sourceMap = window.sourceMap;

// Inside Firefox
let sourceMap = {};
Components.utils.import('resource:///modules/devtools/SourceMap.jsm', sourceMap);

SourceMapConsumer

A SourceMapConsumer instance represents a parsed source map which we can query
for information about the original file positions by giving it a file position
in the generated source.

new SourceMapConsumer(rawSourceMap)

The only parameter is the raw source map (either as a string which can be
JSON.parse‘d, or an object). According to the spec, source maps have the
following attributes:

		version: Which version of the source map spec this map is following.

		sources: An array of URLs to the original source files.

		names: An array of identifiers which can be referrenced by individual
mappings.

		sourceRoot: Optional. The URL root from which all sources are relative.

		sourcesContent: Optional. An array of contents of the original source files.

		mappings: A string of base64 VLQs which contain the actual mappings.

		file: Optional. The generated filename this source map is associated with.

SourceMapConsumer.prototype.originalPositionFor(generatedPosition)

Returns the original source, line, and column information for the generated
source’s line and column positions provided. The only argument is an object with
the following properties:

		line: The line number in the generated source.

		column: The column number in the generated source.

and an object is returned with the following properties:

		source: The original source file, or null if this information is not
available.

		line: The line number in the original source, or null if this information is
not available.

		column: The column number in the original source, or null or null if this
information is not available.

		name: The original identifier, or null if this information is not available.

SourceMapConsumer.prototype.generatedPositionFor(originalPosition)

Returns the generated line and column information for the original source,
line, and column positions provided. The only argument is an object with
the following properties:

		source: The filename of the original source.

		line: The line number in the original source.

		column: The column number in the original source.

and an object is returned with the following properties:

		line: The line number in the generated source, or null.

		column: The column number in the generated source, or null.

SourceMapConsumer.prototype.sourceContentFor(source)

Returns the original source content for the source provided. The only
argument is the URL of the original source file.

SourceMapConsumer.prototype.eachMapping(callback, context, order)

Iterate over each mapping between an original source/line/column and a
generated line/column in this source map.

		callback: The function that is called with each mapping. Mappings have the
form { source, generatedLine, generatedColumn, originalLine, originalColumn, name }

		context: Optional. If specified, this object will be the value of this
every time that callback is called.

		order: Either SourceMapConsumer.GENERATED_ORDER or
SourceMapConsumer.ORIGINAL_ORDER. Specifies whether you want to iterate over
the mappings sorted by the generated file’s line/column order or the
original’s source/line/column order, respectively. Defaults to
SourceMapConsumer.GENERATED_ORDER.

SourceMapGenerator

An instance of the SourceMapGenerator represents a source map which is being
built incrementally.

new SourceMapGenerator([startOfSourceMap])

You may pass an object with the following properties:

		file: The filename of the generated source that this source map is
associated with.

		sourceRoot: A root for all relative URLs in this source map.

SourceMapGenerator.fromSourceMap(sourceMapConsumer)

Creates a new SourceMapGenerator based on a SourceMapConsumer

		sourceMapConsumer The SourceMap.

SourceMapGenerator.prototype.addMapping(mapping)

Add a single mapping from original source line and column to the generated
source’s line and column for this source map being created. The mapping object
should have the following properties:

		generated: An object with the generated line and column positions.

		original: An object with the original line and column positions.

		source: The original source file (relative to the sourceRoot).

		name: An optional original token name for this mapping.

SourceMapGenerator.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for an original source file.

		sourceFile the URL of the original source file.

		sourceContent the content of the source file.

SourceMapGenerator.prototype.applySourceMap(sourceMapConsumer[, sourceFile[, sourceMapPath]])

Applies a SourceMap for a source file to the SourceMap.
Each mapping to the supplied source file is rewritten using the
supplied SourceMap. Note: The resolution for the resulting mappings
is the minimium of this map and the supplied map.

		sourceMapConsumer: The SourceMap to be applied.

		sourceFile: Optional. The filename of the source file.
If omitted, sourceMapConsumer.file will be used, if it exists.
Otherwise an error will be thrown.

		sourceMapPath: Optional. The dirname of the path to the SourceMap
to be applied. If relative, it is relative to the SourceMap.

This parameter is needed when the two SourceMaps aren’t in the same
directory, and the SourceMap to be applied contains relative source
paths. If so, those relative source paths need to be rewritten
relative to the SourceMap.

If omitted, it is assumed that both SourceMaps are in the same directory,
thus not needing any rewriting. (Supplying '.' has the same effect.)

SourceMapGenerator.prototype.toString()

Renders the source map being generated to a string.

SourceNode

SourceNodes provide a way to abstract over interpolating and/or concatenating
snippets of generated JavaScript source code, while maintaining the line and
column information associated between those snippets and the original source
code. This is useful as the final intermediate representation a compiler might
use before outputting the generated JS and source map.

new SourceNode([line, column, source[, chunk[, name]]])

		line: The original line number associated with this source node, or null if
it isn’t associated with an original line.

		column: The original column number associated with this source node, or null
if it isn’t associated with an original column.

		source: The original source’s filename; null if no filename is provided.

		chunk: Optional. Is immediately passed to SourceNode.prototype.add, see
below.

		name: Optional. The original identifier.

SourceNode.fromStringWithSourceMap(code, sourceMapConsumer)

Creates a SourceNode from generated code and a SourceMapConsumer.

		code: The generated code

		sourceMapConsumer The SourceMap for the generated code

SourceNode.prototype.add(chunk)

Add a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.prepend(chunk)

Prepend a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for a source file. This will be added to the
SourceMap in the sourcesContent field.

		sourceFile: The filename of the source file

		sourceContent: The content of the source file

SourceNode.prototype.walk(fn)

Walk over the tree of JS snippets in this node and its children. The walking
function is called once for each snippet of JS and is passed that snippet and
the its original associated source’s line/column location.

		fn: The traversal function.

SourceNode.prototype.walkSourceContents(fn)

Walk over the tree of SourceNodes. The walking function is called for each
source file content and is passed the filename and source content.

		fn: The traversal function.

SourceNode.prototype.join(sep)

Like Array.prototype.join except for SourceNodes. Inserts the separator
between each of this source node’s children.

		sep: The separator.

SourceNode.prototype.replaceRight(pattern, replacement)

Call String.prototype.replace on the very right-most source snippet. Useful
for trimming whitespace from the end of a source node, etc.

		pattern: The pattern to replace.

		replacement: The thing to replace the pattern with.

SourceNode.prototype.toString()

Return the string representation of this source node. Walks over the tree and
concatenates all the various snippets together to one string.

SourceNode.prototype.toStringWithSourceMap([startOfSourceMap])

Returns the string representation of this tree of source nodes, plus a
SourceMapGenerator which contains all the mappings between the generated and
original sources.

The arguments are the same as those to new SourceMapGenerator.

Tests

[image: Build Status] [https://travis-ci.org/mozilla/source-map]

Install NodeJS version 0.8.0 or greater, then run node test/run-tests.js.

To add new tests, create a new file named test/test-<your new test name>.js
and export your test functions with names that start with “test”, for example

exports["test doing the foo bar"] = function (assert, util) {
 ...
};

The new test will be located automatically when you run the suite.

The util argument is the test utility module located at test/source-map/util.

The assert argument is a cut down version of node’s assert module. You have
access to the following assertion functions:

		doesNotThrow

		equal

		ok

		strictEqual

		throws

(The reason for the restricted set of test functions is because we need the
tests to run inside Firefox’s test suite as well and so the assert module is
shimmed in that environment. See build/assert-shim.js.)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/nopt/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 If you want to write an option parser, and have it be good, there are
two ways to do it. The Right Way, and the Wrong Way.

The Wrong Way is to sit down and write an option parser. We’ve all done
that.

The Right Way is to write some complex configurable program with so many
options that you go half-insane just trying to manage them all, and put
it off with duct-tape solutions until you see exactly to the core of the
problem, and finally snap and write an awesome option parser.

If you want to write an option parser, don’t write an option parser.
Write a package manager, or a source control system, or a service
restarter, or an operating system. You probably won’t end up with a
good one of those, but if you don’t give up, and you are relentless and
diligent enough in your procrastination, you may just end up with a very
nice option parser.

USAGE

// my-program.js
var nopt = require("nopt")
 , Stream = require("stream").Stream
 , path = require("path")
 , knownOpts = { "foo" : [String, null]
 , "bar" : [Stream, Number]
 , "baz" : path
 , "bloo" : ["big", "medium", "small"]
 , "flag" : Boolean
 , "pick" : Boolean
 , "many" : [String, Array]
 }
 , shortHands = { "foofoo" : ["--foo", "Mr. Foo"]
 , "b7" : ["--bar", "7"]
 , "m" : ["--bloo", "medium"]
 , "p" : ["--pick"]
 , "f" : ["--flag"]
 }
 // everything is optional.
 // knownOpts and shorthands default to {}
 // arg list defaults to process.argv
 // slice defaults to 2
 , parsed = nopt(knownOpts, shortHands, process.argv, 2)
console.log(parsed)

This would give you support for any of the following:

$ node my-program.js --foo "blerp" --no-flag
{ "foo" : "blerp", "flag" : false }

$ node my-program.js ---bar 7 --foo "Mr. Hand" --flag
{ bar: 7, foo: "Mr. Hand", flag: true }

$ node my-program.js --foo "blerp" -f -----p
{ foo: "blerp", flag: true, pick: true }

$ node my-program.js -fp --foofoo
{ foo: "Mr. Foo", flag: true, pick: true }

$ node my-program.js --foofoo -- -fp # -- stops the flag parsing.
{ foo: "Mr. Foo", argv: { remain: ["-fp"] } }

$ node my-program.js --blatzk 1000 -fp # unknown opts are ok.
{ blatzk: 1000, flag: true, pick: true }

$ node my-program.js --blatzk true -fp # but they need a value
{ blatzk: true, flag: true, pick: true }

$ node my-program.js --no-blatzk -fp # unless they start with "no-"
{ blatzk: false, flag: true, pick: true }

$ node my-program.js --baz b/a/z # known paths are resolved.
{ baz: "/Users/isaacs/b/a/z" }

if Array is one of the types, then it can take many
values, and will always be an array. The other types provided
specify what types are allowed in the list.

$ node my-program.js --many 1 --many null --many foo
{ many: ["1", "null", "foo"] }

$ node my-program.js --many foo
{ many: ["foo"] }

Read the tests at the bottom of lib/nopt.js for more examples of
what this puppy can do.

Types

The following types are supported, and defined on nopt.typeDefs

		String: A normal string. No parsing is done.

		path: A file system path. Gets resolved against cwd if not absolute.

		url: A url. If it doesn’t parse, it isn’t accepted.

		Number: Must be numeric.

		Date: Must parse as a date. If it does, and Date is one of the options,
then it will return a Date object, not a string.

		Boolean: Must be either true or false. If an option is a boolean,
then it does not need a value, and its presence will imply true as
the value. To negate boolean flags, do --no-whatever or --whatever false

		NaN: Means that the option is strictly not allowed. Any value will
fail.

		Stream: An object matching the “Stream” class in node. Valuable
for use when validating programmatically. (npm uses this to let you
supply any WriteStream on the outfd and logfd config options.)

		Array: If Array is specified as one of the types, then the value
will be parsed as a list of options. This means that multiple values
can be specified, and that the value will always be an array.

If a type is an array of values not on this list, then those are
considered valid values. For instance, in the example above, the
--bloo option can only be one of "big", "medium", or "small",
and any other value will be rejected.

When parsing unknown fields, "true", "false", and "null" will be
interpreted as their JavaScript equivalents, and numeric values will be
interpreted as a number.

You can also mix types and values, or multiple types, in a list. For
instance { blah: [Number, null] } would allow a value to be set to
either a Number or null.

To define a new type, add it to nopt.typeDefs. Each item in that
hash is an object with a type member and a validate method. The
type member is an object that matches what goes in the type list. The
validate method is a function that gets called with validate(data, key, val). Validate methods should assign data[key] to the valid
value of val if it can be handled properly, or return boolean
false if it cannot.

You can also call nopt.clean(data, types, typeDefs) to clean up a
config object and remove its invalid properties.

Error Handling

By default, nopt outputs a warning to standard error when invalid
options are found. You can change this behavior by assigning a method
to nopt.invalidHandler. This method will be called with
the offending nopt.invalidHandler(key, val, types).

If no nopt.invalidHandler is assigned, then it will console.error
its whining. If it is assigned to boolean false then the warning is
suppressed.

Abbreviations

Yes, they are supported. If you define options like this:

{ "foolhardyelephants" : Boolean
, "pileofmonkeys" : Boolean }

Then this will work:

node program.js --foolhar --pil
node program.js --no-f --pileofmon
etc.

Shorthands

Shorthands are a hash of shorter option names to a snippet of args that
they expand to.

If multiple one-character shorthands are all combined, and the
combination does not unambiguously match any other option or shorthand,
then they will be broken up into their constituent parts. For example:

{ "s" : ["--loglevel", "silent"]
, "g" : "--global"
, "f" : "--force"
, "p" : "--parseable"
, "l" : "--long"
}

npm ls -sgflp
just like doing this:
npm ls --loglevel silent --global --force --long --parseable

The Rest of the args

The config object returned by nopt is given a special member called
argv, which is an object with the following fields:

		remain: The remaining args after all the parsing has occurred.

		original: The args as they originally appeared.

		cooked: The args after flags and shorthands are expanded.

Slicing

Node programs are called with more or less the exact argv as it appears
in C land, after the v8 and node-specific options have been plucked off.
As such, argv[0] is always node and argv[1] is always the
JavaScript program being run.

That’s usually not very useful to you. So they’re sliced off by
default. If you want them, then you can pass in 0 as the last
argument, or any other number that you’d like to slice off the start of
the list.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/readable-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readable-stream

Node-core streams for userland

[image: NPM] [https://nodei.co/npm/readable-stream/]
[image: NPM] [https://nodei.co/npm/readable-stream/]

This package is a mirror of the Streams2 and Streams3 implementations in Node-core.

If you want to guarantee a stable streams base, regardless of what version of Node you, or the users of your libraries are using, use readable-stream only and avoid the “stream” module in Node-core.

readable-stream comes in two major versions, v1.0.x and v1.1.x. The former tracks the Streams2 implementation in Node 0.10, including bug-fixes and minor improvements as they are added. The latter tracks Streams3 as it develops in Node 0.11; we will likely see a v1.2.x branch for Node 0.12.

readable-stream uses proper patch-level versioning so if you pin to "~1.0.0" you’ll get the latest Node 0.10 Streams2 implementation, including any fixes and minor non-breaking improvements. The patch-level versions of 1.0.x and 1.1.x should mirror the patch-level versions of Node-core releases. You should prefer the 1.0.x releases for now and when you’re ready to start using Streams3, pin to "~1.1.0"

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/with/node_modules/uglify-js/node_modules/source-map/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Change Log

0.1.34

		Make SourceNode work with windows style (“\r\n”) newlines. Issue #103.

		Fix bug involving source contents and the
SourceMapGenerator.prototype.applySourceMap. Issue #100.

0.1.33

		Fix some edge cases surrounding path joining and URL resolution.

		Add a third parameter for relative path to
SourceMapGenerator.prototype.applySourceMap.

		Fix issues with mappings and EOLs.

0.1.32

		Fixed a bug where SourceMapConsumer couldn’t handle negative relative columns
(issue 92).

		Fixed test runner to actually report number of failed tests as its process
exit code.

		Fixed a typo when reporting bad mappings (issue 87).

0.1.31

		Delay parsing the mappings in SourceMapConsumer until queried for a source
location.

		Support Sass source maps (which at the time of writing deviate from the spec
in small ways) in SourceMapConsumer.

0.1.30

		Do not join source root with a source, when the source is a data URI.

		Extend the test runner to allow running single specific test files at a time.

		Performance improvements in SourceNode.prototype.walk and
SourceMapConsumer.prototype.eachMapping.

		Source map browser builds will now work inside Workers.

		Better error messages when attempting to add an invalid mapping to a
SourceMapGenerator.

0.1.29

		Allow duplicate entries in the names and sources arrays of source maps
(usually from TypeScript) we are parsing. Fixes github issue 72.

0.1.28

		Skip duplicate mappings when creating source maps from SourceNode; github
issue 75.

0.1.27

		Don’t throw an error when the file property is missing in SourceMapConsumer,
we don’t use it anyway.

0.1.26

		Fix SourceNode.fromStringWithSourceMap for empty maps. Fixes github issue 70.

0.1.25

		Make compatible with browserify

0.1.24

		Fix issue with absolute paths and file:// URIs. See
https://bugzilla.mozilla.org/show_bug.cgi?id=885597

0.1.23

		Fix issue with absolute paths and sourcesContent, github issue 64.

0.1.22

		Ignore duplicate mappings in SourceMapGenerator. Fixes github issue 21.

0.1.21

		Fixed handling of sources that start with a slash so that they are relative to
the source root’s host.

0.1.20

		Fixed github issue #43: absolute URLs aren’t joined with the source root
anymore.

0.1.19

		Using Travis CI to run tests.

0.1.18

		Fixed a bug in the handling of sourceRoot.

0.1.17

		Added SourceNode.fromStringWithSourceMap.

0.1.16

		Added missing documentation.

		Fixed the generating of empty mappings in SourceNode.

0.1.15

		Added SourceMapGenerator.applySourceMap.

0.1.14

		The sourceRoot is now handled consistently.

0.1.13

		Added SourceMapGenerator.fromSourceMap.

0.1.12

		SourceNode now generates empty mappings too.

0.1.11

		Added name support to SourceNode.

0.1.10

		Added sourcesContent support to the customer and generator.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/findup-sync/node_modules/glob/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/domutils/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 utilities for working with htmlparser2’s dom

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/with/node_modules/uglify-js/node_modules/uglify-to-browserify/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

uglify-to-browserify

A transform to make UglifyJS work in browserify.

[image: Build Status] [https://travis-ci.org/ForbesLindesay/uglify-to-browserify]
[image: Dependency Status] [https://gemnasium.com/ForbesLindesay/uglify-to-browserify]
[image: NPM version] [http://badge.fury.io/js/uglify-to-browserify]

Installation

npm install uglify-to-browserify

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/nopt/node_modules/abbrev/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

abbrev-js

Just like ruby’s Abbrev [http://apidock.com/ruby/Abbrev].

Usage:

var abbrev = require("abbrev");
abbrev("foo", "fool", "folding", "flop");

// returns:
{ fl: 'flop'
, flo: 'flop'
, flop: 'flop'
, fol: 'folding'
, fold: 'folding'
, foldi: 'folding'
, foldin: 'folding'
, folding: 'folding'
, foo: 'foo'
, fool: 'fool'
}

This is handy for command-line scripts, or other cases where you want to be able to accept shorthands.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/readable-stream/node_modules/core-util-is/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

core-util-is

The util.is* functions introduced in Node v0.12.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/with/node_modules/uglify-js/node_modules/source-map/node_modules/amdefine/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

amdefine

A module that can be used to implement AMD’s define() in Node. This allows you
to code to the AMD API and have the module work in node programs without
requiring those other programs to use AMD.

Usage

1) Update your package.json to indicate amdefine as a dependency:

 "dependencies": {
 "amdefine": ">=0.1.0"
 }

Then run npm install to get amdefine into your project.

2) At the top of each module that uses define(), place this code:

if (typeof define !== 'function') { var define = require('amdefine')(module) }

Only use these snippets when loading amdefine. If you preserve the basic structure,
with the braces, it will be stripped out when using the RequireJS optimizer.

You can add spaces, line breaks and even require amdefine with a local path, but
keep the rest of the structure to get the stripping behavior.

As you may know, because if statements in JavaScript don’t have their own scope, the var
declaration in the above snippet is made whether the if expression is truthy or not. If
RequireJS is loaded then the declaration is superfluous because define is already already
declared in the same scope in RequireJS. Fortunately JavaScript handles multiple var
declarations of the same variable in the same scope gracefully.

If you want to deliver amdefine.js with your code rather than specifying it as a dependency
with npm, then just download the latest release and refer to it using a relative path:

Latest Version [https://github.com/jrburke/amdefine/raw/latest/amdefine.js]

amdefine/intercept

Consider this very experimental.

Instead of pasting the piece of text for the amdefine setup of a define
variable in each module you create or consume, you can use amdefine/intercept
instead. It will automatically insert the above snippet in each .js file loaded
by Node.

Warning: you should only use this if you are creating an application that
is consuming AMD style defined()’d modules that are distributed via npm and want
to run that code in Node.

For library code where you are not sure if it will be used by others in Node or
in the browser, then explicitly depending on amdefine and placing the code
snippet above is suggested path, instead of using amdefine/intercept. The
intercept module affects all .js files loaded in the Node app, and it is
inconsiderate to modify global state like that unless you are also controlling
the top level app.

Why distribute AMD-style nodes via npm?

npm has a lot of weaknesses for front-end use (installed layout is not great,
should have better support for the `baseUrl + moduleID + ‘.js’ style of loading,
single file JS installs), but some people want a JS package manager and are
willing to live with those constraints. If that is you, but still want to author
in AMD style modules to get dynamic require([]), better direct source usage and
powerful loader plugin support in the browser, then this tool can help.

amdefine/intercept usage

Just require it in your top level app module (for example index.js, server.js):

require('amdefine/intercept');

The module does not return a value, so no need to assign the result to a local
variable.

Then just require() code as you normally would with Node’s require(). Any .js
loaded after the intercept require will have the amdefine check injected in
the .js source as it is loaded. It does not modify the source on disk, just
prepends some content to the text of the module as it is loaded by Node.

How amdefine/intercept works

It overrides the Module._extensions['.js'] in Node to automatically prepend
the amdefine snippet above. So, it will affect any .js file loaded by your
app.

define() usage

It is best if you use the anonymous forms of define() in your module:

define(function (require) {
 var dependency = require('dependency');
});

or

define(['dependency'], function (dependency) {

});

RequireJS optimizer integration. [bookmark: optimizer]

[bookmark: optimizer]
[bookmark: optimizer]Version 1.0.3 of the RequireJS optimizer [http://requirejs.org/docs/optimization.html]
will have support for stripping the if (typeof define !== 'function') check
mentioned above, so you can include this snippet for code that runs in the
browser, but avoid taking the cost of the if() statement once the code is
optimized for deployment.

Node 0.4 Support

If you want to support Node 0.4, then add require as the second parameter to amdefine:

//Only if you want Node 0.4. If using 0.5 or later, use the above snippet.
if (typeof define !== 'function') { var define = require('amdefine')(module, require) }

Limitations

Synchronous vs Asynchronous

amdefine creates a define() function that is callable by your code. It will
execute and trace dependencies and call the factory function synchronously,
to keep the behavior in line with Node’s synchronous dependency tracing.

The exception: calling AMD’s callback-style require() from inside a factory
function. The require callback is called on process.nextTick():

define(function (require) {
 require(['a'], function(a) {
 //'a' is loaded synchronously, but
 //this callback is called on process.nextTick().
 });
});

Loader Plugins

Loader plugins are supported as long as they call their load() callbacks
synchronously. So ones that do network requests will not work. However plugins
like text [http://requirejs.org/docs/api.html#text] can load text files locally.

The plugin API’s load.fromText() is not supported in amdefine, so this means
transpiler plugins like the CoffeeScript loader plugin [https://github.com/jrburke/require-cs]
will not work. This may be fixable, but it is a bit complex, and I do not have
enough node-fu to figure it out yet. See the source for amdefine.js if you want
to get an idea of the issues involved.

Tests

To run the tests, cd to tests and run:

node all.js
node all-intercept.js

License

New BSD and MIT. Check the LICENSE file for all the details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/nopt/node_modules/abbrev/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 To get started, sign the
Contributor License Agreement.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/readable-stream/node_modules/isarray/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

isarray

Array#isArray for older browsers.

Usage

var isArray = require('isarray');

console.log(isArray([])); // => true
console.log(isArray({})); // => false

Installation

With npm [http://npmjs.org] do

$ npm install isarray

Then bundle for the browser with
browserify [https://github.com/substack/browserify].

With component [http://component.io] do

$ component install juliangruber/isarray

License

(MIT)

Copyright (c) 2013 Julian Gruber

<

julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/constantinople/node_modules/uglify-js/node_modules/source-map/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Source Map

This is a library to generate and consume the source map format
described here [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit].

This library is written in the Asynchronous Module Definition format, and works
in the following environments:

		Modern Browsers supporting ECMAScript 5 (either after the build, or with an
AMD loader such as RequireJS)

		Inside Firefox (as a JSM file, after the build)

		With NodeJS versions 0.8.X and higher

Node

$ npm install source-map

Building from Source (for everywhere else)

Install Node and then run

$ git clone https://fitzgen@github.com/mozilla/source-map.git
$ cd source-map
$ npm link .

Next, run

$ node Makefile.dryice.js

This should spew a bunch of stuff to stdout, and create the following files:

		dist/source-map.js - The unminified browser version.

		dist/source-map.min.js - The minified browser version.

		dist/SourceMap.jsm - The JavaScript Module for inclusion in Firefox source.

Examples

Consuming a source map

var rawSourceMap = {
 version: 3,
 file: 'min.js',
 names: ['bar', 'baz', 'n'],
 sources: ['one.js', 'two.js'],
 sourceRoot: 'http://example.com/www/js/',
 mappings: 'CAAC,IAAI,IAAM,SAAUA,GAClB,OAAOC,IAAID;CCDb,IAAI,IAAM,SAAUE,GAClB,OAAOA'
};

var smc = new SourceMapConsumer(rawSourceMap);

console.log(smc.sources);
// ['http://example.com/www/js/one.js',
// 'http://example.com/www/js/two.js']

console.log(smc.originalPositionFor({
 line: 2,
 column: 28
}));
// { source: 'http://example.com/www/js/two.js',
// line: 2,
// column: 10,
// name: 'n' }

console.log(smc.generatedPositionFor({
 source: 'http://example.com/www/js/two.js',
 line: 2,
 column: 10
}));
// { line: 2, column: 28 }

smc.eachMapping(function (m) {
 // ...
});

Generating a source map

In depth guide:
Compiling to JavaScript, and Debugging with Source Maps [https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/]

With SourceNode (high level API)

function compile(ast) {
 switch (ast.type) {
 case 'BinaryExpression':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 [compile(ast.left), " + ", compile(ast.right)]
);
 case 'Literal':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 String(ast.value)
);
 // ...
 default:
 throw new Error("Bad AST");
 }
}

var ast = parse("40 + 2", "add.js");
console.log(compile(ast).toStringWithSourceMap({
 file: 'add.js'
}));
// { code: '40 + 2',
// map: [object SourceMapGenerator] }

With SourceMapGenerator (low level API)

var map = new SourceMapGenerator({
 file: "source-mapped.js"
});

map.addMapping({
 generated: {
 line: 10,
 column: 35
 },
 source: "foo.js",
 original: {
 line: 33,
 column: 2
 },
 name: "christopher"
});

console.log(map.toString());
// '{"version":3,"file":"source-mapped.js","sources":["foo.js"],"names":["christopher"],"mappings":";;;;;;;;;mCAgCEA"}'

API

Get a reference to the module:

// NodeJS
var sourceMap = require('source-map');

// Browser builds
var sourceMap = window.sourceMap;

// Inside Firefox
let sourceMap = {};
Components.utils.import('resource:///modules/devtools/SourceMap.jsm', sourceMap);

SourceMapConsumer

A SourceMapConsumer instance represents a parsed source map which we can query
for information about the original file positions by giving it a file position
in the generated source.

new SourceMapConsumer(rawSourceMap)

The only parameter is the raw source map (either as a string which can be
JSON.parse‘d, or an object). According to the spec, source maps have the
following attributes:

		version: Which version of the source map spec this map is following.

		sources: An array of URLs to the original source files.

		names: An array of identifiers which can be referrenced by individual
mappings.

		sourceRoot: Optional. The URL root from which all sources are relative.

		sourcesContent: Optional. An array of contents of the original source files.

		mappings: A string of base64 VLQs which contain the actual mappings.

		file: Optional. The generated filename this source map is associated with.

SourceMapConsumer.prototype.originalPositionFor(generatedPosition)

Returns the original source, line, and column information for the generated
source’s line and column positions provided. The only argument is an object with
the following properties:

		line: The line number in the generated source.

		column: The column number in the generated source.

and an object is returned with the following properties:

		source: The original source file, or null if this information is not
available.

		line: The line number in the original source, or null if this information is
not available.

		column: The column number in the original source, or null or null if this
information is not available.

		name: The original identifier, or null if this information is not available.

SourceMapConsumer.prototype.generatedPositionFor(originalPosition)

Returns the generated line and column information for the original source,
line, and column positions provided. The only argument is an object with
the following properties:

		source: The filename of the original source.

		line: The line number in the original source.

		column: The column number in the original source.

and an object is returned with the following properties:

		line: The line number in the generated source, or null.

		column: The column number in the generated source, or null.

SourceMapConsumer.prototype.sourceContentFor(source)

Returns the original source content for the source provided. The only
argument is the URL of the original source file.

SourceMapConsumer.prototype.eachMapping(callback, context, order)

Iterate over each mapping between an original source/line/column and a
generated line/column in this source map.

		callback: The function that is called with each mapping. Mappings have the
form { source, generatedLine, generatedColumn, originalLine, originalColumn, name }

		context: Optional. If specified, this object will be the value of this
every time that callback is called.

		order: Either SourceMapConsumer.GENERATED_ORDER or
SourceMapConsumer.ORIGINAL_ORDER. Specifies whether you want to iterate over
the mappings sorted by the generated file’s line/column order or the
original’s source/line/column order, respectively. Defaults to
SourceMapConsumer.GENERATED_ORDER.

SourceMapGenerator

An instance of the SourceMapGenerator represents a source map which is being
built incrementally.

new SourceMapGenerator([startOfSourceMap])

You may pass an object with the following properties:

		file: The filename of the generated source that this source map is
associated with.

		sourceRoot: A root for all relative URLs in this source map.

SourceMapGenerator.fromSourceMap(sourceMapConsumer)

Creates a new SourceMapGenerator based on a SourceMapConsumer

		sourceMapConsumer The SourceMap.

SourceMapGenerator.prototype.addMapping(mapping)

Add a single mapping from original source line and column to the generated
source’s line and column for this source map being created. The mapping object
should have the following properties:

		generated: An object with the generated line and column positions.

		original: An object with the original line and column positions.

		source: The original source file (relative to the sourceRoot).

		name: An optional original token name for this mapping.

SourceMapGenerator.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for an original source file.

		sourceFile the URL of the original source file.

		sourceContent the content of the source file.

SourceMapGenerator.prototype.applySourceMap(sourceMapConsumer[, sourceFile[, sourceMapPath]])

Applies a SourceMap for a source file to the SourceMap.
Each mapping to the supplied source file is rewritten using the
supplied SourceMap. Note: The resolution for the resulting mappings
is the minimium of this map and the supplied map.

		sourceMapConsumer: The SourceMap to be applied.

		sourceFile: Optional. The filename of the source file.
If omitted, sourceMapConsumer.file will be used, if it exists.
Otherwise an error will be thrown.

		sourceMapPath: Optional. The dirname of the path to the SourceMap
to be applied. If relative, it is relative to the SourceMap.

This parameter is needed when the two SourceMaps aren’t in the same
directory, and the SourceMap to be applied contains relative source
paths. If so, those relative source paths need to be rewritten
relative to the SourceMap.

If omitted, it is assumed that both SourceMaps are in the same directory,
thus not needing any rewriting. (Supplying '.' has the same effect.)

SourceMapGenerator.prototype.toString()

Renders the source map being generated to a string.

SourceNode

SourceNodes provide a way to abstract over interpolating and/or concatenating
snippets of generated JavaScript source code, while maintaining the line and
column information associated between those snippets and the original source
code. This is useful as the final intermediate representation a compiler might
use before outputting the generated JS and source map.

new SourceNode([line, column, source[, chunk[, name]]])

		line: The original line number associated with this source node, or null if
it isn’t associated with an original line.

		column: The original column number associated with this source node, or null
if it isn’t associated with an original column.

		source: The original source’s filename; null if no filename is provided.

		chunk: Optional. Is immediately passed to SourceNode.prototype.add, see
below.

		name: Optional. The original identifier.

SourceNode.fromStringWithSourceMap(code, sourceMapConsumer)

Creates a SourceNode from generated code and a SourceMapConsumer.

		code: The generated code

		sourceMapConsumer The SourceMap for the generated code

SourceNode.prototype.add(chunk)

Add a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.prepend(chunk)

Prepend a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for a source file. This will be added to the
SourceMap in the sourcesContent field.

		sourceFile: The filename of the source file

		sourceContent: The content of the source file

SourceNode.prototype.walk(fn)

Walk over the tree of JS snippets in this node and its children. The walking
function is called once for each snippet of JS and is passed that snippet and
the its original associated source’s line/column location.

		fn: The traversal function.

SourceNode.prototype.walkSourceContents(fn)

Walk over the tree of SourceNodes. The walking function is called for each
source file content and is passed the filename and source content.

		fn: The traversal function.

SourceNode.prototype.join(sep)

Like Array.prototype.join except for SourceNodes. Inserts the separator
between each of this source node’s children.

		sep: The separator.

SourceNode.prototype.replaceRight(pattern, replacement)

Call String.prototype.replace on the very right-most source snippet. Useful
for trimming whitespace from the end of a source node, etc.

		pattern: The pattern to replace.

		replacement: The thing to replace the pattern with.

SourceNode.prototype.toString()

Return the string representation of this source node. Walks over the tree and
concatenates all the various snippets together to one string.

SourceNode.prototype.toStringWithSourceMap([startOfSourceMap])

Returns the string representation of this tree of source nodes, plus a
SourceMapGenerator which contains all the mappings between the generated and
original sources.

The arguments are the same as those to new SourceMapGenerator.

Tests

[image: Build Status] [https://travis-ci.org/mozilla/source-map]

Install NodeJS version 0.8.0 or greater, then run node test/run-tests.js.

To add new tests, create a new file named test/test-<your new test name>.js
and export your test functions with names that start with “test”, for example

exports["test doing the foo bar"] = function (assert, util) {
 ...
};

The new test will be located automatically when you run the suite.

The util argument is the test utility module located at test/source-map/util.

The assert argument is a cut down version of node’s assert module. You have
access to the following assertion functions:

		doesNotThrow

		equal

		ok

		strictEqual

		throws

(The reason for the restricted set of test functions is because we need the
tests to run inside Firefox’s test suite as well and so the assert module is
shimmed in that environment. See build/assert-shim.js.)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/findup-sync/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

findup-sync [image: Build Status] [http://travis-ci.org/cowboy/node-findup-sync]

Find the first file matching a given pattern in the current directory or the nearest ancestor directory.

Getting Started

Install the module with: npm install findup-sync

var findup = require('findup-sync');

// Start looking in the CWD.
var filepath1 = findup('{a,b}*.txt');

// Start looking somewhere else, and ignore case (probably a good idea).
var filepath2 = findup('{a,b}*.txt', {cwd: '/some/path', nocase: true});

Usage

findup(patternOrPatterns [, minimatchOptions])

patternOrPatterns

Type: String or ArrayDefault: none

One or more wildcard glob patterns. Or just filenames.

minimatchOptions

Type: ObjectDefault: {}

Options to be passed to minimatch [https://github.com/isaacs/minimatch].

Note that if you want to start in a different directory than the current working directory, specify a cwd property here.

Contributing

In lieu of a formal styleguide, take care to maintain the existing coding style. Add unit tests for any new or changed functionality. Lint and test your code using Grunt [http://gruntjs.com/].

Release History

2014-03-14 - v0.1.3 - Updated dependencies.2013-03-08 - v0.1.2 - Updated dependencies. Fixed a Node 0.9.x bug. Updated unit tests to work cross-platform.2012-11-15 - v0.1.1 - Now works without an options object.2012-11-01 - v0.1.0 - Initial release.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/contextify/node_modules/nan/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Native Abstractions for Node.js

A header file filled with macro and utility goodness for making add-on development for Node.js easier across versions 0.8, 0.10 and 0.11, and eventually 0.12.

Current version: 1.3.0

(See nan.h [https://github.com/rvagg/nan/blob/master/CHANGELOG.md] for complete ChangeLog)

[image: NPM] [https://nodei.co/npm/nan/] [image: NPM] [https://nodei.co/npm/nan/]

[image: Build Status] [http://travis-ci.org/rvagg/nan]
[image: Build status] [https://ci.appveyor.com/project/RodVagg/nan]

Thanks to the crazy changes in V8 (and some in Node core), keeping native addons compiling happily across versions, particularly 0.10 to 0.11/0.12, is a minor nightmare. The goal of this project is to store all logic necessary to develop native Node.js addons without having to inspect NODE_MODULE_VERSION and get yourself into a macro-tangle.

This project also contains some helper utilities that make addon development a bit more pleasant.

		News & Updates

		Usage

		Example

		API

[bookmark: news]

News & Updates

Aug-2014: 1.3.0 release

		NanCString() and NanRawString() have been deprecated in favour of new NanAsciiString, NanUtf8String and NanUcs2String. These classes manage the underlying memory for you in a safer way than just handing off an allocated array. You should now *NanAsciiString(handle) to access the raw char data, you can also allocate on the heap if you need to keep a reference.

		Two more NanMakeCallback overloads have been added to for parity with Node core.

		You can now NanNew(std::string) (use NanNew<std::string&>(std::string&) to pass by reference)

		NanSetTemplate, NanSetPrototypeTemplate and NanSetInstanceTemplate have been added.

May-2014: 1.1.0 release

		We’ve deprecated NanSymbol(), you should just use NanNew<String>() now.

		NanNull(), NanUndefined(), NanTrue(), NanFalse() all return Locals now.

		nan_isolate is gone, it was intended to be internal-only but if you were using it then you should switch to v8::Isolate::GetCurrent().

		NanNew() has received some additional overload-love so you should be able to give it many kinds of values without specifying the <Type>.

		Lots of small fixes and additions to expand the V8 API coverage, use the source, Luke.

May-2014: Major changes for V8 3.25 / Node 0.11.13

Node 0.11.11 and 0.11.12 were both broken releases for native add-ons, you simply can’t properly compile against either of them for different reasons. But we now have a 0.11.13 release that jumps a couple of versions of V8 ahead and includes some more, major (traumatic) API changes.

Because we are now nearing Node 0.12 and estimate that the version of V8 we are using in Node 0.11.13 will be close to the API we get for 0.12, we have taken the opportunity to not only fix NAN for 0.11.13 but make some major changes to improve the NAN API.

We have removed support for Node 0.11 versions prior to 0.11.13. As usual, our tests are run against (and pass) the last 5 versions of Node 0.8 and Node 0.10. We also include Node 0.11.13 obviously.

The major change is something that Benjamin Byholm has put many hours in to. We now have a fantastic new NanNew<T>(args) interface for creating new Locals, this replaces NanNewLocal() and much more. If you look in ./nan.h you’ll see a large number of overloaded versions of this method. In general you should be able to NanNew<Type>(arguments) for any type you want to make a Local from. This includes Persistent types, so we now have a Local<T> NanNew(const Persistent<T> arg) to replace NanPersistentToLocal().

We also now have NanUndefined(), NanNull(), NanTrue() and NanFalse(). Mainly because of the new requirement for an Isolate argument for each of the native V8 versions of this.

V8 has now introduced an EscapableHandleScope from which you scope.Escape(Local<T> value) to return a value from a one scope to another. This replaces the standard HandleScope and scope.Close(Local<T> value), although HandleScope still exists for when you don’t need to return a handle to the caller. For NAN we are exposing it as NanEscapableScope() and NanEscapeScope(), while NanScope() is still how you create a new scope that doesn’t need to return handles. For older versions of Node/V8, it’ll still map to the older HandleScope functionality.

NanFromV8String() was deprecated and has now been removed. You should use NanCString() or NanRawString() instead.

Because node::MakeCallback() now takes an Isolate, and because it doesn’t exist in older versions of Node, we’ve introduced NanMakeCallback(). You should always use this when calling a JavaScript function from C++.

There’s lots more, check out the Changelog in nan.h or look through #86 [https://github.com/rvagg/nan/pull/86] for all the gory details.

Dec-2013: NanCString and NanRawString

Two new functions have been introduced to replace the functionality that’s been provided by NanFromV8String until now. NanCString has sensible defaults so it’s super easy to fetch a null-terminated c-style string out of a v8::String. NanFromV8String is still around and has defaults that allow you to pass a single handle to fetch a char* while NanRawString requires a little more attention to arguments.

Nov-2013: Node 0.11.9+ breaking V8 change

The version of V8 that’s shipping with Node 0.11.9+ has changed the signature for new Locals to: v8::Local<T>::New(isolate, value), i.e. introducing the isolate argument and therefore breaking all new Local declarations for previous versions. NAN 0.6+ now includes a NanNewLocal<T>(value) that can be used in place to work around this incompatibility and maintain compatibility with 0.8->0.11.9+ (minus a few early 0.11 releases).

For example, if you wanted to return a null on a callback you will have to change the argument from v8::Local<v8::Value>::New(v8::Null()) to NanNewLocal<v8::Value>(v8::Null()).

Nov-2013: Change to binding.gyp "include_dirs" for NAN

Inclusion of NAN in a project’s binding.gyp is now greatly simplified. You can now just use "<!(node -e \"require('nan')\")" in your "include_dirs", see example below (note Windows needs the quoting around require to be just right: "require('nan')" with appropriate \ escaping).

[bookmark: usage]

Usage

Simply add NAN as a dependency in the package.json of your Node addon:

$ npm install --save nan

Pull in the path to NAN in your binding.gyp so that you can use #include <nan.h> in your .cpp files:

"include_dirs" : [
 "<!(node -e \"require('nan')\")"
]

This works like a -I<path-to-NAN> when compiling your addon.

[bookmark: example]

Example

See LevelDOWN [https://github.com/rvagg/node-leveldown/pull/48] for a full example of NAN in use.

For a simpler example, see the async pi estimation example [https://github.com/rvagg/nan/tree/master/examples/async_pi_estimate] in the examples directory for full code and an explanation of what this Monte Carlo Pi estimation example does. Below are just some parts of the full example that illustrate the use of NAN.

Compare to the current 0.10 version of this example, found in the node-addon-examples [https://github.com/rvagg/node-addon-examples/tree/master/9_async_work] repository and also a 0.11 version of the same found here [https://github.com/kkoopa/node-addon-examples/tree/5c01f58fc993377a567812597e54a83af69686d7/9_async_work].

Note that there is no embedded version sniffing going on here and also the async work is made much simpler, see below for details on the NanAsyncWorker class.

// addon.cc
#include <node.h>
#include <nan.h>
// ...

using v8::FunctionTemplate;
using v8::Handle;
using v8::Object;
using v8::String;

void InitAll(Handle<Object> exports) {
 exports->Set(NanNew<String>("calculateSync"),
 NanNew<FunctionTemplate>(CalculateSync)->GetFunction());

 exports->Set(NanNew<String>("calculateAsync"),
 NanNew<FunctionTemplate>(CalculateAsync)->GetFunction());
}

NODE_MODULE(addon, InitAll)

// sync.h
#include <node.h>
#include <nan.h>

NAN_METHOD(CalculateSync);

// sync.cc
#include <node.h>
#include <nan.h>
#include "./sync.h"
// ...

using v8::Number;

// Simple synchronous access to the `Estimate()` function
NAN_METHOD(CalculateSync) {
 NanScope();

 // expect a number as the first argument
 int points = args[0]->Uint32Value();
 double est = Estimate(points);

 NanReturnValue(NanNew<Number>(est));
}

// async.h
#include <node.h>
#include <nan.h>

NAN_METHOD(CalculateAsync);

// async.cc
#include <node.h>
#include <nan.h>
#include "./async.h"

// ...

using v8::Function;
using v8::Local;
using v8::Null;
using v8::Number;
using v8::Value;

class PiWorker : public NanAsyncWorker {
 public:
 PiWorker(NanCallback *callback, int points)
 : NanAsyncWorker(callback), points(points) {}
 ~PiWorker() {}

 // Executed inside the worker-thread.
 // It is not safe to access V8, or V8 data structures
 // here, so everything we need for input and output
 // should go on `this`.
 void Execute () {
 estimate = Estimate(points);
 }

 // Executed when the async work is complete
 // this function will be run inside the main event loop
 // so it is safe to use V8 again
 void HandleOKCallback () {
 NanScope();

 Local<Value> argv[] = {
 NanNull()
 , NanNew<Number>(estimate)
 };

 callback->Call(2, argv);
 };

 private:
 int points;
 double estimate;
};

// Asynchronous access to the `Estimate()` function
NAN_METHOD(CalculateAsync) {
 NanScope();

 int points = args[0]->Uint32Value();
 NanCallback *callback = new NanCallback(args[1].As<Function>());

 NanAsyncQueueWorker(new PiWorker(callback, points));
 NanReturnUndefined();
}

[bookmark: api]

API

		NAN_METHOD

		NAN_GETTER

		NAN_SETTER

		NAN_PROPERTY_GETTER

		NAN_PROPERTY_SETTER

		NAN_PROPERTY_ENUMERATOR

		NAN_PROPERTY_DELETER

		NAN_PROPERTY_QUERY

		NAN_INDEX_GETTER

		NAN_INDEX_SETTER

		NAN_INDEX_ENUMERATOR

		NAN_INDEX_DELETER

		NAN_INDEX_QUERY

		NAN_WEAK_CALLBACK

		NAN_DEPRECATED

		NAN_INLINE

		NanNew

		NanUndefined

		NanNull

		NanTrue

		NanFalse

		NanReturnValue

		NanReturnUndefined

		NanReturnNull

		NanReturnEmptyString

		NanScope

		NanEscapableScope

		NanEscapeScope

		NanLocker

		NanUnlocker

		NanGetInternalFieldPointer

		NanSetInternalFieldPointer

		NanObjectWrapHandle

		NanSymbol

		NanGetPointerSafe

		NanSetPointerSafe

		NanRawString

		NanCString

		NanAsciiString

		NanUtf8String

		NanUcs2String

		NanBooleanOptionValue

		NanUInt32OptionValue

		NanError, NanTypeError, NanRangeError

		NanThrowError, NanThrowTypeError, NanThrowRangeError, NanThrowError(Handle), NanThrowError(Handle, int)

		NanNewBufferHandle(char *, size_t, FreeCallback, void *), NanNewBufferHandle(char *, uint32_t), NanNewBufferHandle(uint32_t)

		NanBufferUse(char *, uint32_t)

		NanNewContextHandle

		NanGetCurrentContext

		NanHasInstance

		NanDisposePersistent

		NanAssignPersistent

		NanMakeWeakPersistent

		NanSetTemplate

		NanSetPrototypeTemplate

		NanSetInstanceTemplate

		NanMakeCallback

		NanCompileScript

		NanRunScript

		NanAdjustExternalMemory

		NanAddGCEpilogueCallback

		NanAddGCPrologueCallback

		NanRemoveGCEpilogueCallback

		NanRemoveGCPrologueCallback

		NanGetHeapStatistics

		NanCallback

		NanAsyncWorker

		NanAsyncQueueWorker

[bookmark: api_nan_method]

NAN_METHOD(methodname)

Use NAN_METHOD to define your V8 accessible methods:

// .h:
class Foo : public node::ObjectWrap {
 ...

 static NAN_METHOD(Bar);
 static NAN_METHOD(Baz);
}

// .cc:
NAN_METHOD(Foo::Bar) {
 ...
}

NAN_METHOD(Foo::Baz) {
 ...
}

The reason for this macro is because of the method signature change in 0.11:

// 0.10 and below:
Handle<Value> name(const Arguments& args)

// 0.11 and above
void name(const FunctionCallbackInfo<Value>& args)

The introduction of FunctionCallbackInfo brings additional complications:

[bookmark: api_nan_getter]

NAN_GETTER(methodname)

Use NAN_GETTER to declare your V8 accessible getters. You get a Local<String> property and an appropriately typed args object that can act like the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_GETTER.

[bookmark: api_nan_setter]

NAN_SETTER(methodname)

Use NAN_SETTER to declare your V8 accessible setters. Same as NAN_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_property_getter]

NAN_PROPERTY_GETTER(cbname)

Use NAN_PROPERTY_GETTER to declare your V8 accessible property getters. You get a Local<String> property and an appropriately typed args object that can act similar to the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_GETTER.

[bookmark: api_nan_property_setter]

NAN_PROPERTY_SETTER(cbname)

Use NAN_PROPERTY_SETTER to declare your V8 accessible property setters. Same as NAN_PROPERTY_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_property_enumerator]

NAN_PROPERTY_ENUMERATOR(cbname)

Use NAN_PROPERTY_ENUMERATOR to declare your V8 accessible property enumerators. You get an appropriately typed args object like the args argument to a NAN_PROPERTY_GETTER call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_ENUMERATOR.

[bookmark: api_nan_property_deleter]

NAN_PROPERTY_DELETER(cbname)

Use NAN_PROPERTY_DELETER to declare your V8 accessible property deleters. Same as NAN_PROPERTY_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_DELETER.

[bookmark: api_nan_property_query]

NAN_PROPERTY_QUERY(cbname)

Use NAN_PROPERTY_QUERY to declare your V8 accessible property queries. Same as NAN_PROPERTY_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_QUERY.

[bookmark: api_nan_index_getter]

NAN_INDEX_GETTER(cbname)

Use NAN_INDEX_GETTER to declare your V8 accessible index getters. You get a uint32_t index and an appropriately typed args object that can act similar to the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_GETTER.

[bookmark: api_nan_index_setter]

NAN_INDEX_SETTER(cbname)

Use NAN_INDEX_SETTER to declare your V8 accessible index setters. Same as NAN_INDEX_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_index_enumerator]

NAN_INDEX_ENUMERATOR(cbname)

Use NAN_INDEX_ENUMERATOR to declare your V8 accessible index enumerators. You get an appropriately typed args object like the args argument to a NAN_INDEX_GETTER call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_ENUMERATOR.

[bookmark: api_nan_index_deleter]

NAN_INDEX_DELETER(cbname)

Use NAN_INDEX_DELETER to declare your V8 accessible index deleters. Same as NAN_INDEX_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_DELETER.

[bookmark: api_nan_index_query]

NAN_INDEX_QUERY(cbname)

Use NAN_INDEX_QUERY to declare your V8 accessible index queries. Same as NAN_INDEX_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_QUERY.

[bookmark: api_nan_weak_callback]

NAN_WEAK_CALLBACK(cbname)

Use NAN_WEAK_CALLBACK to define your V8 WeakReference callbacks. There is an argument object const _NanWeakCallbackData<T, P> &data allowing access to the weak object and the supplied parameter through its GetValue and GetParameter methods. You can even access the weak callback info object through the GetCallbackInfo()method, but you probably should not. Revive() keeps the weak object alive until the next GC round.

NAN_WEAK_CALLBACK(weakCallback) {
 int *parameter = data.GetParameter();
 NanMakeCallback(NanGetCurrentContext()->Global(), data.GetValue(), 0, NULL);
 if ((*parameter)++ == 0) {
 data.Revive();
 } else {
 delete parameter;
 }
}

[bookmark: api_nan_deprecated]

NAN_DEPRECATED

Declares a function as deprecated.

static NAN_DEPRECATED NAN_METHOD(foo) {
 ...
}

[bookmark: api_nan_inline]

NAN_INLINE

Inlines a function.

NAN_INLINE int foo(int bar) {
 ...
}

[bookmark: api_nan_new]

Local<

T>

 NanNew<

T>

(...)

Use NanNew to construct almost all v8 objects and make new local handles.

Note: Using NanNew with an std::string is possible, however, you should ensure
to use the overload version (NanNew(stdString)) rather than the template
version (NanNew<v8::String>(stdString)) as there is an unnecessary
performance penalty to using the template version because of the inability for
compilers to appropriately deduce to reference types on template specialization.

Local<String> s = NanNew<String>("value");

...

Persistent<Object> o;

...

Local<Object> lo = NanNew(o);

[bookmark: api_nan_undefined]

Local<

Primitive>

 NanUndefined()

Use instead of Undefined()

[bookmark: api_nan_null]

Local<

Primitive>

 NanNull()

Use instead of Null()

[bookmark: api_nan_true]

Local<

Boolean>

 NanTrue()

Use instead of True()

[bookmark: api_nan_false]

Local<

Boolean>

 NanFalse()

Use instead of False()

[bookmark: api_nan_return_value]

NanReturnValue(Handle<

Value>

)

Use NanReturnValue when you want to return a value from your V8 accessible method:

NAN_METHOD(Foo::Bar) {
 ...

 NanReturnValue(NanNew<String>("FooBar!"));
}

No return statement required.

[bookmark: api_nan_return_undefined]

NanReturnUndefined()

Use NanReturnUndefined when you don’t want to return anything from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnUndefined();
}

[bookmark: api_nan_return_null]

NanReturnNull()

Use NanReturnNull when you want to return Null from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnNull();
}

[bookmark: api_nan_return_empty_string]

NanReturnEmptyString()

Use NanReturnEmptyString when you want to return an empty String from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnEmptyString();
}

[bookmark: api_nan_scope]

NanScope()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanScope() necessary, use it in place of HandleScope scope when you do not wish to return handles (Handle or Local) to the surrounding scope (or in functions directly exposed to V8, as they do not return values in the normal sense):

NAN_METHOD(Foo::Bar) {
 NanScope();

 NanReturnValue(NanNew<String>("FooBar!"));
}

This method is not directly exposed to V8, nor does it return a handle, so it uses an unescapable scope:

bool Foo::Bar() {
 NanScope();

 Local<Boolean> val = NanFalse();
 ...
 return val->Value();
}

[bookmark: api_nan_escapable_scope]

NanEscapableScope()

The separation of handle scopes into escapable and inescapable scopes makes NanEscapableScope() necessary, use it in place of HandleScope scope when you later wish to return a handle (Handle or Local) from the scope, this is for internal functions not directly exposed to V8:

Handle<String> Foo::Bar() {
 NanEscapableScope();

 return NanEscapeScope(NanNew<String>("FooBar!"));
}

[bookmark: api_nan_escape_scope]

Local<

T>

 NanEscapeScope(Handle<

T>

 value);

Use together with NanEscapableScope to escape the scope. Corresponds to HandleScope::Close or EscapableHandleScope::Escape.

[bookmark: api_nan_locker]

NanLocker()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanLocker() necessary, use it in place of Locker locker:

NAN_METHOD(Foo::Bar) {
 NanLocker();
 ...
 NanUnlocker();
}

[bookmark: api_nan_unlocker]

NanUnlocker()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanUnlocker() necessary, use it in place of Unlocker unlocker:

NAN_METHOD(Foo::Bar) {
 NanLocker();
 ...
 NanUnlocker();
}

[bookmark: api_nan_get_internal_field_pointer]

void * NanGetInternalFieldPointer(Handle<

Object>

, int)

Gets a pointer to the internal field with at index from a V8 Object handle.

Local<Object> obj;
...
NanGetInternalFieldPointer(obj, 0);

[bookmark: api_nan_set_internal_field_pointer]

void NanSetInternalFieldPointer(Handle<

Object>

, int, void *)

Sets the value of the internal field at index on a V8 Object handle.

static Persistent<Function> dataWrapperCtor;
...
Local<Object> wrapper = NanNew(dataWrapperCtor)->NewInstance();
NanSetInternalFieldPointer(wrapper, 0, this);

[bookmark: api_nan_object_wrap_handle]

Local<

Object>

 NanObjectWrapHandle(Object)

When you want to fetch the V8 object handle from a native object you’ve wrapped with Node’s ObjectWrap, you should use NanObjectWrapHandle:

NanObjectWrapHandle(iterator)->Get(NanNew<String>("end"))

[bookmark: api_nan_symbol]

Local<

String>

 NanSymbol(const char *)

Deprecated. Use NanNew<String> instead.
Use to create string symbol objects (i.e. v8::String::NewSymbol(x)), for getting and setting object properties, or names of objects.

bool foo = false;
if (obj->Has(NanNew<String>("foo")))
 foo = optionsObj->Get(NanNew<String>("foo"))->BooleanValue()

[bookmark: api_nan_get_pointer_safe]

Type NanGetPointerSafe(Type *[, Type])

A helper for getting values from optional pointers. If the pointer is NULL, the function returns the optional default value, which defaults to 0. Otherwise, the function returns the value the pointer points to.

char *plugh(uint32_t *optional) {
 char res[] = "xyzzy";
 uint32_t param = NanGetPointerSafe<uint32_t>(optional, 0x1337);
 switch (param) {
 ...
 }
 NanSetPointerSafe<uint32_t>(optional, 0xDEADBEEF);
}

[bookmark: api_nan_set_pointer_safe]

bool NanSetPointerSafe(Type *, Type)

A helper for setting optional argument pointers. If the pointer is NULL, the function simply returns false. Otherwise, the value is assigned to the variable the pointer points to.

const char *plugh(size_t *outputsize) {
 char res[] = "xyzzy";
 if !(NanSetPointerSafe<size_t>(outputsize, strlen(res) + 1)) {
 ...
 }

 ...
}

[bookmark: api_nan_raw_string]

void* NanRawString(Handle<

Value>

, enum Nan::Encoding, size_t *, void *, size_t, int)

Deprecated. Use something else.

When you want to convert a V8 String to a char* buffer, use NanRawString. You have to supply an encoding as well as a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows setting String::WriteOptions.
Just remember that you’ll end up with an object that you’ll need to delete[] at some point unless you supply your own buffer:

size_t count;
void* decoded = NanRawString(args[1], Nan::BASE64, &count, NULL, 0, String::HINT_MANY_WRITES_EXPECTED);
...
delete[] reinterpret_cast<char*>(decoded);

[bookmark: api_nan_c_string]

char* NanCString(Handle<

Value>

, size_t *[, char *, size_t, int])

Deprecated. Use NanUtf8String instead.

When you want to convert a V8 String to a null-terminated C char* use NanCString. The resulting char* will be UTF-8-encoded, and you need to supply a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows optionally setting String::WriteOptions, which default to v8::String::NO_OPTIONS.
Just remember that you’ll end up with an object that you’ll need to delete[] at some point unless you supply your own buffer:

size_t count;
char* name = NanCString(args[0], &count);
...
delete[] name;

[bookmark: api_nan_ascii_string]

NanAsciiString

Convert a String to zero-terminated, Ascii-encoded char *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanAsciiString(arg[0])));
}

[bookmark: api_nan_utf8_string]

NanUtf8String

Convert a String to zero-terminated, Utf8-encoded char *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanUtf8String(arg[0])));
}

[bookmark: api_nan_ucs2_string]

NanUcs2String

Convert a String to zero-terminated, Ucs2-encoded uint16_t *.

NAN_METHOD(foo) {
 NanScope();
 NanReturnValue(NanNew(*NanUcs2String(arg[0])));
}

[bookmark: api_nan_boolean_option_value]

bool NanBooleanOptionValue(Handle<

Value>

, Handle<

String>

[, bool])

When you have an “options” object that you need to fetch properties from, boolean options can be fetched with this pair. They check first if the object exists (IsEmpty), then if the object has the given property (Has) then they get and convert/coerce the property to a bool.

The optional last parameter is the default value, which is false if left off:

// `foo` is false unless the user supplies a truthy value for it
bool foo = NanBooleanOptionValue(optionsObj, NanNew<String>("foo"));
// `bar` is true unless the user supplies a falsy value for it
bool bar = NanBooleanOptionValueDefTrue(optionsObj, NanNew<String>("bar"), true);

[bookmark: api_nan_uint32_option_value]

uint32_t NanUInt32OptionValue(Handle<

Value>

, Handle<

String>

, uint32_t)

Similar to NanBooleanOptionValue, use NanUInt32OptionValue to fetch an integer option from your options object. Can be any kind of JavaScript Number and it will be coerced to an unsigned 32-bit integer.

Requires all 3 arguments as a default is not optional:

uint32_t count = NanUInt32OptionValue(optionsObj, NanNew<String>("count"), 1024);

[bookmark: api_nan_error]

NanError(message), NanTypeError(message), NanRangeError(message)

For making Error, TypeError and RangeError objects.

Local<Value> res = NanError("you must supply a callback argument");

[bookmark: api_nan_throw_error]

NanThrowError(message), NanThrowTypeError(message), NanThrowRangeError(message), NanThrowError(Local<

Value>

), NanThrowError(Local<

Value>

, int)

For throwing Error, TypeError and RangeError objects.

NanThrowError("you must supply a callback argument");

Can also handle any custom object you may want to throw. If used with the error code argument, it will add the supplied error code to the error object as a property called code.

[bookmark: api_nan_new_buffer_handle]

Local<

Object>

 NanNewBufferHandle(char *, uint32_t), Local<

Object>

 NanNewBufferHandle(uint32_t)

The Buffer API has changed a little in Node 0.11, this helper provides consistent access to Buffer creation:

NanNewBufferHandle((char*)value.data(), value.size());

Can also be used to initialize a Buffer with just a size argument.

Can also be supplied with a NanFreeCallback and a hint for the garbage collector.

[bookmark: api_nan_buffer_use]

Local<

Object>

 NanBufferUse(char*, uint32_t)

Buffer::New(char*, uint32_t) prior to 0.11 would make a copy of the data.
While it was possible to get around this, it required a shim by passing a
callback. So the new API Buffer::Use(char*, uint32_t) was introduced to remove
needing to use this shim.

NanBufferUse uses the char* passed as the backing data, and will free the
memory automatically when the weak callback is called. Keep this in mind, as
careless use can lead to “double free or corruption” and other cryptic failures.

[bookmark: api_nan_has_instance]

bool NanHasInstance(Persistent<

FunctionTemplate>

&, Handle<

Value>

)

Can be used to check the type of an object to determine it is of a particular class you have already defined and have a Persistent<FunctionTemplate> handle for.

[bookmark: api_nan_new_context_handle]

Local<

Context>

 NanNewContextHandle([ExtensionConfiguration*, Handle<

ObjectTemplate>

, Handle<

Value>

])

Creates a new Local<Context> handle.

Local<FunctionTemplate> ftmpl = NanNew<FunctionTemplate>();
Local<ObjectTemplate> otmpl = ftmpl->InstanceTemplate();
Local<Context> ctx = NanNewContextHandle(NULL, otmpl);

[bookmark: api_nan_get_current_context]

Local<

Context>

 NanGetCurrentContext()

Gets the current context.

Local<Context> ctx = NanGetCurrentContext();

[bookmark: api_nan_dispose_persistent]

void NanDisposePersistent(Persistent<

T>

 &)

Use NanDisposePersistent to dispose a Persistent handle.

NanDisposePersistent(persistentHandle);

[bookmark: api_nan_assign_persistent]

NanAssignPersistent(handle, object)

Use NanAssignPersistent to assign a non-Persistent handle to a Persistent one. You can no longer just declare a Persistent handle and assign directly to it later, you have to Reset it in Node 0.11, so this makes it easier.

In general it is now better to place anything you want to protect from V8’s garbage collector as properties of a generic Object and then assign that to a Persistent. This works in older versions of Node also if you use NanAssignPersistent:

Persistent<Object> persistentHandle;

...

Local<Object> obj = NanNew<Object>();
obj->Set(NanNew<String>("key"), keyHandle); // where keyHandle might be a Local<String>
NanAssignPersistent(persistentHandle, obj)

[bookmark: api_nan_make_weak_persistent]

_NanWeakCallbackInfo<

T, P>

* NanMakeWeakPersistent(Handle<

T>

, P*, _NanWeakCallbackInfo<

T, P>

::Callback)

Creates a weak persistent handle with the supplied parameter and NAN_WEAK_CALLBACK.

NAN_WEAK_CALLBACK(weakCallback) {

...

}

Local<Function> func;

...

int *parameter = new int(0);
NanMakeWeakPersistent(func, parameter, &weakCallback);

[bookmark: api_nan_set_template]

NanSetTemplate(templ, name, value [, attributes])

Use to add properties on object and function templates.

[bookmark: api_nan_set_prototype_template]

NanSetPrototypeTemplate(templ, name, value [, attributes])

Use to add prototype properties on function templates.

[bookmark: api_nan_set_instance_template]

NanSetInstanceTemplate(templ, name, value [, attributes])

Use to add instance properties on function templates.

[bookmark: api_nan_make_callback]

NanMakeCallback(target, func, argc, argv)

Use instead of node::MakeCallback to call javascript functions. This is the only proper way of calling functions.

[bookmark: api_nan_compile_script]

NanCompileScript(Handle s [, const ScriptOrigin&

 origin])

Use to create new scripts bound to the current context.

[bookmark: api_nan_run_script]

NanRunScript(script)

Use to run both bound and unbound scripts.

[bookmark: api_nan_adjust_external_memory]

NanAdjustExternalMemory(int change_in_bytes)

Simply does AdjustAmountOfExternalAllocatedMemory, note that the argument and returned value have type int.

[bookmark: api_nan_add_gc_epilogue_callback]

NanAddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type_filter=kGCTypeAll)

Simply does AddGCEpilogueCallback

[bookmark: api_nan_add_gc_prologue_callback]

NanAddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type_filter=kGCTypeAll)

Simply does AddGCPrologueCallback

[bookmark: api_nan_remove_gc_epilogue_callback]

NanRemoveGCEpilogueCallback(GCEpilogueCallback callback)

Simply does RemoveGCEpilogueCallback

[bookmark: api_nan_remove_gc_prologue_callback]

NanRemoveGCPrologueCallback(GCPrologueCallback callback)

Simply does RemoveGCPrologueCallback

[bookmark: api_nan_get_heap_statistics]

NanGetHeapStatistics(HeapStatistics *heap_statistics)

Simply does GetHeapStatistics

[bookmark: api_nan_callback]

NanCallback

Because of the difficulties imposed by the changes to Persistent handles in V8 in Node 0.11, creating Persistent versions of your Handle<Function> is annoyingly tricky. NanCallback makes it easier by taking your handle, making it persistent until the NanCallback is deleted and even providing a handy Call() method to fetch and execute the callback Function.

Local<Function> callbackHandle = args[0].As<Function>();
NanCallback *callback = new NanCallback(callbackHandle);
// pass `callback` around and it's safe from GC until you:
delete callback;

You can execute the callback like so:

// no arguments:
callback->Call(0, NULL);

// an error argument:
Handle<Value> argv[] = {
 NanError(NanNew<String>("fail!"))
};
callback->Call(1, argv);

// a success argument:
Handle<Value> argv[] = {
 NanNull(),
 NanNew<String>("w00t!")
};
callback->Call(2, argv);

NanCallback also has a Local<Function> GetCallback() method that you can use
to fetch a local handle to the underlying callback function, as well as a
void SetFunction(Handle<Function>) for setting the callback on the
NanCallback. You can check if a NanCallback is empty with the bool IsEmpty() method. Additionally a generic constructor is available for using
NanCallback without performing heap allocations.

[bookmark: api_nan_async_worker]

NanAsyncWorker

NanAsyncWorker is an abstract class that you can subclass to have much of the annoying async queuing and handling taken care of for you. It can even store arbitrary V8 objects for you and have them persist while the async work is in progress.

See a rough outline of the implementation:

class NanAsyncWorker {
public:
 NanAsyncWorker (NanCallback *callback);

 // Clean up persistent handles and delete the *callback
 virtual ~NanAsyncWorker ();

 // Check the `ErrorMessage()` and call HandleOKCallback()
 // or HandleErrorCallback depending on whether it has been set or not
 virtual void WorkComplete ();

 // You must implement this to do some async work. If there is an
 // error then use `SetErrorMessage()` to set an error message and the callback will
 // be passed that string in an Error object
 virtual void Execute ();

 // Save a V8 object in a Persistent handle to protect it from GC
 void SaveToPersistent(const char *key, Local<Object> &obj);

 // Fetch a stored V8 object (don't call from within `Execute()`)
 Local<Object> GetFromPersistent(const char *key);

 // Get the error message (or NULL)
 const char *ErrorMessage();

 // Set an error message
 void SetErrorMessage(const char *msg);

protected:
 // Default implementation calls the callback function with no arguments.
 // Override this to return meaningful data
 virtual void HandleOKCallback ();

 // Default implementation calls the callback function with an Error object
 // wrapping the `errmsg` string
 virtual void HandleErrorCallback ();
};

[bookmark: api_nan_async_queue_worker]

NanAsyncQueueWorker(NanAsyncWorker *)

NanAsyncQueueWorker will run a NanAsyncWorker asynchronously via libuv. Both the execute and after_work steps are taken care of for you

—

most of the logic for this is embedded in NanAsyncWorker.

Contributors

NAN is only possible due to the excellent work of the following contributors:

		Rod Vagg		GitHub/rvagg		Twitter/@rvagg

		Benjamin Byholm		GitHub/kkoopa		-

		Trevor Norris		GitHub/trevnorris		Twitter/@trevnorris

		Nathan Rajlich		GitHub/TooTallNate		Twitter/@TooTallNate

		Brett Lawson		GitHub/brett19		Twitter/@brett19x

		Ben Noordhuis		GitHub/bnoordhuis		Twitter/@bnoordhuis

Licence &

 copyright

Copyright (c) 2014 NAN contributors (listed above).

Native Abstractions for Node.js is licensed under an MIT +no-false-attribs license. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE file for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/constantinople/node_modules/uglify-js/node_modules/source-map/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Change Log

0.1.34

		Make SourceNode work with windows style (“\r\n”) newlines. Issue #103.

		Fix bug involving source contents and the
SourceMapGenerator.prototype.applySourceMap. Issue #100.

0.1.33

		Fix some edge cases surrounding path joining and URL resolution.

		Add a third parameter for relative path to
SourceMapGenerator.prototype.applySourceMap.

		Fix issues with mappings and EOLs.

0.1.32

		Fixed a bug where SourceMapConsumer couldn’t handle negative relative columns
(issue 92).

		Fixed test runner to actually report number of failed tests as its process
exit code.

		Fixed a typo when reporting bad mappings (issue 87).

0.1.31

		Delay parsing the mappings in SourceMapConsumer until queried for a source
location.

		Support Sass source maps (which at the time of writing deviate from the spec
in small ways) in SourceMapConsumer.

0.1.30

		Do not join source root with a source, when the source is a data URI.

		Extend the test runner to allow running single specific test files at a time.

		Performance improvements in SourceNode.prototype.walk and
SourceMapConsumer.prototype.eachMapping.

		Source map browser builds will now work inside Workers.

		Better error messages when attempting to add an invalid mapping to a
SourceMapGenerator.

0.1.29

		Allow duplicate entries in the names and sources arrays of source maps
(usually from TypeScript) we are parsing. Fixes github issue 72.

0.1.28

		Skip duplicate mappings when creating source maps from SourceNode; github
issue 75.

0.1.27

		Don’t throw an error when the file property is missing in SourceMapConsumer,
we don’t use it anyway.

0.1.26

		Fix SourceNode.fromStringWithSourceMap for empty maps. Fixes github issue 70.

0.1.25

		Make compatible with browserify

0.1.24

		Fix issue with absolute paths and file:// URIs. See
https://bugzilla.mozilla.org/show_bug.cgi?id=885597

0.1.23

		Fix issue with absolute paths and sourcesContent, github issue 64.

0.1.22

		Ignore duplicate mappings in SourceMapGenerator. Fixes github issue 21.

0.1.21

		Fixed handling of sources that start with a slash so that they are relative to
the source root’s host.

0.1.20

		Fixed github issue #43: absolute URLs aren’t joined with the source root
anymore.

0.1.19

		Using Travis CI to run tests.

0.1.18

		Fixed a bug in the handling of sourceRoot.

0.1.17

		Added SourceNode.fromStringWithSourceMap.

0.1.16

		Added missing documentation.

		Fixed the generating of empty mappings in SourceNode.

0.1.15

		Added SourceMapGenerator.applySourceMap.

0.1.14

		The sourceRoot is now handled consistently.

0.1.13

		Added SourceMapGenerator.fromSourceMap.

0.1.12

		SourceNode now generates empty mappings too.

0.1.11

		Added name support to SourceNode.

0.1.10

		Added sourcesContent support to the customer and generator.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

grunt-cli [image: Build Status] [http://travis-ci.org/gruntjs/grunt-cli]

The Grunt command line interface.

Install this globally and you’ll have access to the grunt command anywhere on your system.

npm install -g grunt-cli

Note: The job of the grunt command is to load and run the version of Grunt you have installed locally to your project, irrespective of its version. Starting with Grunt v0.4, you should never install Grunt itself globally. For more information about why, please read this [http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation].

See the Getting Started [http://gruntjs.com/getting-started] guide for more information.

Shell tab auto-completion

To enable tab auto-completion for Grunt, add one of the following lines to your ~/.bashrc or ~/.zshrc file.

Bash, ~/.bashrc
eval "$(grunt --completion=bash)"

Zsh, ~/.zshrc
eval "$(grunt --completion=zsh)"

Installing grunt-cli locally

If you prefer the idiomatic Node.js method to get started with a project (npm install && npm test) then install grunt-cli locally with npm install grunt-cli --save-dev. Then add a script to your package.json to run the associated grunt command: "scripts": { "test": "grunt test" }. Now npm test will use the locally installed ./node_modules/.bin/grunt executable to run your Grunt commands.

To read more about npm scripts, please visit the npm docs: https://npmjs.org/doc/misc/npm-scripts.html.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/contextify/node_modules/nan/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

NAN ChangeLog

Version 1.3.0: current Node unstable: 0.11.13, Node stable: 0.10.30

1.3.0 Aug 2 2014

		Added NanNew<v8::String, std::string>(std::string)

		Added NanNew<v8::String, std::string&>(std::string&)

		Added NanAsciiString helper class

		Added NanUtf8String helper class

		Added NanUcs2String helper class

		Deprecated NanRawString()

		Deprecated NanCString()

		Added NanGetIsolateData(v8::Isolate *isolate)

		Added NanMakeCallback(v8::Handle<v8::Object> target, v8::Handle<v8::Function> func, int argc, v8::Handle<v8::Value>* argv)

		Added NanMakeCallback(v8::Handle<v8::Object> target, v8::Handle<v8::String> symbol, int argc, v8::Handle<v8::Value>* argv)

		Added NanMakeCallback(v8::Handle<v8::Object> target, const char* method, int argc, v8::Handle<v8::Value>* argv)

		Added NanSetTemplate(v8::Handle<v8::Template> templ, v8::Handle<v8::String> name , v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

		Added NanSetPrototypeTemplate(v8::Local<v8::FunctionTemplate> templ, v8::Handle<v8::String> name, v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

		Added NanSetInstanceTemplate(v8::Local<v8::FunctionTemplate> templ, const char *name, v8::Handle<v8::Data> value)

		Added NanSetInstanceTemplate(v8::Local<v8::FunctionTemplate> templ, v8::Handle<v8::String> name, v8::Handle<v8::Data> value, v8::PropertyAttribute attributes)

1.2.0 Jun 5 2014

		Add NanSetPrototypeTemplate

		Changed NAN_WEAK_CALLBACK internals, switched _NanWeakCallbackData to class,
introduced _NanWeakCallbackDispatcher

		Removed -Wno-unused-local-typedefs from test builds

		Made test builds Windows compatible (‘Sleep()’)

1.1.2 May 28 2014

		Release to fix more stuff-ups in 1.1.1

1.1.1 May 28 2014

		Release to fix version mismatch in nan.h and lack of changelog entry for 1.1.0

1.1.0 May 25 2014

		Remove nan_isolate, use v8::Isolate::GetCurrent() internally instead

		Additional explicit overloads for NanNew(): (char,int), (uint8_t[,int]),
(uint16_t[,int), double, int, unsigned int, bool, v8::String::ExternalStringResource,
v8::String::ExternalAsciiStringResource*

		Deprecate NanSymbol()

		Added SetErrorMessage() and ErrorMessage() to NanAsyncWorker

1.0.0 May 4 2014

		Heavy API changes for V8 3.25 / Node 0.11.13

		Use cpplint.py

		Removed NanInitPersistent

		Removed NanPersistentToLocal

		Removed NanFromV8String

		Removed NanMakeWeak

		Removed NanNewLocal

		Removed NAN_WEAK_CALLBACK_OBJECT

		Removed NAN_WEAK_CALLBACK_DATA

		Introduce NanNew, replaces NanNewLocal, NanPersistentToLocal, adds many overloaded typed versions

		Introduce NanUndefined, NanNull, NanTrue and NanFalse

		Introduce NanEscapableScope and NanEscapeScope

		Introduce NanMakeWeakPersistent (requires a special callback to work on both old and new node)

		Introduce NanMakeCallback for node::MakeCallback

		Introduce NanSetTemplate

		Introduce NanGetCurrentContext

		Introduce NanCompileScript and NanRunScript

		Introduce NanAdjustExternalMemory

		Introduce NanAddGCEpilogueCallback, NanAddGCPrologueCallback, NanRemoveGCEpilogueCallback, NanRemoveGCPrologueCallback

		Introduce NanGetHeapStatistics

		Rename NanAsyncWorker#SavePersistent() to SaveToPersistent()

0.8.0 Jan 9 2014

		NanDispose -> NanDisposePersistent, deprecate NanDispose

		Extract NANRETURN_TYPE, pull up NAN()

0.7.1 Jan 9 2014

		Fixes to work against debug builds of Node

		Safer NanPersistentToLocal (avoid reinterpret_cast)

		Speed up common NanRawString case by only extracting flattened string when necessary

0.7.0 Dec 17 2013

		New no-arg form of NanCallback() constructor.

		NanCallback#Call takes Handle rather than Local

		Removed deprecated NanCallback#Run method, use NanCallback#Call instead

		Split off NAN*_ARGS_TYPE from NAN*_ARGS

		Restore (unofficial) Node 0.6 compatibility at NanCallback#Call()

		Introduce NanRawString() for char* (or appropriate void*) from v8::String
(replacement for NanFromV8String)

		Introduce NanCString() for null-terminated char* from v8::String

0.6.0 Nov 21 2013

		Introduce NanNewLocal(v8::Handle value) for use in place of
v8::Local::New(...) since v8 started requiring isolate in Node 0.11.9

0.5.2 Nov 16 2013

		Convert SavePersistent and GetFromPersistent in NanAsyncWorker from protected and public

0.5.1 Nov 12 2013

		Use node::MakeCallback() instead of direct v8::Function::Call()

0.5.0 Nov 11 2013

		Added @TooTallNate as collaborator

		New, much simpler, “include_dirs” for binding.gyp

		Added full range of NAN_INDEX_* macros to match NAN_PROPERTY_* macros

0.4.4 Nov 2 2013

		Isolate argument from v8::Persistent::MakeWeak removed for 0.11.8+

0.4.3 Nov 2 2013

		Include node_object_wrap.h, removed from node.h for Node 0.11.8.

0.4.2 Nov 2 2013

		Handle deprecation of v8::Persistent::Dispose(v8::Isolate* isolate)) for
Node 0.11.8 release.

0.4.1 Sep 16 2013

		Added explicit #include <uv.h> as it was removed from node.h for v0.11.8

0.4.0 Sep 2 2013

		Added NAN_INLINE and NAN_DEPRECATED and made use of them

		Added NanError, NanTypeError and NanRangeError

		Cleaned up code

0.3.2 Aug 30 2013

		Fix missing scope declaration in GetFromPersistent() and SaveToPersistent
in NanAsyncWorker

0.3.1 Aug 20 2013

		fix “not all control paths return a value” compile warning on some platforms

0.3.0 Aug 19 2013

		Made NAN work with NPM

		Lots of fixes to NanFromV8String, pulling in features from new Node core

		Changed node::encoding to Nan::Encoding in NanFromV8String to unify the API

		Added optional error number argument for NanThrowError()

		Added NanInitPersistent()

		Added NanReturnNull() and NanReturnEmptyString()

		Added NanLocker and NanUnlocker

		Added missing scopes

		Made sure to clear disposed Persistent handles

		Changed NanAsyncWorker to allocate error messages on the heap

		Changed NanThrowError(Local) to NanThrowError(Handle)

		Fixed leak in NanAsyncWorker when errmsg is used

0.2.2 Aug 5 2013

		Fixed usage of undefined variable with node::BASE64 in NanFromV8String()

0.2.1 Aug 5 2013

		Fixed 0.8 breakage, node::BUFFER encoding type not available in 0.8 for
NanFromV8String()

0.2.0 Aug 5 2013

		Added NAN_PROPERTY_GETTER, NAN_PROPERTY_SETTER, NAN_PROPERTY_ENUMERATOR,
NAN_PROPERTY_DELETER, NAN_PROPERTY_QUERY

		Extracted _NAN_METHOD_ARGS, _NAN_GETTER_ARGS, _NAN_SETTER_ARGS,
_NAN_PROPERTY_GETTER_ARGS, _NAN_PROPERTY_SETTER_ARGS,
_NAN_PROPERTY_ENUMERATOR_ARGS, _NAN_PROPERTY_DELETER_ARGS,
_NAN_PROPERTY_QUERY_ARGS

		Added NanGetInternalFieldPointer, NanSetInternalFieldPointer

		Added NAN_WEAK_CALLBACK, NAN_WEAK_CALLBACK_OBJECT,
NAN_WEAK_CALLBACK_DATA, NanMakeWeak

		Renamed THROW_ERROR to _NAN_THROW_ERROR

		Added NanNewBufferHandle(char, size_t, node::smalloc::FreeCallback, void)

		Added NanBufferUse(char*, uint32_t)

		Added NanNewContextHandle(v8::ExtensionConfiguration*,
v8::Handle<v8::ObjectTemplate>, v8::Handle<v8::Value>)

		Fixed broken NanCallback#GetFunction()

		Added optional encoding and size arguments to NanFromV8String()

		Added NanGetPointerSafe() and NanSetPointerSafe()

		Added initial test suite (to be expanded)

		Allow NanUInt32OptionValue to convert any Number object

0.1.0 Jul 21 2013

		Added NAN_GETTER, NAN_SETTER

		Added NanThrowError with single Local argument

		Added NanNewBufferHandle with single uint32_t argument

		Added NanHasInstance(Persistent<FunctionTemplate>&, Handle<Value>)

		Added Local<Function> NanCallback#GetFunction()

		Added NanCallback#Call(int, Local<Value>[])

		Deprecated NanCallback#Run(int, Local<Value>[]) in favour of Call

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/constantinople/node_modules/uglify-js/node_modules/uglify-to-browserify/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

uglify-to-browserify

A transform to make UglifyJS work in browserify.

[image: Build Status] [https://travis-ci.org/ForbesLindesay/uglify-to-browserify]
[image: Dependency Status] [https://gemnasium.com/ForbesLindesay/uglify-to-browserify]
[image: NPM version] [http://badge.fury.io/js/uglify-to-browserify]

Installation

npm install uglify-to-browserify

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/findup-sync/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Glob

Match files using the patterns the shell uses, like stars and stuff.

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

Attention: node-glob users!

The API has changed dramatically between 2.x and 3.x. This library is
now 100% JavaScript, and the integer flags have been replaced with an
options object.

Also, there’s an event emitter class, proper tests, and all the other
things you’ve come to expect from node modules.

And best of all, no compilation!

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Features

Please see the minimatch
documentation [https://github.com/isaacs/minimatch] for more details.

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options])

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instanting the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		error The error encountered. When an error is encountered, the
glob object is in an undefined state, and should be discarded.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

		statCache Collection of all the stat results the glob search
performed.

		cache Convenience object. Each field has the following possible
values:
		false - Path does not exist

		true - Path exists

		1 - Path exists, and is not a directory

		2 - Path exists, and is a directory

		[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		abort Stop the search.

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the glob object, as well.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence. It will cause
ELOOP to be triggered one level sooner in the case of cyclical
symbolic links.

		silent When an unusual error is encountered
when attempting to read a directory, a warning will be printed to
stderr. Set the silent option to true to suppress these warnings.

		strict When an unusual error is encountered
when attempting to read a directory, the process will just continue on
in search of other matches. Set the strict option to raise an error
in these cases.

		cache See cache property above. Pass in a previously generated
cache object to save some fs calls.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary to
set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set.
Set this flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that case-insensitive
filesystems will sometimes result in glob returning results that are
case-insensitively matched anyway, since readdir and stat will not
raise an error.

		debug Set to enable debug logging in minimatch and glob.

		globDebug Set to enable debug logging in glob, but not minimatch.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes. For the vast majority
of operations, this is never a problem.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/constantinople/node_modules/uglify-js/node_modules/source-map/node_modules/amdefine/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

amdefine

A module that can be used to implement AMD’s define() in Node. This allows you
to code to the AMD API and have the module work in node programs without
requiring those other programs to use AMD.

Usage

1) Update your package.json to indicate amdefine as a dependency:

 "dependencies": {
 "amdefine": ">=0.1.0"
 }

Then run npm install to get amdefine into your project.

2) At the top of each module that uses define(), place this code:

if (typeof define !== 'function') { var define = require('amdefine')(module) }

Only use these snippets when loading amdefine. If you preserve the basic structure,
with the braces, it will be stripped out when using the RequireJS optimizer.

You can add spaces, line breaks and even require amdefine with a local path, but
keep the rest of the structure to get the stripping behavior.

As you may know, because if statements in JavaScript don’t have their own scope, the var
declaration in the above snippet is made whether the if expression is truthy or not. If
RequireJS is loaded then the declaration is superfluous because define is already already
declared in the same scope in RequireJS. Fortunately JavaScript handles multiple var
declarations of the same variable in the same scope gracefully.

If you want to deliver amdefine.js with your code rather than specifying it as a dependency
with npm, then just download the latest release and refer to it using a relative path:

Latest Version [https://github.com/jrburke/amdefine/raw/latest/amdefine.js]

amdefine/intercept

Consider this very experimental.

Instead of pasting the piece of text for the amdefine setup of a define
variable in each module you create or consume, you can use amdefine/intercept
instead. It will automatically insert the above snippet in each .js file loaded
by Node.

Warning: you should only use this if you are creating an application that
is consuming AMD style defined()’d modules that are distributed via npm and want
to run that code in Node.

For library code where you are not sure if it will be used by others in Node or
in the browser, then explicitly depending on amdefine and placing the code
snippet above is suggested path, instead of using amdefine/intercept. The
intercept module affects all .js files loaded in the Node app, and it is
inconsiderate to modify global state like that unless you are also controlling
the top level app.

Why distribute AMD-style nodes via npm?

npm has a lot of weaknesses for front-end use (installed layout is not great,
should have better support for the `baseUrl + moduleID + ‘.js’ style of loading,
single file JS installs), but some people want a JS package manager and are
willing to live with those constraints. If that is you, but still want to author
in AMD style modules to get dynamic require([]), better direct source usage and
powerful loader plugin support in the browser, then this tool can help.

amdefine/intercept usage

Just require it in your top level app module (for example index.js, server.js):

require('amdefine/intercept');

The module does not return a value, so no need to assign the result to a local
variable.

Then just require() code as you normally would with Node’s require(). Any .js
loaded after the intercept require will have the amdefine check injected in
the .js source as it is loaded. It does not modify the source on disk, just
prepends some content to the text of the module as it is loaded by Node.

How amdefine/intercept works

It overrides the Module._extensions['.js'] in Node to automatically prepend
the amdefine snippet above. So, it will affect any .js file loaded by your
app.

define() usage

It is best if you use the anonymous forms of define() in your module:

define(function (require) {
 var dependency = require('dependency');
});

or

define(['dependency'], function (dependency) {

});

RequireJS optimizer integration. [bookmark: optimizer]

[bookmark: optimizer]
[bookmark: optimizer]Version 1.0.3 of the RequireJS optimizer [http://requirejs.org/docs/optimization.html]
will have support for stripping the if (typeof define !== 'function') check
mentioned above, so you can include this snippet for code that runs in the
browser, but avoid taking the cost of the if() statement once the code is
optimized for deployment.

Node 0.4 Support

If you want to support Node 0.4, then add require as the second parameter to amdefine:

//Only if you want Node 0.4. If using 0.5 or later, use the above snippet.
if (typeof define !== 'function') { var define = require('amdefine')(module, require) }

Limitations

Synchronous vs Asynchronous

amdefine creates a define() function that is callable by your code. It will
execute and trace dependencies and call the factory function synchronously,
to keep the behavior in line with Node’s synchronous dependency tracing.

The exception: calling AMD’s callback-style require() from inside a factory
function. The require callback is called on process.nextTick():

define(function (require) {
 require(['a'], function(a) {
 //'a' is loaded synchronously, but
 //this callback is called on process.nextTick().
 });
});

Loader Plugins

Loader plugins are supported as long as they call their load() callbacks
synchronously. So ones that do network requests will not work. However plugins
like text [http://requirejs.org/docs/api.html#text] can load text files locally.

The plugin API’s load.fromText() is not supported in amdefine, so this means
transpiler plugins like the CoffeeScript loader plugin [https://github.com/jrburke/require-cs]
will not work. This may be fixable, but it is a bit complex, and I do not have
enough node-fu to figure it out yet. See the source for amdefine.js if you want
to get an idea of the issues involved.

Tests

To run the tests, cd to tests and run:

node all.js
node all-intercept.js

License

New BSD and MIT. Check the LICENSE file for all the details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-cli/node_modules/findup-sync/node_modules/lodash/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Lo-Dash v2.4.1

A utility library delivering consistency, customization [http://lodash.com/custom-builds], performance [http://lodash.com/benchmarks], & extras [http://lodash.com/#features].

Download

Check out our wiki for details over the differences between builds.

		Modern builds perfect for newer browsers/environments:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.min.js]

		Compatibility builds for older environment support too:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.min.js]

		Underscore builds to use as a drop-in replacement:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.min.js]

CDN copies are available on cdnjs [http://cdnjs.com/libraries/lodash.js/] & jsDelivr [http://www.jsdelivr.com/#!lodash]. For smaller file sizes, create custom builds [http://lodash.com/custom-builds] with only the features needed.

Love modules? We’ve got you covered with lodash-amd [https://npmjs.org/package/lodash-amd], lodash-es6 [https://github.com/lodash/lodash-es6], lodash-node [https://npmjs.org/package/lodash-node], & npm packages [https://npmjs.org/browse/keyword/lodash-modularized] per method.

Dive in

There’s plenty of documentation [http://lodash.com/docs], unit tests [http://lodash.com/tests], & benchmarks [http://lodash.com/benchmarks].

Check out DevDocs as a fast, organized, & searchable interface for our documentation.

The full changelog for this release is available on our wiki [https://github.com/lodash/lodash/wiki/Changelog].

A list of upcoming features is available on our roadmap [https://github.com/lodash/lodash/wiki/Roadmap].

Features not in Underscore

		AMD loader support (curl [https://github.com/cujojs/curl], dojo [http://dojotoolkit.org/], requirejs [http://requirejs.org/], etc.)

		(…) [http://lodash.com/docs#] supports intuitive chaining

		_.at [http://lodash.com/docs#at] for cherry-picking collection values

		_.bindKey [http://lodash.com/docs#bindKey] for binding “lazy” [http://michaux.ca/articles/lazy-function-definition-pattern] defined methods

		_.clone [http://lodash.com/docs#clone] supports shallow cloning of Date & RegExp objects

		_.cloneDeep [http://lodash.com/docs#cloneDeep] for deep cloning arrays & objects

		_.constant [http://lodash.com/docs#constant] & _.property [http://lodash.com/docs#property] function generators for composing functions

		_.contains [http://lodash.com/docs#contains] accepts a fromIndex

		_.create [http://lodash.com/docs#create] for easier object inheritance

		_.createCallback [http://lodash.com/docs#createCallback] for extending callbacks in methods & mixins

		_.curry [http://lodash.com/docs#curry] for creating curried [http://hughfdjackson.com/javascript/2013/07/06/why-curry-helps/] functions

		_.debounce [http://lodash.com/docs#debounce] & _.throttle [http://lodash.com/docs#throttle] accept additional options for more control

		_.findIndex [http://lodash.com/docs#findIndex] & _.findKey [http://lodash.com/docs#findKey] for finding indexes & keys

		_.forEach [http://lodash.com/docs#forEach] is chainable & supports exiting early

		_.forIn [http://lodash.com/docs#forIn] for iterating own & inherited properties

		_.forOwn [http://lodash.com/docs#forOwn] for iterating own properties

		_.isPlainObject [http://lodash.com/docs#isPlainObject] for checking if values are created by Object

		_.mapValues [http://lodash.com/docs#mapValues] for mapping [http://lodash.com/docs#map] values to an object

		_.memoize [http://lodash.com/docs#memoize] exposes the cache of memoized functions

		_.merge [http://lodash.com/docs#merge] for a deep _.extend [http://lodash.com/docs#extend]

		_.noop [http://lodash.com/docs#noop] for function placeholders

		_.now [http://lodash.com/docs#now] as a cross-browser Date.now alternative

		_.parseInt [http://lodash.com/docs#parseInt] for consistent behavior

		_.pull [http://lodash.com/docs#pull] & _.remove [http://lodash.com/docs#remove] for mutating arrays

		_.random [http://lodash.com/docs#random] supports returning floating-point numbers

		_.runInContext [http://lodash.com/docs#runInContext] for easier mocking

		_.sortBy [http://lodash.com/docs#sortBy] supports sorting by multiple properties

		_.support [http://lodash.com/docs#support] for flagging environment features

		_.template [http://lodash.com/docs#template] supports “imports” [http://lodash.com/docs#templateSettings_imports] options & ES6 template delimiters [http://people.mozilla.org/~jorendorff/es6-draft.html#sec-literals-string-literals]

		_.transform [http://lodash.com/docs#transform] as a powerful alternative to _.reduce [http://lodash.com/docs#reduce] for transforming objects

		_.where [http://lodash.com/docs#where] supports deep object comparisons

		_.xor [http://lodash.com/docs#xor] as a companion to _.difference [http://lodash.com/docs#difference], _.intersection [http://lodash.com/docs#intersection], & _.union [http://lodash.com/docs#union]

		_.zip [http://lodash.com/docs#zip] is capable of unzipping values

		_.omit [http://lodash.com/docs#omit], _.pick [http://lodash.com/docs#pick], &
more [http://lodash.com/docs] accept callbacks

		_.contains [http://lodash.com/docs#contains], _.toArray [http://lodash.com/docs#toArray], &
more [http://lodash.com/docs] accept strings

		_.filter [http://lodash.com/docs#filter], _.map [http://lodash.com/docs#map], &
more [http://lodash.com/docs] support *“_.pluck”* & *“_.where”* shorthands

		_.findLast [http://lodash.com/docs#findLast], _.findLastIndex [http://lodash.com/docs#findLastIndex], &
more [http://lodash.com/docs] right-associative methods

Resources

		Podcasts

		JavaScript Jabber [http://javascriptjabber.com/079-jsj-lo-dash-with-john-david-dalton/]

		Posts

		Say “Hello” to Lo-Dash [http://kitcambridge.be/blog/say-hello-to-lo-dash/]

		Custom builds in Lo-Dash 2.0 [http://kitcambridge.be/blog/custom-builds-in-lo-dash-2-dot-0/]

		Videos

		Introduction [https://vimeo.com/44154599]

		Origins [https://vimeo.com/44154600]

		Optimizations & builds [https://vimeo.com/44154601]

		Native method use [https://vimeo.com/48576012]

		Testing [https://vimeo.com/45865290]

		CascadiaJS ’12 [http://www.youtube.com/watch?v=dpPy4f_SeEk]

A list of other community created podcasts, posts, & videos is available on our wiki [https://github.com/lodash/lodash/wiki/Resources].

Support

Tested in Chrome 5~31, Firefox 2~25, IE 6-11, Opera 9.25~17, Safari 3-7, Node.js 0.6.21~0.10.22, Narwhal 0.3.2, PhantomJS 1.9.2, RingoJS 0.9, & Rhino 1.7RC5.

Automated browser test results are available [https://saucelabs.com/u/lodash] as well as Travis CI [https://travis-ci.org/] builds for lodash [https://travis-ci.org/lodash/lodash/], lodash-cli [https://travis-ci.org/lodash/lodash-cli/], lodash-amd [https://travis-ci.org/lodash/lodash-amd/], lodash-node [https://travis-ci.org/lodash/lodash-node/], & grunt-lodash [https://travis-ci.org/lodash/grunt-lodash].

Special thanks to Sauce Labs [https://saucelabs.com/] for providing automated browser testing.

[image: Sauce Labs] [https://saucelabs.com/]

Installation & usage

In browsers:

<script src="lodash.js"></script>

Using npm [http://npmjs.org/]:

npm i --save lodash

{sudo} npm i -g lodash
npm ln lodash

In Node.js [http://nodejs.org/] & Ringo [http://ringojs.org/]:

var _ = require('lodash');
// or as Underscore
var _ = require('lodash/dist/lodash.underscore');

Notes:

		Don’t assign values to special variable [http://nodejs.org/api/repl.html#repl_repl_features] _ when in the REPL

		If Lo-Dash is installed globally, run npm ln lodash [http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/] in your project’s root directory before requiring it

In Rhino [http://www.mozilla.org/rhino/]:

load('lodash.js');

In an AMD loader:

require({
 'packages': [
 { 'name': 'lodash', 'location': 'path/to/lodash', 'main': 'lodash' }
]
},
['lodash'], function(_) {
 console.log(_.VERSION);
});

Author

| [image: twitter/jdalton] [https://twitter.com/jdalton] |
|—|
| John-David Dalton [http://allyoucanleet.com/] |

Contributors

[image: twitter/blainebublitz] [https://twitter.com/blainebublitz]	[image: twitter/kitcambridge] [https://twitter.com/kitcambridge]	[image: twitter/mathias] [https://twitter.com/mathias]
—	—	—
Blaine Bublitz [http://www.iceddev.com/]	Kit Cambridge [http://kitcambridge.be/]	Mathias Bynens [http://mathiasbynens.be/]

[image: Bitdeli Badge] [https://bitdeli.com/free]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/with/node_modules/uglify-js/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

UglifyJS 2

[image: Build Status] [https://travis-ci.org/mishoo/UglifyJS2]

UglifyJS is a JavaScript parser, minifier, compressor or beautifier toolkit.

This page documents the command line utility. For
API and internals documentation see my website [http://lisperator.net/uglifyjs/].
There’s also an
in-browser online demo [http://lisperator.net/uglifyjs/#demo] (for Firefox,
Chrome and probably Safari).

Install

First make sure you have installed the latest version of node.js [http://nodejs.org/]
(You may need to restart your computer after this step).

From NPM for use as a command line app:

npm install uglify-js -g

From NPM for programmatic use:

npm install uglify-js

From Git:

git clone git://github.com/mishoo/UglifyJS2.git
cd UglifyJS2
npm link .

Usage

uglifyjs [input files] [options]

UglifyJS2 can take multiple input files. It’s recommended that you pass the
input files first, then pass the options. UglifyJS will parse input files
in sequence and apply any compression options. The files are parsed in the
same global scope, that is, a reference from a file to some
variable/function declared in another file will be matched properly.

If you want to read from STDIN instead, pass a single dash instead of input
files.

The available options are:

 --source-map Specify an output file where to generate source map.
 [string]
 --source-map-root The path to the original source to be included in the
 source map. [string]
 --source-map-url The path to the source map to be added in //#
 sourceMappingURL. Defaults to the value passed with
 --source-map. [string]
 --source-map-include-sources
 Pass this flag if you want to include the content of
 source files in the source map as sourcesContent
 property. [boolean]
 --in-source-map Input source map, useful if you're compressing JS that was
 generated from some other original code.
 --screw-ie8 Pass this flag if you don't care about full compliance
 with Internet Explorer 6-8 quirks (by default UglifyJS
 will try to be IE-proof). [boolean]
 --expr Parse a single expression, rather than a program (for
 parsing JSON) [boolean]
 -p, --prefix Skip prefix for original filenames that appear in source
 maps. For example -p 3 will drop 3 directories from file
 names and ensure they are relative paths. You can also
 specify -p relative, which will make UglifyJS figure out
 itself the relative paths between original sources, the
 source map and the output file. [string]
 -o, --output Output file (default STDOUT).
 -b, --beautify Beautify output/specify output options. [string]
 -m, --mangle Mangle names/pass mangler options. [string]
 -r, --reserved Reserved names to exclude from mangling.
 -c, --compress Enable compressor/pass compressor options. Pass options
 like -c hoist_vars=false,if_return=false. Use -c with no
 argument to use the default compression options. [string]
 -d, --define Global definitions [string]
 -e, --enclose Embed everything in a big function, with a configurable
 parameter/argument list. [string]
 --comments Preserve copyright comments in the output. By default this
 works like Google Closure, keeping JSDoc-style comments
 that contain "@license" or "@preserve". You can optionally
 pass one of the following arguments to this flag:
 - "all" to keep all comments
 - a valid JS regexp (needs to start with a slash) to keep
 only comments that match.
 Note that currently not *all* comments can be kept when
 compression is on, because of dead code removal or
 cascading statements into sequences. [string]
 --preamble Preamble to prepend to the output. You can use this to
 insert a comment, for example for licensing information.
 This will not be parsed, but the source map will adjust
 for its presence.
 --stats Display operations run time on STDERR. [boolean]
 --acorn Use Acorn for parsing. [boolean]
 --spidermonkey Assume input files are SpiderMonkey AST format (as JSON).
 [boolean]
 --self Build itself (UglifyJS2) as a library (implies
 --wrap=UglifyJS --export-all) [boolean]
 --wrap Embed everything in a big function, making the “exports”
 and “global” variables available. You need to pass an
 argument to this option to specify the name that your
 module will take when included in, say, a browser.
 [string]
 --export-all Only used when --wrap, this tells UglifyJS to add code to
 automatically export all globals. [boolean]
 --lint Display some scope warnings [boolean]
 -v, --verbose Verbose [boolean]
 -V, --version Print version number and exit. [boolean]

Specify --output (-o) to declare the output file. Otherwise the output
goes to STDOUT.

Source map options

UglifyJS2 can generate a source map file, which is highly useful for
debugging your compressed JavaScript. To get a source map, pass
--source-map output.js.map (full path to the file where you want the
source map dumped).

Additionally you might need --source-map-root to pass the URL where the
original files can be found. In case you are passing full paths to input
files to UglifyJS, you can use --prefix (-p) to specify the number of
directories to drop from the path prefix when declaring files in the source
map.

For example:

uglifyjs /home/doe/work/foo/src/js/file1.js \
 /home/doe/work/foo/src/js/file2.js \
 -o foo.min.js \
 --source-map foo.min.js.map \
 --source-map-root http://foo.com/src \
 -p 5 -c -m

The above will compress and mangle file1.js and file2.js, will drop the
output in foo.min.js and the source map in foo.min.js.map. The source
mapping will refer to http://foo.com/src/js/file1.js and
http://foo.com/src/js/file2.js (in fact it will list http://foo.com/src
as the source map root, and the original files as js/file1.js and
js/file2.js).

Composed source map

When you’re compressing JS code that was output by a compiler such as
CoffeeScript, mapping to the JS code won’t be too helpful. Instead, you’d
like to map back to the original code (i.e. CoffeeScript). UglifyJS has an
option to take an input source map. Assuming you have a mapping from
CoffeeScript → compiled JS, UglifyJS can generate a map from CoffeeScript →
compressed JS by mapping every token in the compiled JS to its original
location.

To use this feature you need to pass --in-source-map /path/to/input/source.map. Normally the input source map should also point
to the file containing the generated JS, so if that’s correct you can omit
input files from the command line.

Mangler options

To enable the mangler you need to pass --mangle (-m). The following
(comma-separated) options are supported:

		sort — to assign shorter names to most frequently used variables. This
saves a few hundred bytes on jQuery before gzip, but the output is
bigger after gzip (and seems to happen for other libraries I tried it
on) therefore it’s not enabled by default.

		toplevel — mangle names declared in the toplevel scope (disabled by
default).

		eval — mangle names visible in scopes where eval or with are used
(disabled by default).

When mangling is enabled but you want to prevent certain names from being
mangled, you can declare those names with --reserved (-r) — pass a
comma-separated list of names. For example:

uglifyjs ... -m -r '$,require,exports'

to prevent the require, exports and $ names from being changed.

Compressor options

You need to pass --compress (-c) to enable the compressor. Optionally
you can pass a comma-separated list of options. Options are in the form
foo=bar, or just foo (the latter implies a boolean option that you want
to set true; it’s effectively a shortcut for foo=true).

		sequences – join consecutive simple statements using the comma operator

		properties – rewrite property access using the dot notation, for
example foo["bar"] → foo.bar

		dead_code – remove unreachable code

		drop_debugger – remove debugger; statements

		unsafe (default: false) – apply “unsafe” transformations (discussion below)

		conditionals – apply optimizations for if-s and conditional
expressions

		comparisons – apply certain optimizations to binary nodes, for example:
!(a <= b) → a > b (only when unsafe), attempts to negate binary nodes,
e.g. a = !b && !c && !d && !e → a=!(b||c||d||e) etc.

		evaluate – attempt to evaluate constant expressions

		booleans – various optimizations for boolean context, for example !!a ? b : c → a ? b : c

		loops – optimizations for do, while and for loops when we can
statically determine the condition

		unused – drop unreferenced functions and variables

		hoist_funs – hoist function declarations

		hoist_vars (default: false) – hoist var declarations (this is false
by default because it seems to increase the size of the output in general)

		if_return – optimizations for if/return and if/continue

		join_vars – join consecutive var statements

		cascade – small optimization for sequences, transform x, x into x
and x = something(), x into x = something()

		warnings – display warnings when dropping unreachable code or unused
declarations etc.

		negate_iife – negate “Immediately-Called Function Expressions”
where the return value is discarded, to avoid the parens that the
code generator would insert.

		pure_getters – the default is false. If you pass true for
this, UglifyJS will assume that object property access
(e.g. foo.bar or foo["bar"]) doesn’t have any side effects.

		pure_funcs – default null. You can pass an array of names and
UglifyJS will assume that those functions do not produce side
effects. DANGER: will not check if the name is redefined in scope.
An example case here, for instance var q = Math.floor(a/b). If
variable q is not used elsewhere, UglifyJS will drop it, but will
still keep the Math.floor(a/b), not knowing what it does. You can
pass pure_funcs: ['Math.floor'] to let it know that this
function won’t produce any side effect, in which case the whole
statement would get discarded. The current implementation adds some
overhead (compression will be slower).

		drop_console – default false. Pass true to discard calls to
console.* functions.

The unsafe option

It enables some transformations that might break code logic in certain
contrived cases, but should be fine for most code. You might want to try it
on your own code, it should reduce the minified size. Here’s what happens
when this flag is on:

		new Array(1, 2, 3) or Array(1, 2, 3) → [1, 2, 3]

		new Object() → {}

		String(exp) or exp.toString() → "" + exp

		new Object/RegExp/Function/Error/Array (...) → we discard the new

		typeof foo == "undefined" → foo === void 0

		void 0 → undefined (if there is a variable named “undefined” in
scope; we do it because the variable name will be mangled, typically
reduced to a single character).

Conditional compilation

You can use the --define (-d) switch in order to declare global
variables that UglifyJS will assume to be constants (unless defined in
scope). For example if you pass --define DEBUG=false then, coupled with
dead code removal UglifyJS will discard the following from the output:

if (DEBUG) {
 console.log("debug stuff");
}

UglifyJS will warn about the condition being always false and about dropping
unreachable code; for now there is no option to turn off only this specific
warning, you can pass warnings=false to turn off all warnings.

Another way of doing that is to declare your globals as constants in a
separate file and include it into the build. For example you can have a
build/defines.js file with the following:

const DEBUG = false;
const PRODUCTION = true;
// etc.

and build your code like this:

uglifyjs build/defines.js js/foo.js js/bar.js... -c

UglifyJS will notice the constants and, since they cannot be altered, it
will evaluate references to them to the value itself and drop unreachable
code as usual. The possible downside of this approach is that the build
will contain the const declarations.

[bookmark: codegen-options]

Beautifier options

The code generator tries to output shortest code possible by default. In
case you want beautified output, pass --beautify (-b). Optionally you
can pass additional arguments that control the code output:

		beautify (default true) – whether to actually beautify the output.
Passing -b will set this to true, but you might need to pass -b even
when you want to generate minified code, in order to specify additional
arguments, so you can use -b beautify=false to override it.

		indent-level (default 4)

		indent-start (default 0) – prefix all lines by that many spaces

		quote-keys (default false) – pass true to quote all keys in literal
objects

		space-colon (default true) – insert a space after the colon signs

		ascii-only (default false) – escape Unicode characters in strings and
regexps

		inline-script (default false) – escape the slash in occurrences of
</script in strings

		width (default 80) – only takes effect when beautification is on, this
specifies an (orientative) line width that the beautifier will try to
obey. It refers to the width of the line text (excluding indentation).
It doesn’t work very well currently, but it does make the code generated
by UglifyJS more readable.

		max-line-len (default 32000) – maximum line length (for uglified code)

		bracketize (default false) – always insert brackets in if, for,
do, while or with statements, even if their body is a single
statement.

		semicolons (default true) – separate statements with semicolons. If
you pass false then whenever possible we will use a newline instead of a
semicolon, leading to more readable output of uglified code (size before
gzip could be smaller; size after gzip insignificantly larger).

		preamble (default null) – when passed it must be a string and
it will be prepended to the output literally. The source map will
adjust for this text. Can be used to insert a comment containing
licensing information, for example.

Keeping copyright notices or other comments

You can pass --comments to retain certain comments in the output. By
default it will keep JSDoc-style comments that contain “@preserve”,
“@license” or “@cc_on” (conditional compilation for IE). You can pass
--comments all to keep all the comments, or a valid JavaScript regexp to
keep only comments that match this regexp. For example --comments '/foo|bar/' will keep only comments that contain “foo” or “bar”.

Note, however, that there might be situations where comments are lost. For
example:

function f() {
 /** @preserve Foo Bar */
 function g() {
 // this function is never called
 }
 return something();
}

Even though it has “@preserve”, the comment will be lost because the inner
function g (which is the AST node to which the comment is attached to) is
discarded by the compressor as not referenced.

The safest comments where to place copyright information (or other info that
needs to be kept in the output) are comments attached to toplevel nodes.

Support for the SpiderMonkey AST

UglifyJS2 has its own abstract syntax tree format; for
practical reasons [http://lisperator.net/blog/uglifyjs-why-not-switching-to-spidermonkey-ast/]
we can’t easily change to using the SpiderMonkey AST internally. However,
UglifyJS now has a converter which can import a SpiderMonkey AST.

For example Acorn [https://github.com/marijnh/acorn] is a super-fast parser that produces a
SpiderMonkey AST. It has a small CLI utility that parses one file and dumps
the AST in JSON on the standard output. To use UglifyJS to mangle and
compress that:

acorn file.js | uglifyjs --spidermonkey -m -c

The --spidermonkey option tells UglifyJS that all input files are not
JavaScript, but JS code described in SpiderMonkey AST in JSON. Therefore we
don’t use our own parser in this case, but just transform that AST into our
internal AST.

Use Acorn for parsing

More for fun, I added the --acorn option which will use Acorn to do all
the parsing. If you pass this option, UglifyJS will require("acorn").

Acorn is really fast (e.g. 250ms instead of 380ms on some 650K code), but
converting the SpiderMonkey tree that Acorn produces takes another 150ms so
in total it’s a bit more than just using UglifyJS’s own parser.

API Reference

Assuming installation via NPM, you can load UglifyJS in your application
like this:

var UglifyJS = require("uglify-js");

It exports a lot of names, but I’ll discuss here the basics that are needed
for parsing, mangling and compressing a piece of code. The sequence is (1)
parse, (2) compress, (3) mangle, (4) generate output code.

The simple way

There’s a single toplevel function which combines all the steps. If you
don’t need additional customization, you might want to go with minify.
Example:

var result = UglifyJS.minify("/path/to/file.js");
console.log(result.code); // minified output
// if you need to pass code instead of file name
var result = UglifyJS.minify("var b = function () {};", {fromString: true});

You can also compress multiple files:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"]);
console.log(result.code);

To generate a source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map"
});
console.log(result.code); // minified output
console.log(result.map);

Note that the source map is not saved in a file, it’s just returned in
result.map. The value passed for outSourceMap is only used to set the
file attribute in the source map (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit]).

You can also specify sourceRoot property to be included in source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map",
 sourceRoot: "http://example.com/src"
});

If you’re compressing compiled JavaScript and have a source map for it, you
can use the inSourceMap argument:

var result = UglifyJS.minify("compiled.js", {
 inSourceMap: "compiled.js.map",
 outSourceMap: "minified.js.map"
});
// same as before, it returns `code` and `map`

The inSourceMap is only used if you also request outSourceMap (it makes
no sense otherwise).

Other options:

		warnings (default false) — pass true to display compressor warnings.

		fromString (default false) — if you pass true then you can pass
JavaScript source code, rather than file names.

		mangle — pass false to skip mangling names.

		output (default null) — pass an object if you wish to specify
additional output options [http://lisperator.net/uglifyjs/codegen]. The defaults are optimized
for best compression.

		compress (default {}) — pass false to skip compressing entirely.
Pass an object to specify custom compressor options [http://lisperator.net/uglifyjs/compress].

We could add more options to UglifyJS.minify — if you need additional
functionality please suggest!

The hard way

Following there’s more detailed API info, in case the minify function is
too simple for your needs.

The parser

var toplevel_ast = UglifyJS.parse(code, options);

options is optional and if present it must be an object. The following
properties are available:

		strict — disable automatic semicolon insertion and support for trailing
comma in arrays and objects

		filename — the name of the file where this code is coming from

		toplevel — a toplevel node (as returned by a previous invocation of
parse)

The last two options are useful when you’d like to minify multiple files and
get a single file as the output and a proper source map. Our CLI tool does
something like this:

var toplevel = null;
files.forEach(function(file){
 var code = fs.readFileSync(file, "utf8");
 toplevel = UglifyJS.parse(code, {
 filename: file,
 toplevel: toplevel
 });
});

After this, we have in toplevel a big AST containing all our files, with
each token having proper information about where it came from.

Scope information

UglifyJS contains a scope analyzer that you need to call manually before
compressing or mangling. Basically it augments various nodes in the AST
with information about where is a name defined, how many times is a name
referenced, if it is a global or not, if a function is using eval or the
with statement etc. I will discuss this some place else, for now what’s
important to know is that you need to call the following before doing
anything with the tree:

toplevel.figure_out_scope()

Compression

Like this:

var compressor = UglifyJS.Compressor(options);
var compressed_ast = toplevel.transform(compressor);

The options can be missing. Available options are discussed above in
“Compressor options”. Defaults should lead to best compression in most
scripts.

The compressor is destructive, so don’t rely that toplevel remains the
original tree.

Mangling

After compression it is a good idea to call again figure_out_scope (since
the compressor might drop unused variables / unreachable code and this might
change the number of identifiers or their position). Optionally, you can
call a trick that helps after Gzip (counting character frequency in
non-mangleable words). Example:

compressed_ast.figure_out_scope();
compressed_ast.compute_char_frequency();
compressed_ast.mangle_names();

Generating output

AST nodes have a print method that takes an output stream. Essentially,
to generate code you do this:

var stream = UglifyJS.OutputStream(options);
compressed_ast.print(stream);
var code = stream.toString(); // this is your minified code

or, for a shortcut you can do:

var code = compressed_ast.print_to_string(options);

As usual, options is optional. The output stream accepts a lot of otions,
most of them documented above in section “Beautifier options”. The two
which we care about here are source_map and comments.

Keeping comments in the output

In order to keep certain comments in the output you need to pass the
comments option. Pass a RegExp or a function. If you pass a RegExp, only
those comments whose body matches the regexp will be kept. Note that body
means without the initial // or /*. If you pass a function, it will be
called for every comment in the tree and will receive two arguments: the
node that the comment is attached to, and the comment token itself.

The comment token has these properties:

		type: “comment1” for single-line comments or “comment2” for multi-line
comments

		value: the comment body

		pos and endpos: the start/end positions (zero-based indexes) in the
original code where this comment appears

		line and col: the line and column where this comment appears in the
original code

		file — the file name of the original file

		nlb — true if there was a newline before this comment in the original
code, or if this comment contains a newline.

Your function should return true to keep the comment, or a falsy value
otherwise.

Generating a source mapping

You need to pass the source_map argument when calling print. It needs
to be a SourceMap object (which is a thin wrapper on top of the
source-map [https://github.com/mozilla/source-map] library).

Example:

var source_map = UglifyJS.SourceMap(source_map_options);
var stream = UglifyJS.OutputStream({
 ...
 source_map: source_map
});
compressed_ast.print(stream);

var code = stream.toString();
var map = source_map.toString(); // json output for your source map

The source_map_options (optional) can contain the following properties:

		file: the name of the JavaScript output file that this mapping refers to

		root: the sourceRoot property (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit])

		orig: the “original source map”, handy when you compress generated JS
and want to map the minified output back to the original code where it
came from. It can be simply a string in JSON, or a JSON object containing
the original source map.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/with/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

with

Compile time with for strict mode JavaScript

[image: build status] [http://travis-ci.org/ForbesLindesay/with]
[image: Dependency Status] [https://gemnasium.com/ForbesLindesay/with]
[image: NPM version] [http://badge.fury.io/js/with]

Installation

$ npm install with

Usage

var addWith = require('with')

addWith('obj', 'console.log(a)')
// => ';(function (console, a) {
// console.log(a)
// }("console" in obj ? obj.console :
// typeof console!=="undefined" ? console : undefined,
// "a" in obj ? obj.a :
// typeof a !== "undefined" ? a : undefined));'

addWith('obj', 'console.log(a)', ['console'])
// => ';(function (console, a) {
// console.log(a)
// }("a" in obj ? obj.a :
// typeof a !== "undefined" ? a : undefined));'

API

addWith(obj, src[, exclude])

The idea is that this is roughly equivallent to:

with (obj) {
 src
}

There are a few differences though. For starters, assignments to variables will always remain contained within the with block.

e.g.

var foo = 'foo'
with ({}) {
 foo = 'bar'
}
assert(foo === 'bar')// => This fails for compile time with but passes for native with

var obj = {foo: 'foo'}
with ({}) {
 foo = 'bar'
}
assert(obj.foo === 'bar')// => This fails for compile time with but passes for native with

It also makes everything be declared, so you can always do:

if (foo === undefined)

instead of

if (typeof foo === 'undefined')

This is not the case if foo is in exclude. If a variable is excluded, we ignore it entirely. This is useful if you know a variable will be global as it can lead to efficiency improvements.

It is also safe to use in strict mode (unlike with) and it minifies properly (with disables virtually all minification).

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/angular-route/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

packaged angular-route

This repo is for distribution on npm and bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js/tree/master/src/ngRoute].
Please file issues and pull requests against that repo.

Install

You can install this package either with npm or with bower.

npm

npm install angular-route

Add a <script> to your index.html:

<script src="/node_modules/angular-route/angular-route.js"></script>

Then add ngRoute as a dependency for your app:

angular.module('myApp', ['ngRoute']);

Note that this package is not in CommonJS format, so doing require('angular-route') will
return undefined.

bower

bower install angular-route

Add a <script> to your index.html:

<script src="/bower_components/angular-route/angular-route.js"></script>

Then add ngRoute as a dependency for your app:

angular.module('myApp', ['ngRoute']);

Documentation

Documentation is available on the
AngularJS docs site [http://docs.angularjs.org/api/ngRoute].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/angular-sanitize/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

packaged angular-sanitize

This repo is for distribution on npm and bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js/tree/master/src/ngSanitize].
Please file issues and pull requests against that repo.

Install

You can install this package either with npm or with bower.

npm

npm install angular-sanitize

Add a <script> to your index.html:

<script src="/node_modules/angular-sanitize/angular-sanitize.js"></script>

Then add ngSanitize as a dependency for your app:

angular.module('myApp', ['ngSanitize']);

Note that this package is not in CommonJS format, so doing require('angular-sanitize') will
return undefined.

bower

bower install angular-sanitize

Add a <script> to your index.html:

<script src="/bower_components/angular-sanitize/angular-sanitize.js"></script>

Then add ngSanitize as a dependency for your app:

angular.module('myApp', ['ngSanitize']);

Documentation

Documentation is available on the
AngularJS docs site [http://docs.angularjs.org/api/ngSanitize].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/bootstrap/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Bootstrap [http://getbootstrap.com]

[image: Bower version] [http://badge.fury.io/bo/bootstrap]
[image: NPM version] [http://badge.fury.io/js/bootstrap]
[image: Build Status] [https://travis-ci.org/twbs/bootstrap]
[image: devDependency Status] [https://david-dm.org/twbs/bootstrap#info=devDependencies]
[image: Selenium Test Status] [https://saucelabs.com/u/bootstrap]

Bootstrap is a sleek, intuitive, and powerful front-end framework for faster and easier web development, created by Mark Otto [https://twitter.com/mdo] and Jacob Thornton [https://twitter.com/fat], and maintained by the core team [https://github.com/twbs?tab=members] with the massive support and involvement of the community.

To get started, check out http://getbootstrap.com!

Table of contents

		Quick start

		Bugs and feature requests

		Documentation

		Contributing

		Community

		Versioning

		Creators

		Copyright and license

Quick start

Four quick start options are available:

		Download the latest release [https://github.com/twbs/bootstrap/archive/v3.3.1.zip].

		Clone the repo: git clone https://github.com/twbs/bootstrap.git.

		Install with Bower [http://bower.io]: bower install bootstrap.

		Install with npm [https://www.npmjs.org]: npm install bootstrap.

Read the Getting started page [http://getbootstrap.com/getting-started/] for information on the framework contents, templates and examples, and more.

What’s included

Within the download you’ll find the following directories and files, logically grouping common assets and providing both compiled and minified variations. You’ll see something like this:

bootstrap/
├── css/
│ ├── bootstrap.css
│ ├── bootstrap.min.css
│ ├── bootstrap-theme.css
│ └── bootstrap-theme.min.css
├── js/
│ ├── bootstrap.js
│ └── bootstrap.min.js
└── fonts/
 ├── glyphicons-halflings-regular.eot
 ├── glyphicons-halflings-regular.svg
 ├── glyphicons-halflings-regular.ttf
 └── glyphicons-halflings-regular.woff

We provide compiled CSS and JS (bootstrap.*), as well as compiled and minified CSS and JS (bootstrap.min.*). Fonts from Glyphicons are included, as is the optional Bootstrap theme.

Bugs and feature requests

Have a bug or a feature request? Please first read the issue guidelines [https://github.com/twbs/bootstrap/blob/master/CONTRIBUTING.md#using-the-issue-tracker] and search for existing and closed issues. If your problem or idea is not addressed yet, please open a new issue [https://github.com/twbs/bootstrap/issues/new].

Documentation

Bootstrap’s documentation, included in this repo in the root directory, is built with Jekyll [http://jekyllrb.com] and publicly hosted on GitHub Pages at http://getbootstrap.com. The docs may also be run locally.

Running documentation locally

		If necessary, install Jekyll [http://jekyllrb.com/docs/installation] (requires v2.5.x).

		Windows users: Read this unofficial guide [http://jekyll-windows.juthilo.com/] to get Jekyll up and running without problems.

		Install the Ruby-based syntax highlighter, Rouge [https://github.com/jneen/rouge], with gem install rouge.

		From the root /bootstrap directory, run jekyll serve in the command line.

		Open http://localhost:9001 in your browser, and voilà.

Learn more about using Jekyll by reading its documentation [http://jekyllrb.com/docs/home/].

Documentation for previous releases

Documentation for v2.3.2 has been made available for the time being at http://getbootstrap.com/2.3.2/ while folks transition to Bootstrap 3.

Previous releases [https://github.com/twbs/bootstrap/releases] and their documentation are also available for download.

Contributing

Please read through our contributing guidelines [https://github.com/twbs/bootstrap/blob/master/CONTRIBUTING.md]. Included are directions for opening issues, coding standards, and notes on development.

Moreover, if your pull request contains JavaScript patches or features, you must include relevant unit tests. All HTML and CSS should conform to the Code Guide [https://github.com/mdo/code-guide], maintained by Mark Otto [https://github.com/mdo].

Editor preferences are available in the editor config [https://github.com/twbs/bootstrap/blob/master/.editorconfig] for easy use in common text editors. Read more and download plugins at http://editorconfig.org.

Community

Keep track of development and community news.

		Follow @twbootstrap on Twitter [https://twitter.com/twbootstrap].

		Read and subscribe to The Official Bootstrap Blog [http://blog.getbootstrap.com].

		Chat with fellow Bootstrappers in IRC. On the irc.freenode.net server, in the ##bootstrap channel.

		Implementation help may be found at Stack Overflow (tagged twitter-bootstrap-3 [http://stackoverflow.com/questions/tagged/twitter-bootstrap-3]).

Versioning

For transparency into our release cycle and in striving to maintain backward compatibility, Bootstrap is maintained under the Semantic Versioning guidelines [http://semver.org/]. Sometimes we screw up, but we’ll adhere to those rules whenever possible.

Creators

Mark Otto

		https://twitter.com/mdo

		https://github.com/mdo

Jacob Thornton

		https://twitter.com/fat

		https://github.com/fat

Copyright and license

Code and documentation copyright 2011-2014 Twitter, Inc. Code released under the MIT license. Docs released under Creative Commons.

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/angular-mocks/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

packaged angular-mocks

This repo is for distribution on npm and bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js/tree/master/src/ngMock].
Please file issues and pull requests against that repo.

Install

You can install this package either with npm or with bower.

npm

npm install angular-mocks

The mocks are then available at node_modules/angular-mocks/angular-mocks.js.

Note that this package is not in CommonJS format, so doing require('angular-mocks') will
return undefined.

bower

bower install angular-mocks

The mocks are then available at bower_components/angular-mocks/angular-mocks.js.

Documentation

Documentation is available on the
AngularJS docs site [https://docs.angularjs.org/guide/unit-testing].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/angular/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

packaged angular

This repo is for distribution on npm and bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js].
Please file issues and pull requests against that repo.

Install

You can install this package either with npm or with bower.

npm

npm install angular

Then add a <script> to your index.html:

<script src="/node_modules/angular/angular.js"></script>

Note that this package is not in CommonJS format, so doing require('angular') will return undefined.
If you’re using Browserify [https://github.com/substack/node-browserify], you can use
exposify [https://github.com/thlorenz/exposify] to have require('angular') return the angular
global.

bower

bower install angular

Then add a <script> to your index.html:

<script src="/bower_components/angular/angular.js"></script>

Documentation

Documentation is available on the
AngularJS docs site [http://docs.angularjs.org/].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

RGI Assessment Tool

#####Summary

This tool is a custom webapp build on Node.js, Express and Angular. It is connected on the back-end to to a MongoDB instance.

The tool allows researchers to complete RGI assessments, reviewers to review assessments and administrators to validate and authorize assessments.

#####Installation

Method 1: Open terminal and run the following commands:

 git clone
 cd

Method 2: Install docker. From commande line run:

 docker pull byndcivilization/rgi-assessment-tool
 docker run byndcivilization/rgi-assessment-tool -e "USER_ID=<db user name>"" -e "USER_KEY=<db pass>""

 docker run -d=true -p 49160:3030 -e "USER_ID=<db user name>" -e "USER_KEY=<db pass>" byndcivilization/rgi-assessment-tool

#####TODO

		country of residence no address

		validation is for admin - make its own page

		submit always goes to admin

		email passwords and submit

		file uplaoad

 © Copyright .
 Created using Sphinx 1.3.1.

public/vendor/angular-resource/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

packaged angular-resource

This repo is for distribution on npm and bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js/tree/master/src/ngResource].
Please file issues and pull requests against that repo.

Install

You can install this package either with npm or with bower.

npm

npm install angular-resource

Add a <script> to your index.html:

<script src="/node_modules/angular-resource/angular-resource.js"></script>

Then add ngResource as a dependency for your app:

angular.module('myApp', ['ngResource']);

Note that this package is not in CommonJS format, so doing require('angular-resource') will
return undefined.

bower

bower install angular-resource

Add a <script> to your index.html:

<script src="/bower_components/angular-resource/angular-resource.js"></script>

Then add ngResource as a dependency for your app:

angular.module('myApp', ['ngResource']);

Documentation

Documentation is available on the
AngularJS docs site [http://docs.angularjs.org/api/ngResource].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/mime/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime

Comprehensive MIME type mapping API. Includes all 600+ types and 800+ extensions defined by the Apache project, plus additional types submitted by the node.js community.

Install

Install with npm [http://github.com/isaacs/npm]:

npm install mime

API - Queries

mime.lookup(path)

Get the mime type associated with a file. Performs a case-insensitive lookup using the extension in path (the substring after the last ‘/’ or ‘.’). E.g.

var mime = require('mime');

mime.lookup('/path/to/file.txt'); // => 'text/plain'
mime.lookup('file.txt'); // => 'text/plain'
mime.lookup('.TXT'); // => 'text/plain'
mime.lookup('htm'); // => 'text/html'

mime.extension(type)

Get the default extension for type

mime.extension('text/html'); // => 'html'
mime.extension('application/octet-stream'); // => 'bin'

mime.charsets.lookup()

Map mime-type to charset

mime.charsets.lookup('text/plain'); // => 'UTF-8'

(The logic for charset lookups is pretty rudimentary. Feel free to suggest improvements.)

API - Defining Custom Types

The following APIs allow you to add your own type mappings within your project. If you feel a type should be included as part of node-mime, see requesting new types [https://github.com/bentomas/node-mime/wiki/Requesting-New-Types].

mime.define()

Add custom mime/extension mappings

mime.define({
 'text/x-some-format': ['x-sf', 'x-sft', 'x-sfml'],
 'application/x-my-type': ['x-mt', 'x-mtt'],
 // etc ...
});

mime.lookup('x-sft'); // => 'text/x-some-format'

The first entry in the extensions array is returned by mime.extension(). E.g.

mime.extension('text/x-some-format'); // => 'x-sf'

mime.load(filepath)

Load mappings from an Apache ”.types” format file

mime.load('./my_project.types');

The .types file format is simple - See the types dir for examples.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/reduce-component/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/rimraf/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 rm -rf for node.

Install with npm install rimraf, or just drop rimraf.js somewhere.

API

rimraf(f, callback)

The callback will be called with an error if there is one. Certain
errors are handled for you:

		Windows: EBUSY and ENOTEMPTY - rimraf will back off a maximum of
opts.maxBusyTries times before giving up.

		ENOENT - If the file doesn’t exist, rimraf will return
successfully, since your desired outcome is already the case.

rimraf.sync

It can remove stuff synchronously, too. But that’s not so good. Use
the async API. It’s better.

CLI

If installed with npm install rimraf -g it can be used as a global
command rimraf <path> which is useful for cross platform support.

mkdirp

If you need to create a directory recursively, check out
mkdirp [https://github.com/substack/node-mkdirp].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/debug/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

debug

tiny node.js debugging utility modelled after node core’s debugging technique.

Installation

$ npm install debug

Usage

With debug you simply invoke the exported function to generate your debug function, passing it a name which will determine if a noop function is returned, or a decorated console.error, so all of the console format string goodies you’re used to work fine. A unique color is selected per-function for visibility.

Example app.js:

var debug = require('debug')('http')
 , http = require('http')
 , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
 debug(req.method + ' ' + req.url);
 res.end('hello\n');
}).listen(3000, function(){
 debug('listening');
});

// fake worker of some kind

require('./worker');

Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
 debug('doing some work');
}, 1000);

The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: debug http and worker]

[image: debug worker]

Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image:]

When stderr is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:
(NOTE: Debug now uses stderr instead of stdout, so the correct shell command for this example is actually DEBUG=* node example/worker 2> out &)

[image:]

Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use ”:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.

Wildcards

The “*” character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect.compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character. For example, DEBUG=* -connect:* would include all debuggers except those starting with “connect:”.

Browser support

Debug works in the browser as well, currently persisted by localStorage. For example if you have worker:a and worker:b as shown below, and wish to debug both type debug.enable('worker:*') in the console and refresh the page, this will remain until you disable with debug.disable().

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
 a('doing some work');
}, 1000);

setInterval(function(){
 a('doing some work');
}, 1200);

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/glob/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/qs/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-querystring

query string parser for node and the browser supporting nesting, as it was removed from 0.3.x, so this library provides the previous and commonly desired behaviour (and twice as fast). Used by express [http://expressjs.com], connect [http://senchalabs.github.com/connect] and others.

Installation

$ npm install qs

Examples

var qs = require('qs');

qs.parse('user[name][first]=Tobi&user[email]=tobi@learnboost.com');
// => { user: { name: { first: 'Tobi' }, email: 'tobi@learnboost.com' } }

qs.stringify({ user: { name: 'Tobi', email: 'tobi@learnboost.com' }})
// => user[name]=Tobi&user[email]=tobi%40learnboost.com

Testing

Install dev dependencies:

$ npm install -d

and execute:

$ make test

browser:

$ open test/browser/index.html

License

(The MIT License)

Copyright (c) 2010 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/constantinople/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

constantinople

Determine whether a JavaScript expression evaluates to a constant (using UglifyJS). Here it is assumed to be safe to underestimate how constant something is.

[image: Build Status] [https://travis-ci.org/ForbesLindesay/constantinople]
[image: Dependency Status] [https://gemnasium.com/ForbesLindesay/constantinople]
[image: NPM version] [http://badge.fury.io/js/constantinople]

Installation

npm install constantinople

Usage

var isConstant = require('constantinople')

if (isConstant('"foo" + 5')) {
 console.dir(isConstant.toConstant('"foo" + 5'))
}
if (isConstant('Math.floor(10.5)', {Math: Math})) {
 console.dir(isConstant.toConstant('Math.floor(10.5)', {Math: Math}))
}

API

isConstant(src, [constants])

Returns true if src evaluates to a constant, false otherwise. It will also return false if there is a syntax error, which makes it safe to use on potentially ES6 code.

Constants is an object mapping strings to values, where those values should be treated as constants. Note that this makes it a pretty bad idea to have Math in there if the user might make use of Math.random and a pretty bad idea to have Date in there.

toConstant(src, [constants])

Returns the value resulting from evaluating src. This method throws an error if the expression is not constant. e.g. toConstant("Math.random()") would throw an error.

Constants is an object mapping strings to values, where those values should be treated as constants. Note that this makes it a pretty bad idea to have Math in there if the user might make use of Math.random and a pretty bad idea to have Date in there.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/bootstrap/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Contributing to Bootstrap

Looking to contribute something to Bootstrap? Here’s how you can help.

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved.

Following these guidelines helps to communicate that you respect the time of
the developers managing and developing this open source project. In return,
they should reciprocate that respect in addressing your issue or assessing
patches and features.

Using the issue tracker

The issue tracker [https://github.com/twbs/bootstrap/issues] is
the preferred channel for bug reports, features requests
and submitting pull requests, but please respect the following
restrictions:

		Please do not use the issue tracker for personal support requests. Stack
Overflow (twitter-bootstrap-3 [http://stackoverflow.com/questions/tagged/twitter-bootstrap-3] tag) or IRC [https://github.com/twbs/bootstrap/blob/master/README.md#community] are better places to get help.

		Please do not derail or troll issues. Keep the discussion on topic and
respect the opinions of others.

		Please do not open issues or pull requests regarding the code in
Normalize [https://github.com/necolas/normalize.css] (open them in
their respective repositories).

Issues and labels

Our bug tracker utilizes several labels to help organize and identify issues. Here’s what they represent and how we use them:

		browser bug - Issues that are reported to us, but actually are the result of a browser-specific bug. These are diagnosed with reduced test cases and result in a issue opened on that browser’s own bug tracker.

		confirmed - Issues that have been confirmed with a reduced test case and idenfity a bug in Bootstrap.

		css - Issues stemming from our compiled CSS or source Less files.

		customizer - Issues with our web-based Customizer.

		docs - Issues for improving or updating our documentation.

		examples - Issues involving the example templates included in our docs.

		feature - Issues asking for a new feature to be added, or an existing one to be extended or modified. New features require a minor version bump (e.g., v3.0.0 to v3.1.0).

		grunt - Issues with our included JavaScript-based Gruntfile, which is used to run all our tests, concatenate and compile source files, and more.

		help wanted - Issues we need or would love help from the community to resolve.

		js - Issues stemming from our compiled or source JavaScript files.

		meta - Issues with the project itself or our GitHub repository.

For a complete look at our labels, see the project labels page.

Bug reports

A bug is a demonstrable problem that is caused by the code in the repository.
Good bug reports are extremely helpful, so thanks!

Guidelines for bug reports:

		Validate and lint your code —

 validate your HTML [http://html5.validator.nu]
and lint your HTML [https://github.com/twbs/bootlint] to ensure your
problem isn’t caused by a simple error in your own code.

		Use the GitHub issue search —

 check if the issue has already been
reported.

		Check if the issue has been fixed —

 try to reproduce it using the
latest master or development branch in the repository.

		Isolate the problem —

 ideally create a reduced test
case [http://css-tricks.com/6263-reduced-test-cases/] and a live example.
This JS Bin [http://jsbin.com/lefey/1/edit?html,output] is a helpful template.

A good bug report shouldn’t leave others needing to chase you up for more
information. Please try to be as detailed as possible in your report. What is
your environment? What steps will reproduce the issue? What browser(s) and OS
experience the problem? Do other browsers show the bug differently? What
would you expect to be the outcome? All these details will help people to fix
any potential bugs.

Example:

Short and descriptive example bug report title

A summary of the issue and the browser/OS environment in which it occurs. If
suitable, include the steps required to reproduce the bug.

		This is the first step

		This is the second step

		Further steps, etc.

<url> - a link to the reduced test case

Any other information you want to share that is relevant to the issue being
reported. This might include the lines of code that you have identified as
causing the bug, and potential solutions (and your opinions on their
merits).

Reporting upstream browser bugs

Sometimes bugs reported to us are actually caused by bugs in the browser(s) themselves, not bugs in Bootstrap per se.
When feasible, we aim to report such upstream bugs to the relevant browser vendor(s), and then list them on our Wall of Browser Bugs [http://getbootstrap.com/browser-bugs/].

Vendor(s)	Browser(s)	Rendering engine	Bug reporting website(s)	Notes
————-	—————————-	—————-	————————————————————————————-	——————————————————–
Mozilla	Firefox	Gecko	https://bugzilla.mozilla.org/enter_bug.cgi	“Core” is normally the right product option to choose.
Apple	Safari	WebKit	https://bugs.webkit.org/enter_bug.cgi?product=WebKit	
https://bugreport.apple.com	In Apple’s bug reporter, choose “Safari” as the product.			
Google, Opera	Chrome, Chromium, Opera v15+	Blink	https://code.google.com/p/chromium/issues/list	Click the “New issue” button.
Microsoft	Internet Explorer	Trident	https://connect.microsoft.com/IE/feedback/LoadSubmitFeedbackForm	

Issues bots

@twbs-lmvtfy [https://github.com/twbs-lmvtfy] is a Bootstrap bot that hangs out in our GitHub issue tracker and automatically checks for HTML validation errors in live examples (e.g. jsFiddles, JS Bins, Bootplys, Plunks, CodePens, etc.) posted in issue comments. If it finds any errors, it will post a follow-up comment on the issue and point out the errors. If this happens with an example you’ve posted, please fix the errors and post an updated live example. If you opened a bug report, please check whether the bug still occurs with your revised, valid live example. If the bug no longer occurs, it was probably due to your invalid HTML rather than something in Bootstrap and we’d appreciate it if you could close out the GitHub issue.

Feature requests

Feature requests are welcome. But take a moment to find out whether your idea
fits with the scope and aims of the project. It’s up to you to make a strong
case to convince the project’s developers of the merits of this feature. Please
provide as much detail and context as possible.

Pull requests

Good pull requests—patches, improvements, new features—are a fantastic
help. They should remain focused in scope and avoid containing unrelated
commits.

Please ask first before embarking on any significant pull request (e.g.
implementing features, refactoring code, porting to a different language),
otherwise you risk spending a lot of time working on something that the
project’s developers might not want to merge into the project.

Please adhere to the coding guidelines used throughout the
project (indentation, accurate comments, etc.) and any other requirements
(such as test coverage).

Do not edit bootstrap.css, bootstrap-theme.css, or bootstrap.js
directly! Those files are automatically generated. You should edit the
source files in /bootstrap/less/ [https://github.com/twbs/bootstrap/tree/master/less]
and/or /bootstrap/js/ [https://github.com/twbs/bootstrap/tree/master/js] instead.

Similarly, when contributing to Bootstrap’s documentation, you should edit the
documentation source files in
the /bootstrap/docs/ directory of the master branch [https://github.com/twbs/bootstrap/tree/master/docs].
Do not edit the gh-pages branch. That branch is generated from the
documentation source files and is managed separately by the Bootstrap Core Team.

Adhering to the following process is the best way to get your work
included in the project:

		Fork [http://help.github.com/fork-a-repo/] the project, clone your fork,
and configure the remotes:

Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/bootstrap.git
Navigate to the newly cloned directory
cd bootstrap
Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/twbs/bootstrap.git

		If you cloned a while ago, get the latest changes from upstream:

git checkout master
git pull upstream master

		Create a new topic branch (off the main project development branch) to
contain your feature, change, or fix:

git checkout -b <topic-branch-name>

		Commit your changes in logical chunks. Please adhere to these git commit
message guidelines [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]
or your code is unlikely be merged into the main project. Use Git’s
interactive rebase [https://help.github.com/articles/interactive-rebase]
feature to tidy up your commits before making them public.

		Locally merge (or rebase) the upstream development branch into your topic branch:

git pull [--rebase] upstream master

		Push your topic branch up to your fork:

git push origin <topic-branch-name>

		Open a Pull Request [https://help.github.com/articles/using-pull-requests/]
with a clear title and description against the master branch.

IMPORTANT: By submitting a patch, you agree to allow the project owners to
license your work under the terms of the MIT License.

Pull request checker bot: Rorschach

@twbs-rorschach [https://github.com/twbs-rorschach] is a Bootstrap bot that hangs out in our GitHub issue tracker and automatically checks all pull requests for a few simple common mistakes. It’s possible that Rorschach might leave a comment on your pull request and then close it. If that happens, simply fix the problem(s) mentioned in the comment (there should be link(s) in the comment explaining the problem(s) in detail) and then either:

		Push the revised version to your pull request’s branch and post a comment on the pull request saying that you’ve fixed the problem(s). One of the Bootstrap Core Team members will then come along and reopen your pull request.

		Or you can just open a new pull request for your revised version.

Code guidelines

HTML

Adhere to the Code Guide. [http://codeguide.co/#html]

		Use tags and elements appropriate for an HTML5 doctype (e.g., self-closing tags).

		Use CDNs and HTTPS for third-party JS when possible. We don’t use protocol-relative URLs in this case because they break when viewing the page locally via file://.

		Use WAI-ARIA [https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA] attributes in documentation examples to promote accessibility.

CSS

Adhere to the Code Guide. [http://codeguide.co/#css]

		When feasible, default color palettes should comply with WCAG color contrast guidelines [http://www.w3.org/TR/WCAG20/#visual-audio-contrast].

		Except in rare cases, don’t remove default :focus styles (via e.g. outline: none;) without providing alternative styles. See this A11Y Project post [http://a11yproject.com/posts/never-remove-css-outlines/] for more details.

JS

		No semicolons (in client-side JS)

		2 spaces (no tabs)

		strict mode

		“Attractive”

Checking coding style

Run grunt test before committing to ensure your changes follow our coding standards.

License

By contributing your code, you agree to license your contribution under the MIT license [https://github.com/twbs/bootstrap/blob/master/LICENSE].

Prior to v3.1.0, Bootstrap was released under the Apache License v2.0.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/docs/index.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

SuperAgent

Super Agent is light-weight progressive ajax API crafted for flexibility, readability, and a low learning curve after being frustrated with many of the existing request APIs.

 request
 .post('/api/pet')
 .data({ name: 'Manny', species: 'cat' })
 .set('X-API-Key', 'foobar')
 .set('Accept', 'application/json')
 .end(function(res){
 if (res.ok) {
 alert('yay got ' + JSON.stringify(res.body));
 } else {
 alert('Oh no! error ' + res.text);
 }
 });

Request basics

A request can be initiated by invoking the appropriate method on the request object, then calling .end() to send the request. For example a simple GET request:

 request
 .get('/search')
 .end(function(res){

 });

The node client may also provide absolute urls:

 request
 .get('http://example.com/search')
 .end(function(res){

 });

DELETE, HEAD, POST, PUT and other HTTP verbs may also be used, simply change the method name:

request
 .head('/favicon.ico')
 .end(function(res){

 });

DELETE is a special-case, as it’s a reserved word, so the method is named .del():

request
 .del('/user/1')
 .end(function(res){

 });

Crafting requests

SuperAgent’s flexible API gives you the granularity you need, when you need, yet more concise variations help reduce the amount of code necessary. For example the following GET request:

request
 .get('/search')
 .end(function(res){

 });

Could also be defined as the following, where a callback is given to the HTTP verb method:

request
 .get('/search', function(res){

 });

Taking this further the default HTTP verb is GET so the following works as well:

 request('/search', function(res){

 });

This applies to more complicated requests as well, for example the following GET request with a query-string can be written in the chaining manner:

 request
 .get('/search')
 .data({ query: 'tobi the ferret' })
 .end(function(res){

 });

Or one may pass the query-string object to .get():

 request
 .get('/search', { query: 'tobi the ferret' })
 .end(function(res){

 });

Taking this even further the callback may be passed as well:

 request
 .get('/search', { query: 'tobi the ferret' }, function(res){

 });

Dealing with errors

On a network error (e.g. connection refused or timeout), SuperAgent emits
error unless you pass .end() a callback with two parameters. Then
SuperAgent will invoke it with the error first, followed by a null response.

 request
 .get('http://wrongurl')
 .end(function(err, res){
 console.log('ERROR: ', err)
 });

On HTTP errors instead, SuperAgent populates the response with flags
indicating the error. See Response status below.

Setting header fields

Setting header fields is simple, invoke .set() with a field name and value:

 request
 .get('/search')
 .set('API-Key', 'foobar')
 .set('Accept', 'application/json')
 .end(callback);

GET requests

The .data() method accepts objects, which when used with the GET method will form a query-string. The following will produce the path /search?query=Manny&range=1..5&order=desc.

 request
 .get('/search')
 .data({ query: 'Manny' })
 .data({ range: '1..5' })
 .data({ order: 'desc' })
 .end(function(res){

 });

The .data() method accepts strings as well:

 request
 .get('/querystring')
 .data('search=Manny&range=1..5')
 .end(function(res){

 });

POST / PUT requests

A typical JSON POST request might look a little like the following, where we set the Content-Type header field appropriately, and “write” some data, in this case just a JSON string.

 request.post('/user')
 .set('Content-Type', 'application/json')
 .data('{"name":"tj","pet":"tobi"})
 .end(callback)

Since JSON is undoubtably the most common, it’s the default! The following example is equivalent to the previous.

 request.post('/user')
 .data({ name: 'tj', pet: 'tobi' })
 .end(callback)

Or using multiple .data() calls:

 request.post('/user')
 .data({ name: 'tj' })
 .data({ pet: 'tobi' })
 .end(callback)

SuperAgent formats are extensible, however by default “json” and “form” are supported. To send the data as application/x-www-form-urlencoded simply invoke .type() with “form-data”, where the default is “json”. This request will POST the body “name=tj&pet=tobi”.

 request.post('/user')
 .type('form')
 .data({ name: 'tj' })
 .data({ pet: 'tobi' })
 .end(callback)

Response properties

Many helpful flags and properties are set on the Response object, ranging from the response text, parsed response body, header fields, status flags and more.

Response text

The res.text property contains the unparsed response body string.

Response body

Much like SuperAgent can auto-serialize request data, it can also automatically parse it. When a parser is defined for the Content-Type, it is parsed, which by default includes “application/json” and “application/x-www-form-urlencoded”. The parsed object is then available via res.body.

Response header fields

The res.header contains an object of parsed header fields, lowercasing field names much like node does. For example res.header['content-length'].

Response Content-Type

The Content-Type response header is special-cased, providing res.contentType, which is void of the charset (if any). For example the Content-Type of “text/html; charset=utf8” will provide “text/html” as res.contentType, and the res.charset property would then contain “utf8”.

Response status

The response status flags help determine if the request was a success, among other useful information, making SuperAgent ideal for interacting with RESTful web services. These flags are currently defined as:

 var type = status / 100 | 0;

 // status / class
 res.status = status;
 res.statusType = type;

 // basics
 res.info = 1 == type;
 res.ok = 2 == type;
 res.clientError = 4 == type;
 res.serverError = 5 == type;
 res.error = 4 == type || 5 == type;

 // sugar
 res.accepted = 202 == status;
 res.noContent = 204 == status || 1223 == status;
 res.badRequest = 400 == status;
 res.unauthorized = 401 == status;
 res.notAcceptable = 406 == status;
 res.notFound = 404 == status;

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/character-parser/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

character-parser

Parse JavaScript one character at a time to look for snippets in Templates. This is not a validator, it’s just designed to allow you to have sections of JavaScript delimited by brackets robustly.

[image: Build Status] [https://travis-ci.org/ForbesLindesay/character-parser]

Installation

npm install character-parser

Usage

Work out how much depth changes:

var state = parse('foo(arg1, arg2, {\n foo: [a, b\n');
assert(state.roundDepth === 1);
assert(state.curlyDepth === 1);
assert(state.squareDepth === 1);
parse(' c, d]\n })', state);
assert(state.squareDepth === 0);
assert(state.curlyDepth === 0);
assert(state.roundDepth === 0);

Bracketed Expressions

Find all the contents of a bracketed expression:

var section = parser.parseMax('foo="(", bar="}") bing bong');
assert(section.start === 0);
assert(section.end === 16);//exclusive end of string
assert(section.src = 'foo="(", bar="}"');

var section = parser.parseMax('{foo="(", bar="}"} bing bong', {start: 1});
assert(section.start === 1);
assert(section.end === 17);//exclusive end of string
assert(section.src = 'foo="(", bar="}"');

The bracketed expression parsing simply parses up to but excluding the first unmatched closed bracket (), },]). It is clever enough to ignore brackets in comments or strings.

Custom Delimited Expressions

Find code up to a custom delimiter:

var section = parser.parseUntil('foo.bar("%>").baz%> bing bong', '%>');
assert(section.start === 0);
assert(section.end === 17);//exclusive end of string
assert(section.src = 'foo.bar("%>").baz');

var section = parser.parseUntil('<%foo.bar("%>").baz%> bing bong', '%>', {start: 2});
assert(section.start === 2);
assert(section.end === 19);//exclusive end of string
assert(section.src = 'foo.bar("%>").baz');

Delimiters are ignored if they are inside strings or comments.

API

parse(str, state = defaultState(), options = {start: 0, end: src.length})

Parse a string starting at the index start, and return the state after parsing that string.

If you want to parse one string in multiple sections you should keep passing the resulting state to the next parse operation.

Returns a State object.

parseMax(src, options = {start: 0})

Parses the source until the first unmatched close bracket (any of), },]). It returns an object with the structure:

{
 start: 0,//index of first character of string
 end: 13,//index of first character after the end of string
 src: 'source string'
}

parseUntil(src, delimiter, options = {start: 0, includeLineComment: false})

Parses the source until the first occurence of delimiter which is not in a string or a comment. If includeLineComment is true, it will still count if the delimiter occurs in a line comment, but not in a block comment. It returns an object with the structure:

{
 start: 0,//index of first character of string
 end: 13,//index of first character after the end of string
 src: 'source string'
}

parseChar(character, state = defaultState())

Parses the single character and returns the state. See parse for the structure of the returned state object. N.B. character must be a single character not a multi character string.

defaultState()

Get a default starting state.

isPunctuator(character)

Returns true if character represents punctuation in JavaScript.

isKeyword(name)

Returns true if name is a keyword in JavaScript.

State

A state is an object with the following structure

{
 lineComment: false, //true if inside a line comment
 blockComment: false, //true if inside a block comment

 singleQuote: false, //true if inside a single quoted string
 doubleQuote: false, //true if inside a double quoted string
 regexp: false, //true if inside a regular expression
 escaped: false, //true if in a string and the last character was an escape character

 roundDepth: 0, //number of un-closed open `(` brackets
 curlyDepth: 0, //number of un-closed open `{` brackets
 squareDepth: 0 //number of un-closed open `[` brackets
}

It also has the following useful methods:

		.isString() returns true if the current location is inside a string.

		.isComment() returns true if the current location is inside a comment.

		isNesting() returns true if the current location is anything but at the top level, i.e. with no nesting.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/colors/ReadMe.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

colors.js - get color and style in your node.js console (and browser) like what

[image:]

Installation

npm install colors

colors and styles!

		bold

		italic

		underline

		inverse

		yellow

		cyan

		white

		magenta

		green

		red

		grey

		blue

		rainbow

		zebra

		random

Usage

var colors = require('./colors');

console.log('hello'.green); // outputs green text
console.log('i like cake and pies'.underline.red) // outputs red underlined text
console.log('inverse the color'.inverse); // inverses the color
console.log('OMG Rainbows!'.rainbow); // rainbow (ignores spaces)

Creating Custom themes

var colors = require('colors');

colors.setTheme({
 silly: 'rainbow',
 input: 'grey',
 verbose: 'cyan',
 prompt: 'grey',
 info: 'green',
 data: 'grey',
 help: 'cyan',
 warn: 'yellow',
 debug: 'blue',
 error: 'red'
});

// outputs red text
console.log("this is an error".error);

// outputs yellow text
console.log("this is a warning".warn);

Contributors

Marak (Marak Squires)
Alexis Sellier (cloudhead)
mmalecki (Maciej Małecki)
nicoreed (Nico Reed)
morganrallen (Morgan Allen)
JustinCampbell (Justin Campbell)
ded (Dustin Diaz)

, Marak Squires , Justin Campbell, Dustin Diaz (@ded)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/extend/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 ![Build Status][1] [https://travis-ci.org/justmoon/node-extend] ![dependency status][9] [https://david-dm.org/justmoon/node-extend] ![dev dependency status][11] [https://david-dm.org/justmoon/node-extend#info=devDependencies]

extend() for Node.js ![Version Badge][8] [https://npmjs.org/package/extend]

node-extend is a port of the classic extend() method from jQuery. It behaves as you expect. It is simple, tried and true.

Installation

This package is available on npm [https://npmjs.org/package/extend] as: extend

npm install extend

Usage

Syntax: extend ([deep], target, object1, [objectN])

Extend one object with one or more others, returning the modified object.

Keep in mind that the target object will be modified, and will be returned from extend().

If a boolean true is specified as the first argument, extend performs a deep copy, recursively copying any objects it finds. Otherwise, the copy will share structure with the original object(s).
Undefined properties are not copied. However, properties inherited from the object’s prototype will be copied over.

Arguments

		deep Boolean (optional)If set, the merge becomes recursive (i.e. deep copy).

		target ObjectThe object to extend.

		object1 ObjectThe object that will be merged into the first.

		objectN Object (Optional)More objects to merge into the first.

License

node-extend is licensed under the MIT License [http://opensource.org/licenses/MIT].

Acknowledgements

All credit to the jQuery authors for perfecting this amazing utility.

Ported to Node.js by Stefan Thomas [https://github.com/justmoon] with contributions by Jonathan Buchanan [https://github.com/insin] and Jordan Harband [https://github.com/ljharb].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/constantinople/node_modules/uglify-js/node_modules/async/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Async.js

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with node.js [http://nodejs.org], it can also be used directly in the
browser. Also supports component [https://github.com/component/component].

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, each…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Common Pitfalls

Binding a context to an iterator

This section is really about bind, not about async. If you are wondering how to
make async execute your iterators in a given context, or are confused as to why
a method of another library isn’t working as an iterator, study this example:

// Here is a simple object with an (unnecessarily roundabout) squaring method
var AsyncSquaringLibrary = {
 squareExponent: 2,
 square: function(number, callback){
 var result = Math.pow(number, this.squareExponent);
 setTimeout(function(){
 callback(null, result);
 }, 200);
 }
};

async.map([1, 2, 3], AsyncSquaringLibrary.square, function(err, result){
 // result is [NaN, NaN, NaN]
 // This fails because the `this.squareExponent` expression in the square
 // function is not evaluated in the context of AsyncSquaringLibrary, and is
 // therefore undefined.
});

async.map([1, 2, 3], AsyncSquaringLibrary.square.bind(AsyncSquaringLibrary), function(err, result){
 // result is [1, 4, 9]
 // With the help of bind we can attach a context to the iterator before
 // passing it to async. Now the square function will be executed in its
 // 'home' AsyncSquaringLibrary context and the value of `this.squareExponent`
 // will be as expected.
});

Download

The source is available for download from
GitHub [http://github.com/caolan/async].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 29.6kb Uncompressed

In the Browser

So far it’s been tested in IE6, IE7, IE8, FF3.6 and Chrome 5. Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

		each

		eachSeries

		eachLimit

		map

		mapSeries

		mapLimit

		filter

		filterSeries

		reject

		rejectSeries

		reduce

		reduceRight

		detect

		detectSeries

		sortBy

		some

		every

		concat

		concatSeries

Control Flow

		series

		parallel

		parallelLimit

		whilst

		doWhilst

		until

		doUntil

		forever

		waterfall

		compose

		applyEach

		applyEachSeries

		queue

		cargo

		auto

		iterator

		apply

		nextTick

		times

		timesSeries

Utils

		memoize

		unmemoize

		log

		dir

		noConflict

Collections

[bookmark: forEach]
[bookmark: each]

each(arr, iterator, callback)

Applies an iterator function to each item in an array, in parallel.
The iterator is called with an item from the list and a callback for when it
has finished. If the iterator passes an error to this callback, the main
callback for the each function is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.each(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: forEachSeries]
[bookmark: eachSeries]

eachSeries(arr, iterator, callback)

The same as each only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. This means the iterator functions will complete in order.

[bookmark: forEachLimit]
[bookmark: eachLimit]

eachLimit(arr, limit, iterator, callback)

The same as each only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.eachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in the given array through
the iterator function. The iterator is called with an item from the array and a
callback for when it has finished processing. The callback takes 2 arguments,
an error and the transformed item from the array. If the iterator passes an
error to this callback, the main callback for the map function is immediately
called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order, however
the results array will be in the same order as the original array.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: mapLimit]

mapLimit(arr, limit, iterator, callback)

The same as map only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.mapLimit(['file1','file2','file3'], 1, fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

alias: selectSeries

The same as filter only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as reject, only the iterator is applied to each item in the array
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

aliases: inject, foldl

Reduces a list of values into a single value using an async iterator to return
each successive step. Memo is the initial state of the reduction. This
function only operates in series. For performance reasons, it may make sense to
split a call to this function into a parallel map, then use the normal
Array.prototype.reduce on the results. This function is for situations where
each step in the reduction needs to be async, if you can get the data before
reducing it then it’s probably a good idea to do so.

Arguments

		arr - An array to iterate over.

		memo - The initial state of the reduction.

		iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback(err, reduction) which accepts an optional error as its first
argument, and the state of the reduction as the second. If an error is
passed to the callback, the reduction is stopped and the main callback is
immediately called with the error.

		callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on the items in the array in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in a list that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original array (in terms of order) that passes the test.

If order within the original array is important then look at detectSeries.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], fs.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in the array
in series. This means the result is always the first in the original array (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each value through an async iterator.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, sortValue) which must be called once it
has completed with an error (which can be null) and a value to use as the sort
criteria.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is the items from
the original array sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies an iterator to each item in a list, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of the arguments passed to the iterator function.

Arguments

		arr - An array to iterate over

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, results) which must be called once it
has completed with an error (which can be null) and an array of results.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as async.concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run an array of functions in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run and the callback for the series is
immediately called with the value of the error. Once the tasks have completed,
the results are passed to the final callback as an array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.series.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 }
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run an array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.parallel.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 }
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: parallel]

parallelLimit(tasks, limit, [callback])

The same as parallel only the tasks are executed in parallel with a maximum of “limit”
tasks executing at any time.

Note that the tasks are not executed in batches, so there is no guarantee that
the first “limit” tasks will complete before any others are started.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		limit - The maximum number of tasks to run at any time.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls the callback when stopped,
or an error occurs.

Arguments

		test() - synchronous truth test to perform before each execution of fn.

		fn(callback) - A function to call each time the test passes. The function is
passed a callback(err) which must be called once it has completed with an
optional error argument.

		callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: doWhilst]

doWhilst(fn, test, callback)

The post check version of whilst. To reflect the difference in the order of operations test and fn arguments are switched. doWhilst is to whilst as do while is to while in plain JavaScript.

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn, until test returns true. Calls the callback when stopped,
or an error occurs.

The inverse of async.whilst.

[bookmark: doUntil]

doUntil(fn, test, callback)

Like doWhilst except the test is inverted. Note the argument ordering differs from until.

[bookmark: forever]

forever(fn, callback)

Calls the asynchronous function ‘fn’ repeatedly, in series, indefinitely.
If an error is passed to fn’s callback then ‘callback’ is called with the
error, otherwise it will never be called.

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs an array of functions in series, each passing their results to the next in
the array. However, if any of the functions pass an error to the callback, the
next function is not executed and the main callback is immediately called with
the error.

Arguments

		tasks - An array of functions to run, each function is passed a
callback(err, result1, result2, ...) it must call on completion. The first
argument is an error (which can be null) and any further arguments will be
passed as arguments in order to the next task.

		callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: compose]

compose(fn1, fn2...)

Creates a function which is a composition of the passed asynchronous
functions. Each function consumes the return value of the function that
follows. Composing functions f(), g() and h() would produce the result of
f(g(h())), only this version uses callbacks to obtain the return values.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

function add1(n, callback) {
 setTimeout(function () {
 callback(null, n + 1);
 }, 10);
}

function mul3(n, callback) {
 setTimeout(function () {
 callback(null, n * 3);
 }, 10);
}

var add1mul3 = async.compose(mul3, add1);

add1mul3(4, function (err, result) {
 // result now equals 15
});

[bookmark: applyEach]

applyEach(fns, args..., callback)

Applies the provided arguments to each function in the array, calling the
callback after all functions have completed. If you only provide the first
argument then it will return a function which lets you pass in the
arguments as if it were a single function call.

Arguments

		fns - the asynchronous functions to all call with the same arguments

		args... - any number of separate arguments to pass to the function

		callback - the final argument should be the callback, called when all
functions have completed processing

Example

async.applyEach([enableSearch, updateSchema], 'bucket', callback);

// partial application example:
async.each(
 buckets,
 async.applyEach([enableSearch, updateSchema]),
 callback
);

[bookmark: applyEachSeries]

applyEachSeries(arr, iterator, callback)

The same as applyEach only the functions are applied in series.

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue will be processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one is available. Once
a worker has completed a task, the task’s callback is called.

Arguments

		worker(task, callback) - An asynchronous function for processing a queued
task, which must call its callback(err) argument when finished, with an
optional error as an argument.

		concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		unshift(task, [callback]) - add a new task to the front of the queue.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

// add some items to the front of the queue

q.unshift({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

[bookmark: cargo]

cargo(worker, [payload])

Creates a cargo object with the specified payload. Tasks added to the
cargo will be processed altogether (up to the payload limit). If the
worker is in progress, the task is queued until it is available. Once
the worker has completed some tasks, each callback of those tasks is called.

Arguments

		worker(tasks, callback) - An asynchronous function for processing an array of
queued tasks, which must call its callback(err) argument when finished, with
an optional error as an argument.

		payload - An optional integer for determining how many tasks should be
processed per round; if omitted, the default is unlimited.

Cargo objects

The cargo object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		payload - an integer for determining how many tasks should be
process per round. This property can be changed after a cargo is created to
alter the payload on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a cargo object with payload 2

var cargo = async.cargo(function (tasks, callback) {
 for(var i=0; i<tasks.length; i++){
 console.log('hello ' + tasks[i].name);
 }
 callback();
}, 2);

// add some items

cargo.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
cargo.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});
cargo.push({name: 'baz'}, function (err) {
 console.log('finished processing baz');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running functions based on their requirements.
Each function can optionally depend on other functions being completed first,
and each function is run as soon as its requirements are satisfied. If any of
the functions pass an error to their callback, that function will not complete
(so any other functions depending on it will not run) and the main callback
will be called immediately with the error. Functions also receive an object
containing the results of functions which have completed so far.

Note, all functions are called with a results object as a second argument,
so it is unsafe to pass functions in the tasks object which cannot handle the
extra argument. For example, this snippet of code:

async.auto({
 readData: async.apply(fs.readFile, 'data.txt', 'utf-8')
}, callback);

will have the effect of calling readFile with the results object as the last
argument, which will fail:

fs.readFile('data.txt', 'utf-8', cb, {});

Instead, wrap the call to readFile in a function which does not forward the
results object:

async.auto({
 readData: function(cb, results){
 fs.readFile('data.txt', 'utf-8', cb);
 }
}, callback);

Arguments

		tasks - An object literal containing named functions or an array of
requirements, with the function itself the last item in the array. The key
used for each function or array is used when specifying requirements. The
function receives two arguments: (1) a callback(err, result) which must be
called when finished, passing an error (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions.

		callback(err, results) - An optional callback which is called when all the
tasks have been completed. The callback will receive an error as an argument
if any tasks pass an error to their callback. Results will always be passed
but if an error occurred, no other tasks will be performed, and the results
object will only contain partial results.

Example

async.auto({
 get_data: function(callback){
 // async code to get some data
 },
 make_folder: function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 },
 write_file: ['get_data', 'make_folder', function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, filename);
 }],
 email_link: ['write_file', function(callback, results){
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 }]
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 // async code to get some data
 },
 function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 }
],
function(err, results){
 async.series([
 function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 },
 function(callback){
 // once the file is written let's email a link to it...
 }
]);
});

For a complicated series of async tasks using the auto function makes adding
new tasks much easier and makes the code more readable.

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the array,
returning a continuation to call the next one after that. It’s also possible to
‘peek’ the next iterator by doing iterator.next().

This function is used internally by the async module but can be useful when
you want to manually control the flow of functions in series.

Arguments

		tasks - An array of functions to run.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied, a useful
shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 }
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls the callback on a later loop around the event loop. In node.js this just
calls process.nextTick, in the browser it falls back to setImmediate(callback)
if available, otherwise setTimeout(callback, 0), which means other higher priority
events may precede the execution of the callback.

This is used internally for browser-compatibility purposes.

Arguments

		callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two']
});
call_order.push('one')

[bookmark: times]

times(n, callback)

Calls the callback n times and accumulates results in the same manner
you would use with async.map.

Arguments

		n - The number of times to run the function.

		callback - The function to call n times.

Example

// Pretend this is some complicated async factory
var createUser = function(id, callback) {
 callback(null, {
 id: 'user' + id
 })
}
// generate 5 users
async.times(5, function(n, next){
 createUser(n, function(err, user) {
 next(err, user)
 })
}, function(err, users) {
 // we should now have 5 users
});

[bookmark: timesSeries]

timesSeries(n, callback)

The same as times only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

The cache of results is exposed as the memo property of the function returned
by memoize.

Arguments

		fn - the function you to proxy and cache results from.

		hasher - an optional function for generating a custom hash for storing
results, it has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Comes handy in tests.

Arguments

		fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/bootstrap/test-infra/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

What does s3_cache.py do?

In general

s3_cache.py maintains a cache, stored in an Amazon S3 (Simple Storage Service) bucket, of a given directory whose contents are considered non-critical and are completely & solely determined by (and should be able to be regenerated from) a single given file.

The SHA-256 hash of the single file is used as the key for the cache. The directory is stored as a gzipped tarball.

All the tarballs are stored in S3’s Reduced Redundancy Storage (RRS) storage class, since this is cheaper and the data is non-critical.

s3_cache.py itself never deletes cache entries; deletion should either be done manually or using automatic S3 lifecycle rules on the bucket.

Similar to git, s3_cache.py makes the assumption that SHA-256 will effectively never have a collision [http://stackoverflow.com/questions/4014090/is-it-safe-to-ignore-the-possibility-of-sha-collisions-in-practice].

For Bootstrap specifically

s3_cache.py is used to cache the npm packages that our Grunt tasks depend on and the RubyGems that Jekyll depends on. (Jekyll is needed to compile our docs to HTML so that we can run them thru an HTML5 validator.)

For npm, the node_modules directory is cached based on our npm-shrinkwrap.json file.

For RubyGems, the gemdir of the current RVM-selected Ruby is cached based on the pseudo_Gemfile.lock file generated by our Travis build script.
pseudo_Gemfile.lock contains the versions of Ruby and Jekyll that we’re using (read our .travis.yml for details).

Why is s3_cache.py necessary?

s3_cache.py is used to speed up Bootstrap’s Travis builds. Installing npm packages and RubyGems used to take up a significant fraction of our total build times. Also, at the time that s3_cache.py was written, npm was occasionally unreliable.

Travis does offer built-in caching on their paid plans, but this do-it-ourselves S3 solution is significantly cheaper since we only need caching and not Travis’ other paid features.

Configuration

s3_cache.py is configured via S3Cachefile.json, which has the following format:

{
 "cache-name-here": {
 "key": "path/to/file/to/SHA-256/hash/and/use/that/as/the/cache.key",
 "cache": "path/to/directory/to/be/cached",
 "generate": "shell-command --to run --to regenerate --the-cache $from scratch"
 },
 ...
}

s3_cache.py will SHA-256 hash the contents of the key file and try to fetch a tarball from S3 using the hash as the filename.
If it’s unable to fetch the tarball (either because it doesn’t exist or there was a network error), it will run the generate command. If it was able to fetch the tarball, it will extract it to the cache directory.
If it had to generate the cache, it will later create a tarball of the cache directory and try to upload the tarball to S3 using the SHA-256 hash of the key file as the tarball’s filename.

AWS Setup

Overview

		Create an Amazon Web Services (AWS) account.

		Create an Identity & Access Management (IAM) user, and note their credentials.

		Create an S3 bucket.

		Set permissions on the bucket to grant the user read+write access.

		Set the user credentials as secure Travis environment variables.

In detail

		Create an AWS account.

		Login to the AWS Management Console [https://console.aws.amazon.com].

		Go to the IAM Management Console.

		Create a new user (named e.g. travis-ci) and generate an access key for them. Note both the Access Key ID and the Secret Access Key.

		Note the user’s ARN (Amazon Resource Name), which can be found in the “Summary” tab of the user browser. This will be of the form: arn:aws:iam::XXXXXXXXXXXXXX:user/the-username-goes-here

		Note the user’s access key, which can be found in the “Security Credentials” tab of the user browser.

		Go to the S3 Management Console.

		Create a new bucket. For a non-publicly-accessible bucket (like Bootstrap uses), it’s recommended that the bucket name be random to increase security. On most *nix machines, you can easily generate a random UUID to use as the bucket name using Python:

python -c "import uuid; print(uuid.uuid4())"

		Determine and note what your bucket’s ARN is. The ARN for an S3 bucket is of the form: arn:aws:s3:::the-bucket-name-goes-here

		In the bucket’s Properties pane, in the “Permissions” section, click the “Edit bucket policy” button.

		Input and submit an IAM Policy that grants the user at least read+write rights to the bucket. AWS has a policy generator and some examples to help with crafting the policy. Here’s the policy that Bootstrap uses, with the sensitive bits censored:

{
 "Version": "2012-10-17",
 "Id": "PolicyTravisReadWriteNoAdmin",
 "Statement": [
 {
 "Sid": "StmtXXXXXXXXXXXXXX",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::XXXXXXXXXXXXXX:user/travis-ci"
 },
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetObjectVersion",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion",
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "arn:aws:s3:::XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/*"
]
 }
]
}

		If you want deletion from the cache to be done automatically based on age (like Bootstrap does): In the bucket’s Properties pane, in the “Lifecycle” section, add a rule to expire/delete files based on creation date.

		Install the travis RubyGem [https://github.com/travis-ci/travis]: gem install travis

		Encrypt the environment variables:

travis encrypt --repo twbs/bootstrap "AWS_ACCESS_KEY_ID=XXX"
travis encrypt --repo twbs/bootstrap "AWS_SECRET_ACCESS_KEY=XXX"
travis encrypt --repo twbs/bootstrap "TWBS_S3_BUCKET=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

		Add the resulting secure environment variables to .travis.yml.

Usage

Read s3_cache.py‘s source code and Bootstrap’s .travis.yml for how to invoke and make use of s3_cache.py.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/contextify/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Contextify

For Windows issues, see here: https://github.com/brianmcd/contextify/wiki/Windows-Installation-Guide

Please add to the wiki if you find new issues/solutions.

Turn an object into a V8 execution context. A contextified object acts as the global ‘this’ when executing scripts in its context. Contextify adds 3 methods to the contextified object: run(code, filename), getGlobal(), and dispose(). The main difference between Contextify and Node’s vm methods is that Contextify allows asynchronous functions to continue executing in the Contextified object’s context. See vm vs. Contextify below for more discussion.

Examples

var Contextify = require('contextify');
var sandbox = { console : console, prop1 : 'prop1'};
Contextify(sandbox);
sandbox.run('console.log(prop1);');
sandbox.dispose(); // free the resources allocated for the context.

var sandbox = Contextify(); // returns an empty contextified object.
sandbox.run('var x = 3;');
console.log(sandbox.x); // prints 3
sandbox.dispose();

var sandbox = Contextify({setTimeout : setTimeout});
sandbox.run("setTimeout(function () { x = 3; }, 5);");
console.log(sandbox.x); // prints undefined
setTimeout(function () {
 console.log(sandbox.x); // prints 3
 sandbox.dispose();
}, 10);

Details

Contextify([sandbox])

sandbox - The object to contextify, which will be modified as described below
 If no sandbox is specified, an empty object will be allocated and used instead.

Returns the contextified object. It doesn't make a copy, so if you already have a reference
to the sandbox, you don't need to catch the return value.

A Contextified object has 2 methods added to it:

run(code, [filename])

code - string containing JavaScript to execute
filename - an optional filename for debugging.

Runs the code in the Contextified object's context.

getGlobal()

Returns the actual global object for the V8 context. The global object is initialized with interceptors (discussed below) which forward accesses on it to the contextified object. This means the contextified object acts like the global object in most cases. Sometimes, though, you need to make a reference to the actual global object.

For example:

var window = Contextify({console : console});
window.window = window;
window.run("console.log(window === this);");
// prints false.

var window = Contextify({console : console});
window.window = window.getGlobal();
window.run("console.log(window === this);");
// prints true

The global object returned by getGlobal() can be treated like the contextified sandbox object, except that defining getters/setters will not work on it. Define getters and setters on the actual sandbox object instead.

dispose()

Frees the memory allocated for the underlying V8 context. If you don’t call this when you’re done, the V8 context memory will leak, as will the sandbox memory, since the context’s global stores a strong reference to the sandbox object. You can still use your sandbox object after calling dispose(), but it’s unsafe to use a global previously returned from getGlobal(). run, getGlobal, and dispose will be removed from the sandbox object.

Install

npm install contextify

require(‘vm’) vs. Contextify

Node’s vm functions (runInContext etc) work by copying the values from the sandbox object onto a context’s global object, executing the passed in script, then copying the results back. This means that scripts that create asynchronous functions (using mechanisms like setTimeout) won’t have see the results of executing those functions, since the copying in/out only occurs during an explicit call to runInContext and friends.

Contextify creates a V8 context, and uses interceptors (see: http://code.google.com/apis/v8/embed.html#interceptors) to forward global object accesses to the sandbox object. This means there is no copying in or out, so asynchronous functions have the expected effect on the sandbox object.

Tests

Testing is done with nodeunit. Run the tests with

nodeunit test/

Output:

OK: 92 assertions (27ms)

Building

node-gyp rebuild

Acknowledgments

Inspiration taken from Assaf’s Zombie.js context solution: https://github.com/assaf/zombie

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/constantinople/node_modules/uglify-js/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

UglifyJS 2

[image: Build Status] [https://travis-ci.org/mishoo/UglifyJS2]

UglifyJS is a JavaScript parser, minifier, compressor or beautifier toolkit.

This page documents the command line utility. For
API and internals documentation see my website [http://lisperator.net/uglifyjs/].
There’s also an
in-browser online demo [http://lisperator.net/uglifyjs/#demo] (for Firefox,
Chrome and probably Safari).

Install

First make sure you have installed the latest version of node.js [http://nodejs.org/]
(You may need to restart your computer after this step).

From NPM for use as a command line app:

npm install uglify-js -g

From NPM for programmatic use:

npm install uglify-js

From Git:

git clone git://github.com/mishoo/UglifyJS2.git
cd UglifyJS2
npm link .

Usage

uglifyjs [input files] [options]

UglifyJS2 can take multiple input files. It’s recommended that you pass the
input files first, then pass the options. UglifyJS will parse input files
in sequence and apply any compression options. The files are parsed in the
same global scope, that is, a reference from a file to some
variable/function declared in another file will be matched properly.

If you want to read from STDIN instead, pass a single dash instead of input
files.

The available options are:

 --source-map Specify an output file where to generate source map.
 [string]
 --source-map-root The path to the original source to be included in the
 source map. [string]
 --source-map-url The path to the source map to be added in //#
 sourceMappingURL. Defaults to the value passed with
 --source-map. [string]
 --source-map-include-sources
 Pass this flag if you want to include the content of
 source files in the source map as sourcesContent
 property. [boolean]
 --in-source-map Input source map, useful if you're compressing JS that was
 generated from some other original code.
 --screw-ie8 Pass this flag if you don't care about full compliance
 with Internet Explorer 6-8 quirks (by default UglifyJS
 will try to be IE-proof). [boolean]
 --expr Parse a single expression, rather than a program (for
 parsing JSON) [boolean]
 -p, --prefix Skip prefix for original filenames that appear in source
 maps. For example -p 3 will drop 3 directories from file
 names and ensure they are relative paths. You can also
 specify -p relative, which will make UglifyJS figure out
 itself the relative paths between original sources, the
 source map and the output file. [string]
 -o, --output Output file (default STDOUT).
 -b, --beautify Beautify output/specify output options. [string]
 -m, --mangle Mangle names/pass mangler options. [string]
 -r, --reserved Reserved names to exclude from mangling.
 -c, --compress Enable compressor/pass compressor options. Pass options
 like -c hoist_vars=false,if_return=false. Use -c with no
 argument to use the default compression options. [string]
 -d, --define Global definitions [string]
 -e, --enclose Embed everything in a big function, with a configurable
 parameter/argument list. [string]
 --comments Preserve copyright comments in the output. By default this
 works like Google Closure, keeping JSDoc-style comments
 that contain "@license" or "@preserve". You can optionally
 pass one of the following arguments to this flag:
 - "all" to keep all comments
 - a valid JS regexp (needs to start with a slash) to keep
 only comments that match.
 Note that currently not *all* comments can be kept when
 compression is on, because of dead code removal or
 cascading statements into sequences. [string]
 --preamble Preamble to prepend to the output. You can use this to
 insert a comment, for example for licensing information.
 This will not be parsed, but the source map will adjust
 for its presence.
 --stats Display operations run time on STDERR. [boolean]
 --acorn Use Acorn for parsing. [boolean]
 --spidermonkey Assume input files are SpiderMonkey AST format (as JSON).
 [boolean]
 --self Build itself (UglifyJS2) as a library (implies
 --wrap=UglifyJS --export-all) [boolean]
 --wrap Embed everything in a big function, making the “exports”
 and “global” variables available. You need to pass an
 argument to this option to specify the name that your
 module will take when included in, say, a browser.
 [string]
 --export-all Only used when --wrap, this tells UglifyJS to add code to
 automatically export all globals. [boolean]
 --lint Display some scope warnings [boolean]
 -v, --verbose Verbose [boolean]
 -V, --version Print version number and exit. [boolean]

Specify --output (-o) to declare the output file. Otherwise the output
goes to STDOUT.

Source map options

UglifyJS2 can generate a source map file, which is highly useful for
debugging your compressed JavaScript. To get a source map, pass
--source-map output.js.map (full path to the file where you want the
source map dumped).

Additionally you might need --source-map-root to pass the URL where the
original files can be found. In case you are passing full paths to input
files to UglifyJS, you can use --prefix (-p) to specify the number of
directories to drop from the path prefix when declaring files in the source
map.

For example:

uglifyjs /home/doe/work/foo/src/js/file1.js \
 /home/doe/work/foo/src/js/file2.js \
 -o foo.min.js \
 --source-map foo.min.js.map \
 --source-map-root http://foo.com/src \
 -p 5 -c -m

The above will compress and mangle file1.js and file2.js, will drop the
output in foo.min.js and the source map in foo.min.js.map. The source
mapping will refer to http://foo.com/src/js/file1.js and
http://foo.com/src/js/file2.js (in fact it will list http://foo.com/src
as the source map root, and the original files as js/file1.js and
js/file2.js).

Composed source map

When you’re compressing JS code that was output by a compiler such as
CoffeeScript, mapping to the JS code won’t be too helpful. Instead, you’d
like to map back to the original code (i.e. CoffeeScript). UglifyJS has an
option to take an input source map. Assuming you have a mapping from
CoffeeScript → compiled JS, UglifyJS can generate a map from CoffeeScript →
compressed JS by mapping every token in the compiled JS to its original
location.

To use this feature you need to pass --in-source-map /path/to/input/source.map. Normally the input source map should also point
to the file containing the generated JS, so if that’s correct you can omit
input files from the command line.

Mangler options

To enable the mangler you need to pass --mangle (-m). The following
(comma-separated) options are supported:

		sort — to assign shorter names to most frequently used variables. This
saves a few hundred bytes on jQuery before gzip, but the output is
bigger after gzip (and seems to happen for other libraries I tried it
on) therefore it’s not enabled by default.

		toplevel — mangle names declared in the toplevel scope (disabled by
default).

		eval — mangle names visible in scopes where eval or with are used
(disabled by default).

When mangling is enabled but you want to prevent certain names from being
mangled, you can declare those names with --reserved (-r) — pass a
comma-separated list of names. For example:

uglifyjs ... -m -r '$,require,exports'

to prevent the require, exports and $ names from being changed.

Compressor options

You need to pass --compress (-c) to enable the compressor. Optionally
you can pass a comma-separated list of options. Options are in the form
foo=bar, or just foo (the latter implies a boolean option that you want
to set true; it’s effectively a shortcut for foo=true).

		sequences – join consecutive simple statements using the comma operator

		properties – rewrite property access using the dot notation, for
example foo["bar"] → foo.bar

		dead_code – remove unreachable code

		drop_debugger – remove debugger; statements

		unsafe (default: false) – apply “unsafe” transformations (discussion below)

		conditionals – apply optimizations for if-s and conditional
expressions

		comparisons – apply certain optimizations to binary nodes, for example:
!(a <= b) → a > b (only when unsafe), attempts to negate binary nodes,
e.g. a = !b && !c && !d && !e → a=!(b||c||d||e) etc.

		evaluate – attempt to evaluate constant expressions

		booleans – various optimizations for boolean context, for example !!a ? b : c → a ? b : c

		loops – optimizations for do, while and for loops when we can
statically determine the condition

		unused – drop unreferenced functions and variables

		hoist_funs – hoist function declarations

		hoist_vars (default: false) – hoist var declarations (this is false
by default because it seems to increase the size of the output in general)

		if_return – optimizations for if/return and if/continue

		join_vars – join consecutive var statements

		cascade – small optimization for sequences, transform x, x into x
and x = something(), x into x = something()

		warnings – display warnings when dropping unreachable code or unused
declarations etc.

		negate_iife – negate “Immediately-Called Function Expressions”
where the return value is discarded, to avoid the parens that the
code generator would insert.

		pure_getters – the default is false. If you pass true for
this, UglifyJS will assume that object property access
(e.g. foo.bar or foo["bar"]) doesn’t have any side effects.

		pure_funcs – default null. You can pass an array of names and
UglifyJS will assume that those functions do not produce side
effects. DANGER: will not check if the name is redefined in scope.
An example case here, for instance var q = Math.floor(a/b). If
variable q is not used elsewhere, UglifyJS will drop it, but will
still keep the Math.floor(a/b), not knowing what it does. You can
pass pure_funcs: ['Math.floor'] to let it know that this
function won’t produce any side effect, in which case the whole
statement would get discarded. The current implementation adds some
overhead (compression will be slower).

		drop_console – default false. Pass true to discard calls to
console.* functions.

The unsafe option

It enables some transformations that might break code logic in certain
contrived cases, but should be fine for most code. You might want to try it
on your own code, it should reduce the minified size. Here’s what happens
when this flag is on:

		new Array(1, 2, 3) or Array(1, 2, 3) → [1, 2, 3]

		new Object() → {}

		String(exp) or exp.toString() → "" + exp

		new Object/RegExp/Function/Error/Array (...) → we discard the new

		typeof foo == "undefined" → foo === void 0

		void 0 → undefined (if there is a variable named “undefined” in
scope; we do it because the variable name will be mangled, typically
reduced to a single character).

Conditional compilation

You can use the --define (-d) switch in order to declare global
variables that UglifyJS will assume to be constants (unless defined in
scope). For example if you pass --define DEBUG=false then, coupled with
dead code removal UglifyJS will discard the following from the output:

if (DEBUG) {
 console.log("debug stuff");
}

UglifyJS will warn about the condition being always false and about dropping
unreachable code; for now there is no option to turn off only this specific
warning, you can pass warnings=false to turn off all warnings.

Another way of doing that is to declare your globals as constants in a
separate file and include it into the build. For example you can have a
build/defines.js file with the following:

const DEBUG = false;
const PRODUCTION = true;
// etc.

and build your code like this:

uglifyjs build/defines.js js/foo.js js/bar.js... -c

UglifyJS will notice the constants and, since they cannot be altered, it
will evaluate references to them to the value itself and drop unreachable
code as usual. The possible downside of this approach is that the build
will contain the const declarations.

[bookmark: codegen-options]

Beautifier options

The code generator tries to output shortest code possible by default. In
case you want beautified output, pass --beautify (-b). Optionally you
can pass additional arguments that control the code output:

		beautify (default true) – whether to actually beautify the output.
Passing -b will set this to true, but you might need to pass -b even
when you want to generate minified code, in order to specify additional
arguments, so you can use -b beautify=false to override it.

		indent-level (default 4)

		indent-start (default 0) – prefix all lines by that many spaces

		quote-keys (default false) – pass true to quote all keys in literal
objects

		space-colon (default true) – insert a space after the colon signs

		ascii-only (default false) – escape Unicode characters in strings and
regexps

		inline-script (default false) – escape the slash in occurrences of
</script in strings

		width (default 80) – only takes effect when beautification is on, this
specifies an (orientative) line width that the beautifier will try to
obey. It refers to the width of the line text (excluding indentation).
It doesn’t work very well currently, but it does make the code generated
by UglifyJS more readable.

		max-line-len (default 32000) – maximum line length (for uglified code)

		bracketize (default false) – always insert brackets in if, for,
do, while or with statements, even if their body is a single
statement.

		semicolons (default true) – separate statements with semicolons. If
you pass false then whenever possible we will use a newline instead of a
semicolon, leading to more readable output of uglified code (size before
gzip could be smaller; size after gzip insignificantly larger).

		preamble (default null) – when passed it must be a string and
it will be prepended to the output literally. The source map will
adjust for this text. Can be used to insert a comment containing
licensing information, for example.

Keeping copyright notices or other comments

You can pass --comments to retain certain comments in the output. By
default it will keep JSDoc-style comments that contain “@preserve”,
“@license” or “@cc_on” (conditional compilation for IE). You can pass
--comments all to keep all the comments, or a valid JavaScript regexp to
keep only comments that match this regexp. For example --comments '/foo|bar/' will keep only comments that contain “foo” or “bar”.

Note, however, that there might be situations where comments are lost. For
example:

function f() {
 /** @preserve Foo Bar */
 function g() {
 // this function is never called
 }
 return something();
}

Even though it has “@preserve”, the comment will be lost because the inner
function g (which is the AST node to which the comment is attached to) is
discarded by the compressor as not referenced.

The safest comments where to place copyright information (or other info that
needs to be kept in the output) are comments attached to toplevel nodes.

Support for the SpiderMonkey AST

UglifyJS2 has its own abstract syntax tree format; for
practical reasons [http://lisperator.net/blog/uglifyjs-why-not-switching-to-spidermonkey-ast/]
we can’t easily change to using the SpiderMonkey AST internally. However,
UglifyJS now has a converter which can import a SpiderMonkey AST.

For example Acorn [https://github.com/marijnh/acorn] is a super-fast parser that produces a
SpiderMonkey AST. It has a small CLI utility that parses one file and dumps
the AST in JSON on the standard output. To use UglifyJS to mangle and
compress that:

acorn file.js | uglifyjs --spidermonkey -m -c

The --spidermonkey option tells UglifyJS that all input files are not
JavaScript, but JS code described in SpiderMonkey AST in JSON. Therefore we
don’t use our own parser in this case, but just transform that AST into our
internal AST.

Use Acorn for parsing

More for fun, I added the --acorn option which will use Acorn to do all
the parsing. If you pass this option, UglifyJS will require("acorn").

Acorn is really fast (e.g. 250ms instead of 380ms on some 650K code), but
converting the SpiderMonkey tree that Acorn produces takes another 150ms so
in total it’s a bit more than just using UglifyJS’s own parser.

API Reference

Assuming installation via NPM, you can load UglifyJS in your application
like this:

var UglifyJS = require("uglify-js");

It exports a lot of names, but I’ll discuss here the basics that are needed
for parsing, mangling and compressing a piece of code. The sequence is (1)
parse, (2) compress, (3) mangle, (4) generate output code.

The simple way

There’s a single toplevel function which combines all the steps. If you
don’t need additional customization, you might want to go with minify.
Example:

var result = UglifyJS.minify("/path/to/file.js");
console.log(result.code); // minified output
// if you need to pass code instead of file name
var result = UglifyJS.minify("var b = function () {};", {fromString: true});

You can also compress multiple files:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"]);
console.log(result.code);

To generate a source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map"
});
console.log(result.code); // minified output
console.log(result.map);

Note that the source map is not saved in a file, it’s just returned in
result.map. The value passed for outSourceMap is only used to set the
file attribute in the source map (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit]).

You can also specify sourceRoot property to be included in source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map",
 sourceRoot: "http://example.com/src"
});

If you’re compressing compiled JavaScript and have a source map for it, you
can use the inSourceMap argument:

var result = UglifyJS.minify("compiled.js", {
 inSourceMap: "compiled.js.map",
 outSourceMap: "minified.js.map"
});
// same as before, it returns `code` and `map`

The inSourceMap is only used if you also request outSourceMap (it makes
no sense otherwise).

Other options:

		warnings (default false) — pass true to display compressor warnings.

		fromString (default false) — if you pass true then you can pass
JavaScript source code, rather than file names.

		mangle — pass false to skip mangling names.

		output (default null) — pass an object if you wish to specify
additional output options [http://lisperator.net/uglifyjs/codegen]. The defaults are optimized
for best compression.

		compress (default {}) — pass false to skip compressing entirely.
Pass an object to specify custom compressor options [http://lisperator.net/uglifyjs/compress].

We could add more options to UglifyJS.minify — if you need additional
functionality please suggest!

The hard way

Following there’s more detailed API info, in case the minify function is
too simple for your needs.

The parser

var toplevel_ast = UglifyJS.parse(code, options);

options is optional and if present it must be an object. The following
properties are available:

		strict — disable automatic semicolon insertion and support for trailing
comma in arrays and objects

		filename — the name of the file where this code is coming from

		toplevel — a toplevel node (as returned by a previous invocation of
parse)

The last two options are useful when you’d like to minify multiple files and
get a single file as the output and a proper source map. Our CLI tool does
something like this:

var toplevel = null;
files.forEach(function(file){
 var code = fs.readFileSync(file, "utf8");
 toplevel = UglifyJS.parse(code, {
 filename: file,
 toplevel: toplevel
 });
});

After this, we have in toplevel a big AST containing all our files, with
each token having proper information about where it came from.

Scope information

UglifyJS contains a scope analyzer that you need to call manually before
compressing or mangling. Basically it augments various nodes in the AST
with information about where is a name defined, how many times is a name
referenced, if it is a global or not, if a function is using eval or the
with statement etc. I will discuss this some place else, for now what’s
important to know is that you need to call the following before doing
anything with the tree:

toplevel.figure_out_scope()

Compression

Like this:

var compressor = UglifyJS.Compressor(options);
var compressed_ast = toplevel.transform(compressor);

The options can be missing. Available options are discussed above in
“Compressor options”. Defaults should lead to best compression in most
scripts.

The compressor is destructive, so don’t rely that toplevel remains the
original tree.

Mangling

After compression it is a good idea to call again figure_out_scope (since
the compressor might drop unused variables / unreachable code and this might
change the number of identifiers or their position). Optionally, you can
call a trick that helps after Gzip (counting character frequency in
non-mangleable words). Example:

compressed_ast.figure_out_scope();
compressed_ast.compute_char_frequency();
compressed_ast.mangle_names();

Generating output

AST nodes have a print method that takes an output stream. Essentially,
to generate code you do this:

var stream = UglifyJS.OutputStream(options);
compressed_ast.print(stream);
var code = stream.toString(); // this is your minified code

or, for a shortcut you can do:

var code = compressed_ast.print_to_string(options);

As usual, options is optional. The output stream accepts a lot of otions,
most of them documented above in section “Beautifier options”. The two
which we care about here are source_map and comments.

Keeping comments in the output

In order to keep certain comments in the output you need to pass the
comments option. Pass a RegExp or a function. If you pass a RegExp, only
those comments whose body matches the regexp will be kept. Note that body
means without the initial // or /*. If you pass a function, it will be
called for every comment in the tree and will receive two arguments: the
node that the comment is attached to, and the comment token itself.

The comment token has these properties:

		type: “comment1” for single-line comments or “comment2” for multi-line
comments

		value: the comment body

		pos and endpos: the start/end positions (zero-based indexes) in the
original code where this comment appears

		line and col: the line and column where this comment appears in the
original code

		file — the file name of the original file

		nlb — true if there was a newline before this comment in the original
code, or if this comment contains a newline.

Your function should return true to keep the comment, or a falsy value
otherwise.

Generating a source mapping

You need to pass the source_map argument when calling print. It needs
to be a SourceMap object (which is a thin wrapper on top of the
source-map [https://github.com/mozilla/source-map] library).

Example:

var source_map = UglifyJS.SourceMap(source_map_options);
var stream = UglifyJS.OutputStream({
 ...
 source_map: source_map
});
compressed_ast.print(stream);

var code = stream.toString();
var map = source_map.toString(); // json output for your source map

The source_map_options (optional) can contain the following properties:

		file: the name of the JavaScript output file that this mapping refers to

		root: the sourceRoot property (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit])

		orig: the “original source map”, handy when you compress generated JS
and want to map the minified output back to the original code where it
came from. It can be simply a string in JSON, or a JSON object containing
the original source map.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/bootstrap/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Bootstrap [http://getbootstrap.com]

[image: Bower version] [http://badge.fury.io/bo/bootstrap]
[image: NPM version] [http://badge.fury.io/js/bootstrap]
[image: Build Status] [https://travis-ci.org/twbs/bootstrap]
[image: devDependency Status] [https://david-dm.org/twbs/bootstrap#info=devDependencies]
[image: Selenium Test Status] [https://saucelabs.com/u/bootstrap]

Bootstrap is a sleek, intuitive, and powerful front-end framework for faster and easier web development, created by Mark Otto [https://twitter.com/mdo] and Jacob Thornton [https://twitter.com/fat], and maintained by the core team [https://github.com/twbs?tab=members] with the massive support and involvement of the community.

To get started, check out http://getbootstrap.com!

Table of contents

		Quick start

		Bugs and feature requests

		Documentation

		Contributing

		Community

		Versioning

		Creators

		Copyright and license

Quick start

Four quick start options are available:

		Download the latest release [https://github.com/twbs/bootstrap/archive/v3.3.1.zip].

		Clone the repo: git clone https://github.com/twbs/bootstrap.git.

		Install with Bower [http://bower.io]: bower install bootstrap.

		Install with npm [https://www.npmjs.org]: npm install bootstrap.

Read the Getting started page [http://getbootstrap.com/getting-started/] for information on the framework contents, templates and examples, and more.

What’s included

Within the download you’ll find the following directories and files, logically grouping common assets and providing both compiled and minified variations. You’ll see something like this:

bootstrap/
├── css/
│ ├── bootstrap.css
│ ├── bootstrap.min.css
│ ├── bootstrap-theme.css
│ └── bootstrap-theme.min.css
├── js/
│ ├── bootstrap.js
│ └── bootstrap.min.js
└── fonts/
 ├── glyphicons-halflings-regular.eot
 ├── glyphicons-halflings-regular.svg
 ├── glyphicons-halflings-regular.ttf
 └── glyphicons-halflings-regular.woff

We provide compiled CSS and JS (bootstrap.*), as well as compiled and minified CSS and JS (bootstrap.min.*). Fonts from Glyphicons are included, as is the optional Bootstrap theme.

Bugs and feature requests

Have a bug or a feature request? Please first read the issue guidelines [https://github.com/twbs/bootstrap/blob/master/CONTRIBUTING.md#using-the-issue-tracker] and search for existing and closed issues. If your problem or idea is not addressed yet, please open a new issue [https://github.com/twbs/bootstrap/issues/new].

Documentation

Bootstrap’s documentation, included in this repo in the root directory, is built with Jekyll [http://jekyllrb.com] and publicly hosted on GitHub Pages at http://getbootstrap.com. The docs may also be run locally.

Running documentation locally

		If necessary, install Jekyll [http://jekyllrb.com/docs/installation] (requires v2.5.x).

		Windows users: Read this unofficial guide [http://jekyll-windows.juthilo.com/] to get Jekyll up and running without problems.

		Install the Ruby-based syntax highlighter, Rouge [https://github.com/jneen/rouge], with gem install rouge.

		From the root /bootstrap directory, run jekyll serve in the command line.

		Open http://localhost:9001 in your browser, and voilà.

Learn more about using Jekyll by reading its documentation [http://jekyllrb.com/docs/home/].

Documentation for previous releases

Documentation for v2.3.2 has been made available for the time being at http://getbootstrap.com/2.3.2/ while folks transition to Bootstrap 3.

Previous releases [https://github.com/twbs/bootstrap/releases] and their documentation are also available for download.

Contributing

Please read through our contributing guidelines [https://github.com/twbs/bootstrap/blob/master/CONTRIBUTING.md]. Included are directions for opening issues, coding standards, and notes on development.

Moreover, if your pull request contains JavaScript patches or features, you must include relevant unit tests. All HTML and CSS should conform to the Code Guide [https://github.com/mdo/code-guide], maintained by Mark Otto [https://github.com/mdo].

Editor preferences are available in the editor config [https://github.com/twbs/bootstrap/blob/master/.editorconfig] for easy use in common text editors. Read more and download plugins at http://editorconfig.org.

Community

Keep track of development and community news.

		Follow @twbootstrap on Twitter [https://twitter.com/twbootstrap].

		Read and subscribe to The Official Bootstrap Blog [http://blog.getbootstrap.com].

		Chat with fellow Bootstrappers in IRC. On the irc.freenode.net server, in the ##bootstrap channel.

		Implementation help may be found at Stack Overflow (tagged twitter-bootstrap-3 [http://stackoverflow.com/questions/tagged/twitter-bootstrap-3]).

Versioning

For transparency into our release cycle and in striving to maintain backward compatibility, Bootstrap is maintained under the Semantic Versioning guidelines [http://semver.org/]. Sometimes we screw up, but we’ll adhere to those rules whenever possible.

Creators

Mark Otto

		https://twitter.com/mdo

		https://github.com/mdo

Jacob Thornton

		https://twitter.com/fat

		https://github.com/fat

Copyright and license

Code and documentation copyright 2011-2014 Twitter, Inc. Code released under the MIT license. Docs released under Creative Commons.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

jsdom

A JavaScript implementation of the W3C DOM.

Install

$ npm install jsdom

If this gives you trouble with errors about installing Contextify, especially on Windows, see below.

Human contact

see: mailing list [http://groups.google.com/group/jsdom]

Easymode

Bootstrapping a DOM is generally a difficult process involving many error prone steps. We didn’t want jsdom to fall into the same trap and that is why a new method, jsdom.env(), has been added in jsdom 0.2.0 which should make everyone’s lives easier.

You can use it with a URL

// Count all of the links from the Node.js build page
var jsdom = require("jsdom");

jsdom.env(
 "http://nodejs.org/dist/",
 ["http://code.jquery.com/jquery.js"],
 function (errors, window) {
 console.log("there have been", window.$("a").length, "nodejs releases!");
 }
);

or with raw HTML

// Run some jQuery on a html fragment
var jsdom = require("jsdom");

jsdom.env(
 '<p>jsdom\'s Homepage</p>',
 ["http://code.jquery.com/jquery.js"],
 function (errors, window) {
 console.log("contents of a.the-link:", window.$("a.the-link").text());
 }
);

or with a configuration object

// Print all of the news items on hackernews
var jsdom = require("jsdom");

jsdom.env({
 url: "http://news.ycombinator.com/",
 scripts: ["http://code.jquery.com/jquery.js"],
 done: function (errors, window) {
 var $ = window.$;
 console.log("HN Links");
 $("td.title:not(:last) a").each(function() {
 console.log(" -", $(this).text());
 });
 }
});

or with raw JavaScript source

// Print all of the news items on hackernews
var jsdom = require("jsdom");
var fs = require("fs");
var jquery = fs.readFileSync("./jquery.js", "utf-8");

jsdom.env({
 url: "http://news.ycombinator.com/",
 src: [jquery],
 done: function (errors, window) {
 var $ = window.$;
 console.log("HN Links");
 $("td.title:not(:last) a").each(function () {
 console.log(" -", $(this).text());
 });
 }
});

How it works

jsdom.env is built for ease of use, which is rare in the world of the DOM! Since the web has some absolutely horrible JavaScript on it, as of jsdom 0.2.0 jsdom.env will not process external resources (scripts, images, etc). If you want to process the JavaScript use one of the methods below (jsdom.jsdom or jsdom.jQueryify)

jsdom.env(string, [scripts], [config], callback);

The arguments are:

		string: may be a URL, file name, or HTML fragment

		scripts: a string or array of strings, containing file names or URLs that will be inserted as <script> tags

		config: see below

		callback: takes two arguments
		error: either an Error object if something failed initializing the window, or an array of error messages from the DOM if there were script errors

		window: a brand new window

Example:

jsdom.env(html, function (errors, window) {
 // free memory associated with the window
 window.close();
});

If you would like to specify a configuration object only:

jsdom.env(config);

		config.html: a HTML fragment

		config.file: a file which jsdom will load HTML from; the resulting window’s location.href will be a file:// URL.

		config.url: sets the resulting window’s location.href; if config.html and config.file are not provided, jsdom will load HTML from this URL.

		config.scripts: see scripts above.

		config.src: an array of JavaScript strings that will be evaluated against the resulting document. Similar to scripts, but it accepts JavaScript instead of paths/URLs.

		config.jar: a custom cookie jar, if desired; see mikeal/request [https://github.com/mikeal/request] documentation.

		config.done: see callback above.

		config.document:
		referrer: the new document will have this referrer.

		cookie: manually set a cookie value, e.g. 'key=value; expires=Wed, Sep 21 2011 12:00:00 GMT; path=/'.

		cookieDomain: a cookie domain for the manually set cookie; defaults to 127.0.0.1.

		config.features : see Flexibility section below. Note: the default feature set for jsdom.env does not include fetching remote JavaScript and executing it. This is something that you will need to carefully enable yourself.

Note that config.done is required, as is one of config.html, config.file, or config.url.

For the hardcore

If you want to spawn a document/window and specify all sorts of options this is the section for you. This section covers the jsdom.jsdom method:

var jsdom = require("jsdom").jsdom;
var doc = jsdom(markup, level, options);
var window = doc.parentWindow;

		markup is an HTML/XML document to be parsed. You can also pass null or an undefined value to get a basic document with empty <head> and <body> tags. Document fragments are also supported (including ""), and will behave as sanely as possible (e.g. the resulting document will lack the head, body and documentElement properties if the corresponding elements aren’t included).

		level is null (which means level3) by default, but you can pass another level if you’d like.

var jsdom = require("jsdom");
var doc = jsdom.jsdom("<html><body></body></html>", jsdom.level(1, "core"));

		options See the explanation of the config object above.

Flexibility

One of the goals of jsdom is to be as minimal and light as possible. This section details how someone can change the behavior of Documents on the fly. These features are baked into the DOMImplementation that every Document has, and may be tweaked in two ways:

		When you create a new Document using the jsdom builder (require("jsdom").jsdom())

var jsdom = require("jsdom").jsdom;
var doc = jsdom("<html><body></body></html>", null, {
 features: {
 FetchExternalResources : ["img"]
 }
});

Do note, that this will only affect the document that is currently being created. All other documents will use the defaults specified below (see: Default Features).

		Before creating any documents, you can modify the defaults for all future documents:

require("jsdom").defaultDocumentFeatures = {
 FetchExternalResources: ["script"],
 ProcessExternalResources: false
};

Default Features

Default features are extremely important for jsdom as they lower the configuration requirement and present developers a set of consistent default behaviors. The following sections detail the available features, their defaults, and the values that jsdom uses.

FetchExternalResources

		Default: ["script"]

		Allowed: ["script", "img", "css", "frame", "iframe", "link"] or false

Enables/disables fetching files over the file system/HTTP.

ProcessExternalResources

		Default: ["script"]

		Allowed: ["script"] or false

Disabling this will disable script execution (currently only JavaScript).

SkipExternalResources

		Default: false

		Allowed: /url to be skipped/ or false

		Example: /http:\/\/example.org/js/bad\.js/

Do not download and process resources with url matching a regular expression.

Canvas

jsdom includes support for using the canvas [https://npmjs.org/package/canvas] package to extend any <canvas> elements with the canvas API. To make this work, you need to include canvas as a dependency in your project, as a peer of jsdom. If jsdom can find the canvas package, it will use it, but if it’s not present, then <canvas> elements will behave like <div>s.

More Examples

Creating a document

var jsdom = require("jsdom");
var doc = new (jsdom.level(1, "core").Document)();

console.log(doc.nodeName); // outputs: #document

Creating a browser-like BOM/DOM/Window

var jsdom = require("jsdom").jsdom;
var document = jsdom("<html><head></head><body>hello world</body></html>");
var window = document.parentWindow;

console.log(window.document.innerHTML);
// output: "<html><head></head><body>hello world</body></html>"

console.log(window.innerWidth);
// output: 1024

console.log(typeof window.document.getElementsByClassName);
// outputs: function

jQueryify

var jsdom = require("jsdom");
var window = jsdom.jsdom().parentWindow;

jsdom.jQueryify(window, "http://code.jquery.com/jquery.js", function () {
 window.$("body").append('<div class="testing">Hello World, It works</div>');

 console.log(window.$(".testing").text());
});

Passing objects to scripts inside the page

var jsdom = require("jsdom").jsdom;
var window = jsdom().parentWindow;

window.__myObject = { foo: "bar" };

var scriptEl = window.document.createElement("script");
scriptEl.src = "anotherScript.js";
window.document.body.appendChild(scriptEl);

// anotherScript.js will have the ability to read `window.__myObject`, even
// though it originated in Node!

Test Compliance:

level1/core 535/535 100%
level1/html 238/238 100%
level1/svg 527/527 100%
level2/core 287/287 100%
level2/html 717/717 100%
level2/style 15/15 100%
level2/extra 4/4 100%
level2/events 24/24 100%
level3/xpath 93/93 100%
whatwg/attributes 10/10 100%
window/index 8/8 100%
window/history 5/5 100%
window/script 10/10 100%
window/console 2/2 100%
window/frame 17/17 100%
sizzle/index 14/14 100%
jsdom/index 84/84 100%
jsdom/parsing 11/11 100%
jsdom/env 25/25 100%
jsdom/utils 11/11 100%
jsonp/jsonp 1/1 100%
browser/css 1/1 100%
browser/index 34/34 100%
--
TOTALS: 0/2673 failed; 100% success

Running the tests

First you’ll want to npm install. To run all the tests, use npm test, which just calls node test/runner.

Using test/runner directly, you can slice and dice which tests your want to run from different levels. Usage is as follows:

test/runner --help
Run the jsdom test suite

Options:
-s, --suites suites that you want to run. ie: -s level1/core,1/html,html [string]
-f, --fail-fast stop on the first failed test
-h, --help show the help
-t, --tests choose the test cases to run. ie: -t jquery

Contextify

Contextify [https://npmjs.org/package/contextify] is a dependency of jsdom, used for running <script> tags within the
page. In other words, it allows jsdom, which is run in Node.js, to run strings of JavaScript in an isolated environment
that pretends to be a browser environment instead of a server. You can see how this is an important feature.

Unfortunately, doing this kind of magic requires C++. And in Node.js, using C++ from JavaScript means using “native
modules.” Native modules are compiled at installation time so that they work precisely for your machine; that is, you
don’t download a contextify binary from npm, but instead build one locally after downloading the source from npm.

Unfortunately, getting C++ compiled within npm’s installation system can be tricky, especially for Windows users. Thus,
one of the most common problems with jsdom is trying to use it without the proper compilation tools installed.
Here’s what you need to compile Contextify, and thus to install jsdom:

Windows

		A recent copy of the x86 version of Node.js for Windows [http://nodejs.org/download/], not the x64 version.

		A copy of Visual C++ 2010 Express [http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express].

		A copy of Python 2.7 [http://www.python.org/download/], installed in the default location of C:\Python27.

There are some slight modifications to this that can work; for example full versions of Visual Studio usually work, and
sometimes you can even get an x64 version of Node.js working too. But it’s tricky, so start with the basics!

Mac

		XCode needs to be installed

		“Command line tools for XCode” need to be installed

		Launch XCode once to accept the license, etc. and ensure it’s properly installed

Linux

You’ll need various build tools installed, like make, Python 2.7, and a compiler toolchain. How to install these will
be specific to your distro, if you don’t already have them.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Glob

Match files using the patterns the shell uses, like stars and stuff.

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

Attention: node-glob users!

The API has changed dramatically between 2.x and 3.x. This library is
now 100% JavaScript, and the integer flags have been replaced with an
options object.

Also, there’s an event emitter class, proper tests, and all the other
things you’ve come to expect from node modules.

And best of all, no compilation!

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Features

Please see the minimatch
documentation [https://github.com/isaacs/minimatch] for more details.

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options])

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instanting the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		error The error encountered. When an error is encountered, the
glob object is in an undefined state, and should be discarded.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

		statCache Collection of all the stat results the glob search
performed.

		cache Convenience object. Each field has the following possible
values:
		false - Path does not exist

		true - Path exists

		1 - Path exists, and is not a directory

		2 - Path exists, and is a directory

		[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		abort Stop the search.

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the glob object, as well.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence. It will cause
ELOOP to be triggered one level sooner in the case of cyclical
symbolic links.

		silent When an unusual error is encountered
when attempting to read a directory, a warning will be printed to
stderr. Set the silent option to true to suppress these warnings.

		strict When an unusual error is encountered
when attempting to read a directory, the process will just continue on
in search of other matches. Set the strict option to raise an error
in these cases.

		cache See cache property above. Pass in a previously generated
cache object to save some fs calls.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary to
set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set.
Set this flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that case-insensitive
filesystems will sometimes result in glob returning results that are
case-insensitively matched anyway, since readdir and stat will not
raise an error.

		debug Set to enable debug logging in minimatch and glob.

		globDebug Set to enable debug logging in glob, but not minimatch.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes. For the vast majority
of operations, this is never a problem.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/formidable/test/fixture/http/special-chars-in-filename/info.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

		Opera does not allow submitting this file, it shows a warning to the
user that the file could not be found instead. Tested in 9.8, 11.51 on OSX.
Reported to Opera on 08.09.2011 (tracking email DSK-346009@bugs.opera.com).

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/q/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [http://travis-ci.org/kriskowal/q]

[image: Promises/A+ logo]

If a function cannot return a value or throw an exception without
blocking, it can return a promise instead. A promise is an object
that represents the return value or the thrown exception that the
function may eventually provide. A promise can also be used as a
proxy for a remote object [https://github.com/kriskowal/q-connection] to overcome latency.

On the first pass, promises can mitigate the “Pyramid of
Doom [http://calculist.org/blog/2011/12/14/why-coroutines-wont-work-on-the-web/]”: the situation where code marches to the right faster
than it marches forward.

step1(function (value1) {
 step2(value1, function(value2) {
 step3(value2, function(value3) {
 step4(value3, function(value4) {
 // Do something with value4
 });
 });
 });
});

With a promise library, you can flatten the pyramid.

Q.fcall(promisedStep1)
.then(promisedStep2)
.then(promisedStep3)
.then(promisedStep4)
.then(function (value4) {
 // Do something with value4
})
.catch(function (error) {
 // Handle any error from all above steps
})
.done();

With this approach, you also get implicit error propagation, just like try,
catch, and finally. An error in promisedStep1 will flow all the way to
the catch function, where it’s caught and handled. (Here promisedStepN is
a version of stepN that returns a promise.)

The callback approach is called an “inversion of control”.
A function that accepts a callback instead of a return value
is saying, “Don’t call me, I’ll call you.”. Promises
un-invert [http://www.slideshare.net/domenicdenicola/callbacks-promises-and-coroutines-oh-my-the-evolution-of-asynchronicity-in-javascript] the inversion, cleanly separating the input
arguments from control flow arguments. This simplifies the
use and creation of API’s, particularly variadic,
rest and spread arguments.

Getting Started

The Q module can be loaded as:

		A <script> tag (creating a Q global variable): ~2.5 KB minified and
gzipped.

		A Node.js and CommonJS module, available in npm [https://npmjs.org/] as
the q [https://npmjs.org/package/q] package

		An AMD module

		A component [https://github.com/component/component] as microjs/q

		Using bower [http://bower.io/] as q

		Using NuGet [http://nuget.org/] as Q [https://nuget.org/packages/q]

Q can exchange promises with jQuery, Dojo, When.js, WinJS, and more.

Resources

Our wiki [https://github.com/kriskowal/q/wiki] contains a number of useful resources, including:

		A method-by-method Q API reference [https://github.com/kriskowal/q/wiki/API-Reference].

		A growing examples gallery [https://github.com/kriskowal/q/wiki/Examples-Gallery], showing how Q can be used to make
everything better. From XHR to database access to accessing the Flickr API,
Q is there for you.

		There are many libraries that produce and consume Q promises for everything
from file system/database access or RPC to templating. For a list of some of
the more popular ones, see Libraries [https://github.com/kriskowal/q/wiki/Libraries].

		If you want materials that introduce the promise concept generally, and the
below tutorial isn’t doing it for you, check out our collection of
presentations, blog posts, and podcasts [https://github.com/kriskowal/q/wiki/General-Promise-Resources].

		A guide for those coming from jQuery’s $.Deferred [https://github.com/kriskowal/q/wiki/Coming-from-jQuery].

We’d also love to have you join the Q-Continuum mailing list [https://groups.google.com/forum/#!forum/q-continuum].

Tutorial

Promises have a then method, which you can use to get the eventual
return value (fulfillment) or thrown exception (rejection).

promiseMeSomething()
.then(function (value) {
}, function (reason) {
});

If promiseMeSomething returns a promise that gets fulfilled later
with a return value, the first function (the fulfillment handler) will be
called with the value. However, if the promiseMeSomething function
gets rejected later by a thrown exception, the second function (the
rejection handler) will be called with the exception.

Note that resolution of a promise is always asynchronous: that is, the
fulfillment or rejection handler will always be called in the next turn of the
event loop (i.e. process.nextTick in Node). This gives you a nice
guarantee when mentally tracing the flow of your code, namely that
then will always return before either handler is executed.

In this tutorial, we begin with how to consume and work with promises. We’ll
talk about how to create them, and thus create functions like
promiseMeSomething that return promises, below.

Propagation

The then method returns a promise, which in this example, I’m
assigning to outputPromise.

var outputPromise = getInputPromise()
.then(function (input) {
}, function (reason) {
});

The outputPromise variable becomes a new promise for the return
value of either handler. Since a function can only either return a
value or throw an exception, only one handler will ever be called and it
will be responsible for resolving outputPromise.

		If you return a value in a handler, outputPromise will get
fulfilled.

		If you throw an exception in a handler, outputPromise will get
rejected.

		If you return a promise in a handler, outputPromise will
“become” that promise. Being able to become a new promise is useful
for managing delays, combining results, or recovering from errors.

If the getInputPromise() promise gets rejected and you omit the
rejection handler, the error will go to outputPromise:

var outputPromise = getInputPromise()
.then(function (value) {
});

If the input promise gets fulfilled and you omit the fulfillment handler, the
value will go to outputPromise:

var outputPromise = getInputPromise()
.then(null, function (error) {
});

Q promises provide a fail shorthand for then when you are only
interested in handling the error:

var outputPromise = getInputPromise()
.fail(function (error) {
});

If you are writing JavaScript for modern engines only or using
CoffeeScript, you may use catch instead of fail.

Promises also have a fin function that is like a finally clause.
The final handler gets called, with no arguments, when the promise
returned by getInputPromise() either returns a value or throws an
error. The value returned or error thrown by getInputPromise()
passes directly to outputPromise unless the final handler fails, and
may be delayed if the final handler returns a promise.

var outputPromise = getInputPromise()
.fin(function () {
 // close files, database connections, stop servers, conclude tests
});

		If the handler returns a value, the value is ignored

		If the handler throws an error, the error passes to outputPromise

		If the handler returns a promise, outputPromise gets postponed. The
eventual value or error has the same effect as an immediate return
value or thrown error: a value would be ignored, an error would be
forwarded.

If you are writing JavaScript for modern engines only or using
CoffeeScript, you may use finally instead of fin.

Chaining

There are two ways to chain promises. You can chain promises either
inside or outside handlers. The next two examples are equivalent.

return getUsername()
.then(function (username) {
 return getUser(username)
 .then(function (user) {
 // if we get here without an error,
 // the value returned here
 // or the exception thrown here
 // resolves the promise returned
 // by the first line
 })
});

return getUsername()
.then(function (username) {
 return getUser(username);
})
.then(function (user) {
 // if we get here without an error,
 // the value returned here
 // or the exception thrown here
 // resolves the promise returned
 // by the first line
});

The only difference is nesting. It’s useful to nest handlers if you
need to capture multiple input values in your closure.

function authenticate() {
 return getUsername()
 .then(function (username) {
 return getUser(username);
 })
 // chained because we will not need the user name in the next event
 .then(function (user) {
 return getPassword()
 // nested because we need both user and password next
 .then(function (password) {
 if (user.passwordHash !== hash(password)) {
 throw new Error("Can't authenticate");
 }
 });
 });
}

Combination

You can turn an array of promises into a promise for the whole,
fulfilled array using all.

return Q.all([
 eventualAdd(2, 2),
 eventualAdd(10, 20)
]);

If you have a promise for an array, you can use spread as a
replacement for then. The spread function “spreads” the
values over the arguments of the fulfillment handler. The rejection handler
will get called at the first sign of failure. That is, whichever of
the recived promises fails first gets handled by the rejection handler.

function eventualAdd(a, b) {
 return Q.spread([a, b], function (a, b) {
 return a + b;
 })
}

But spread calls all initially, so you can skip it in chains.

return getUsername()
.then(function (username) {
 return [username, getUser(username)];
})
.spread(function (username, user) {
});

The all function returns a promise for an array of values. When this
promise is fulfilled, the array contains the fulfillment values of the original
promises, in the same order as those promises. If one of the given promises
is rejected, the returned promise is immediately rejected, not waiting for the
rest of the batch. If you want to wait for all of the promises to either be
fulfilled or rejected, you can use allSettled.

Q.allSettled(promises)
.then(function (results) {
 results.forEach(function (result) {
 if (result.state === "fulfilled") {
 var value = result.value;
 } else {
 var reason = result.reason;
 }
 });
});

Sequences

If you have a number of promise-producing functions that need
to be run sequentially, you can of course do so manually:

return foo(initialVal).then(bar).then(baz).then(qux);

However, if you want to run a dynamically constructed sequence of
functions, you’ll want something like this:

var funcs = [foo, bar, baz, qux];

var result = Q(initialVal);
funcs.forEach(function (f) {
 result = result.then(f);
});
return result;

You can make this slightly more compact using reduce:

return funcs.reduce(function (soFar, f) {
 return soFar.then(f);
}, Q(initialVal));

Or, you could use th ultra-compact version:

return funcs.reduce(Q.when, Q());

Handling Errors

One sometimes-unintuive aspect of promises is that if you throw an
exception in the fulfillment handler, it will not be be caught by the error
handler.

return foo()
.then(function (value) {
 throw new Error("Can't bar.");
}, function (error) {
 // We only get here if "foo" fails
});

To see why this is, consider the parallel between promises and
try/catch. We are try-ing to execute foo(): the error
handler represents a catch for foo(), while the fulfillment handler
represents code that happens after the try/catch block.
That code then needs its own try/catch block.

In terms of promises, this means chaining your rejection handler:

return foo()
.then(function (value) {
 throw new Error("Can't bar.");
})
.fail(function (error) {
 // We get here with either foo's error or bar's error
});

Progress Notification

It’s possible for promises to report their progress, e.g. for tasks that take a
long time like a file upload. Not all promises will implement progress
notifications, but for those that do, you can consume the progress values using
a third parameter to then:

return uploadFile()
.then(function () {
 // Success uploading the file
}, function (err) {
 // There was an error, and we get the reason for error
}, function (progress) {
 // We get notified of the upload's progress as it is executed
});

Like fail, Q also provides a shorthand for progress callbacks
called progress:

return uploadFile().progress(function (progress) {
 // We get notified of the upload's progress
});

The End

When you get to the end of a chain of promises, you should either
return the last promise or end the chain. Since handlers catch
errors, it’s an unfortunate pattern that the exceptions can go
unobserved.

So, either return it,

return foo()
.then(function () {
 return "bar";
});

Or, end it.

foo()
.then(function () {
 return "bar";
})
.done();

Ending a promise chain makes sure that, if an error doesn’t get
handled before the end, it will get rethrown and reported.

This is a stopgap. We are exploring ways to make unhandled errors
visible without any explicit handling.

The Beginning

Everything above assumes you get a promise from somewhere else. This
is the common case. Every once in a while, you will need to create a
promise from scratch.

Using Q.fcall

You can create a promise from a value using Q.fcall. This returns a
promise for 10.

return Q.fcall(function () {
 return 10;
});

You can also use fcall to get a promise for an exception.

return Q.fcall(function () {
 throw new Error("Can't do it");
});

As the name implies, fcall can call functions, or even promised
functions. This uses the eventualAdd function above to add two
numbers.

return Q.fcall(eventualAdd, 2, 2);

Using Deferreds

If you have to interface with asynchronous functions that are callback-based
instead of promise-based, Q provides a few shortcuts (like Q.nfcall and
friends). But much of the time, the solution will be to use deferreds.

var deferred = Q.defer();
FS.readFile("foo.txt", "utf-8", function (error, text) {
 if (error) {
 deferred.reject(new Error(error));
 } else {
 deferred.resolve(text);
 }
});
return deferred.promise;

Note that a deferred can be resolved with a value or a promise. The
reject function is a shorthand for resolving with a rejected
promise.

// this:
deferred.reject(new Error("Can't do it"));

// is shorthand for:
var rejection = Q.fcall(function () {
 throw new Error("Can't do it");
});
deferred.resolve(rejection);

This is a simplified implementation of Q.delay.

function delay(ms) {
 var deferred = Q.defer();
 setTimeout(deferred.resolve, ms);
 return deferred.promise;
}

This is a simplified implementation of Q.timeout

function timeout(promise, ms) {
 var deferred = Q.defer();
 Q.when(promise, deferred.resolve);
 delay(ms).then(function () {
 deferred.reject(new Error("Timed out"));
 });
 return deferred.promise;
}

Finally, you can send a progress notification to the promise with
deferred.notify.

For illustration, this is a wrapper for XML HTTP requests in the browser. Note
that a more thorough [https://github.com/montagejs/mr/blob/71e8df99bb4f0584985accd6f2801ef3015b9763/browser.js#L29-L73] implementation would be in order in practice.

function requestOkText(url) {
 var request = new XMLHttpRequest();
 var deferred = Q.defer();

 request.open("GET", url, true);
 request.onload = onload;
 request.onerror = onerror;
 request.onprogress = onprogress;
 request.send();

 function onload() {
 if (request.status === 200) {
 deferred.resolve(request.responseText);
 } else {
 deferred.reject(new Error("Status code was " + request.status));
 }
 }

 function onerror() {
 deferred.reject(new Error("Can't XHR " + JSON.stringify(url)));
 }

 function onprogress(event) {
 deferred.notify(event.loaded / event.total);
 }

 return deferred.promise;
}

Below is an example of how to use this requestOkText function:

requestOkText("http://localhost:3000")
.then(function (responseText) {
 // If the HTTP response returns 200 OK, log the response text.
 console.log(responseText);
}, function (error) {
 // If there's an error or a non-200 status code, log the error.
 console.error(error);
}, function (progress) {
 // Log the progress as it comes in.
 console.log("Request progress: " + Math.round(progress * 100) + "%");
});

The Middle

If you are using a function that may return a promise, but just might
return a value if it doesn’t need to defer, you can use the “static”
methods of the Q library.

The when function is the static equivalent for then.

return Q.when(valueOrPromise, function (value) {
}, function (error) {
});

All of the other methods on a promise have static analogs with the
same name.

The following are equivalent:

return Q.all([a, b]);

return Q.fcall(function () {
 return [a, b];
})
.all();

When working with promises provided by other libraries, you should
convert it to a Q promise. Not all promise libraries make the same
guarantees as Q and certainly don’t provide all of the same methods.
Most libraries only provide a partially functional then method.
This thankfully is all we need to turn them into vibrant Q promises.

return Q($.ajax(...))
.then(function () {
});

If there is any chance that the promise you receive is not a Q promise
as provided by your library, you should wrap it using a Q function.
You can even use Q.invoke as a shorthand.

return Q.invoke($, 'ajax', ...)
.then(function () {
});

Over the Wire

A promise can serve as a proxy for another object, even a remote
object. There are methods that allow you to optimistically manipulate
properties or call functions. All of these interactions return
promises, so they can be chained.

direct manipulation using a promise as a proxy
-------------------------- -------------------------------
value.foo promise.get("foo")
value.foo = value promise.put("foo", value)
delete value.foo promise.del("foo")
value.foo(...args) promise.post("foo", [args])
value.foo(...args) promise.invoke("foo", ...args)
value(...args) promise.fapply([args])
value(...args) promise.fcall(...args)

If the promise is a proxy for a remote object, you can shave
round-trips by using these functions instead of then. To take
advantage of promises for remote objects, check out Q-Connection [https://github.com/kriskowal/q-connection].

Even in the case of non-remote objects, these methods can be used as
shorthand for particularly-simple fulfillment handlers. For example, you
can replace

return Q.fcall(function () {
 return [{ foo: "bar" }, { foo: "baz" }];
})
.then(function (value) {
 return value[0].foo;
});

with

return Q.fcall(function () {
 return [{ foo: "bar" }, { foo: "baz" }];
})
.get(0)
.get("foo");

Adapting Node

If you’re working with functions that make use of the Node.js callback pattern,
where callbacks are in the form of function(err, result), Q provides a few
useful utility functions for converting between them. The most straightforward
are probably Q.nfcall and Q.nfapply (“Node function call/apply”) for calling
Node.js-style functions and getting back a promise:

return Q.nfcall(FS.readFile, "foo.txt", "utf-8");
return Q.nfapply(FS.readFile, ["foo.txt", "utf-8"]);

If you are working with methods, instead of simple functions, you can easily
run in to the usual problems where passing a method to another function—like
Q.nfcall—”un-binds” the method from its owner. To avoid this, you can either
use Function.prototype.bind or some nice shortcut methods we provide:

return Q.ninvoke(redisClient, "get", "user:1:id");
return Q.npost(redisClient, "get", ["user:1:id"]);

You can also create reusable wrappers with Q.denodeify or Q.nbind:

var readFile = Q.denodeify(FS.readFile);
return readFile("foo.txt", "utf-8");

var redisClientGet = Q.nbind(redisClient.get, redisClient);
return redisClientGet("user:1:id");

Finally, if you’re working with raw deferred objects, there is a
makeNodeResolver method on deferreds that can be handy:

var deferred = Q.defer();
FS.readFile("foo.txt", "utf-8", deferred.makeNodeResolver());
return deferred.promise;

Long Stack Traces

Q comes with optional support for “long stack traces,” wherein the stack
property of Error rejection reasons is rewritten to be traced along
asynchronous jumps instead of stopping at the most recent one. As an example:

function theDepthsOfMyProgram() {
 Q.delay(100).done(function explode() {
 throw new Error("boo!");
 });
}

theDepthsOfMyProgram();

usually would give a rather unhelpful stack trace looking something like

Error: boo!
 at explode (/path/to/test.js:3:11)
 at _fulfilled (/path/to/test.js:q:54)
 at resolvedValue.promiseDispatch.done (/path/to/q.js:823:30)
 at makePromise.promise.promiseDispatch (/path/to/q.js:496:13)
 at pending (/path/to/q.js:397:39)
 at process.startup.processNextTick.process._tickCallback (node.js:244:9)

But, if you turn this feature on by setting

Q.longStackSupport = true;

then the above code gives a nice stack trace to the tune of

Error: boo!
 at explode (/path/to/test.js:3:11)
From previous event:
 at theDepthsOfMyProgram (/path/to/test.js:2:16)
 at Object.<anonymous> (/path/to/test.js:7:1)

Note how you can see the the function that triggered the async operation in the
stack trace! This is very helpful for debugging, as otherwise you end up getting
only the first line, plus a bunch of Q internals, with no sign of where the
operation started.

This feature does come with somewhat-serious performance and memory overhead,
however. If you’re working with lots of promises, or trying to scale a server
to many users, you should probably keep it off. But in development, go for it!

Tests

You can view the results of the Q test suite in your browser [https://rawgithub.com/kriskowal/q/master/spec/q-spec.html]!

License

Copyright 2009–2013 Kristopher Michael Kowal
MIT License (enclosed)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/formidable/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Formidable

[image: Build Status] [http://travis-ci.org/felixge/node-formidable]

Purpose

A node.js module for parsing form data, especially file uploads.

Current status

This module was developed for Transloadit [http://transloadit.com/], a service focused on uploading
and encoding images and videos. It has been battle-tested against hundreds of GB of file uploads from
a large variety of clients and is considered production-ready.

Features

		Fast (~500mb/sec), non-buffering multipart parser

		Automatically writing file uploads to disk

		Low memory footprint

		Graceful error handling

		Very high test coverage

Installation

Via npm [http://github.com/isaacs/npm]:

npm install formidable@latest

Manually:

git clone git://github.com/felixge/node-formidable.git formidable
vim my.js
var formidable = require('./formidable');

Note: Formidable requires gently [http://github.com/felixge/node-gently] to run the unit tests, but you won’t need it for just using the library.

Example

Parse an incoming file upload.

var formidable = require('formidable'),
 http = require('http'),
 util = require('util');

http.createServer(function(req, res) {
 if (req.url == '/upload' && req.method.toLowerCase() == 'post') {
 // parse a file upload
 var form = new formidable.IncomingForm();

 form.parse(req, function(err, fields, files) {
 res.writeHead(200, {'content-type': 'text/plain'});
 res.write('received upload:\n\n');
 res.end(util.inspect({fields: fields, files: files}));
 });

 return;
 }

 // show a file upload form
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(
 '<form action="/upload" enctype="multipart/form-data" method="post">'+
 '<input type="text" name="title">
'+
 '<input type="file" name="upload" multiple="multiple">
'+
 '<input type="submit" value="Upload">'+
 '</form>'
);
}).listen(8080);

API

Formidable.IncomingForm

var form = new formidable.IncomingForm()

Creates a new incoming form.

form.encoding = 'utf-8';

Sets encoding for incoming form fields.

form.uploadDir = process.env.TMP || process.env.TMPDIR || process.env.TEMP || '/tmp' || process.cwd();

The directory for placing file uploads in. You can move them later on using
fs.rename(). The default directory is picked at module load time depending on
the first existing directory from those listed above.

form.keepExtensions = false;

If you want the files written to form.uploadDir to include the extensions of the original files, set this property to true.

form.type

Either ‘multipart’ or ‘urlencoded’ depending on the incoming request.

form.maxFieldsSize = 2 * 1024 * 1024;

Limits the amount of memory a field (not file) can allocate in bytes.
If this value is exceeded, an 'error' event is emitted. The default
size is 2MB.

form.maxFields = 0;

Limits the number of fields that the querystring parser will decode. Defaults
to 0 (unlimited).

form.hash = false;

If you want checksums calculated for incoming files, set this to either 'sha1' or 'md5'.

form.bytesReceived

The amount of bytes received for this form so far.

form.bytesExpected

The expected number of bytes in this form.

form.parse(request, [cb]);

Parses an incoming node.js request containing form data. If cb is provided, all fields an files are collected and passed to the callback:

form.parse(req, function(err, fields, files) {
 // ...
});

form.onPart(part);

You may overwrite this method if you are interested in directly accessing the multipart stream. Doing so will disable any 'field' / 'file' events processing which would occur otherwise, making you fully responsible for handling the processing.

form.onPart = function(part) {
 part.addListener('data', function() {
 // ...
 });
}

If you want to use formidable to only handle certain parts for you, you can do so:

form.onPart = function(part) {
 if (!part.filename) {
 // let formidable handle all non-file parts
 form.handlePart(part);
 }
}

Check the code in this method for further inspiration.

Formidable.File

file.size = 0

The size of the uploaded file in bytes. If the file is still being uploaded (see 'fileBegin' event), this property says how many bytes of the file have been written to disk yet.

file.path = null

The path this file is being written to. You can modify this in the 'fileBegin' event in
case you are unhappy with the way formidable generates a temporary path for your files.

file.name = null

The name this file had according to the uploading client.

file.type = null

The mime type of this file, according to the uploading client.

file.lastModifiedDate = null

A date object (or null) containing the time this file was last written to. Mostly
here for compatibility with the W3C File API Draft [http://dev.w3.org/2006/webapi/FileAPI/].

file.hash = null

If hash calculation was set, you can read the hex digest out of this var.

Formidable.File#toJSON()

This method returns a JSON-representation of the file, allowing you to
JSON.stringify() the file which is useful for logging and responding
to requests.

Events

‘progress’

form.on('progress', function(bytesReceived, bytesExpected) {
});

Emitted after each incoming chunk of data that has been parsed. Can be used to roll your own progress bar.

‘field’

form.on('field', function(name, value) {
});

‘fileBegin’

Emitted whenever a field / value pair has been received.

form.on('fileBegin', function(name, file) {
});

‘file’

Emitted whenever a new file is detected in the upload stream. Use this even if
you want to stream the file to somewhere else while buffering the upload on
the file system.

Emitted whenever a field / file pair has been received. file is an instance of File.

form.on('file', function(name, file) {
});

‘error’

Emitted when there is an error processing the incoming form. A request that experiences an error is automatically paused, you will have to manually call request.resume() if you want the request to continue firing 'data' events.

form.on('error', function(err) {
});

‘aborted’

Emitted when the request was aborted by the user. Right now this can be due to a ‘timeout’ or ‘close’ event on the socket. In the future there will be a separate ‘timeout’ event (needs a change in the node core).

form.on('aborted', function() {
});

‘end’

form.on('end', function() {
});

Emitted when the entire request has been received, and all contained files have finished flushing to disk. This is a great place for you to send your response.

Changelog

v1.0.14

		Add failing hash tests. (Ben Trask)

		Enable hash calculation again (Eugene Girshov)

		Test for immediate data events (Tim Smart)

		Re-arrange IncomingForm#parse (Tim Smart)

v1.0.13

		Only update hash if update method exists (Sven Lito)

		According to travis v0.10 needs to go quoted (Sven Lito)

		Bumping build node versions (Sven Lito)

		Additional fix for empty requests (Eugene Girshov)

		Change the default to 1000, to match the new Node behaviour. (OrangeDog)

		Add ability to control maxKeys in the querystring parser. (OrangeDog)

		Adjust test case to work with node 0.9.x (Eugene Girshov)

		Update package.json (Sven Lito)

		Path adjustment according to eb4468b (Markus Ast)

v1.0.12

		Emit error on aborted connections (Eugene Girshov)

		Add support for empty requests (Eugene Girshov)

		Fix name/filename handling in Content-Disposition (jesperp)

		Tolerate malformed closing boundary in multipart (Eugene Girshov)

		Ignore preamble in multipart messages (Eugene Girshov)

		Add support for application/json (Mike Frey, Carlos Rodriguez)

		Add support for Base64 encoding (Elmer Bulthuis)

		Add File#toJSON (TJ Holowaychuk)

		Remove support for Node.js 0.4 & 0.6 (Andrew Kelley)

		Documentation improvements (Sven Lito, Andre Azevedo)

		Add support for application/octet-stream (Ion Lupascu, Chris Scribner)

		Use os.tmpDir() to get tmp directory (Andrew Kelley)

		Improve package.json (Andrew Kelley, Sven Lito)

		Fix benchmark script (Andrew Kelley)

		Fix scope issue in incoming_forms (Sven Lito)

		Fix file handle leak on error (OrangeDog)

v1.0.11

		Calculate checksums for incoming files (sreuter)

		Add definition parameters to “IncomingForm” as an argument (Math-)

v1.0.10

		Make parts to be proper Streams (Matt Robenolt)

v1.0.9

		Emit progress when content length header parsed (Tim Koschützki)

		Fix Readme syntax due to GitHub changes (goob)

		Replace references to old ‘sys’ module in Readme with ‘util’ (Peter Sugihara)

v1.0.8

		Strip potentially unsafe characters when using keepExtensions: true.

		Switch to utest / urun for testing

		Add travis build

v1.0.7

		Remove file from package that was causing problems when installing on windows. (#102)

		Fix typos in Readme (Jason Davies).

v1.0.6

		Do not default to the default to the field name for file uploads where
filename=””.

v1.0.5

		Support filename=”” in multipart parts

		Explain unexpected end() errors in parser better

Note: Starting with this version, formidable emits ‘file’ events for empty
file input fields. Previously those were incorrectly emitted as regular file
input fields with value = “”.

v1.0.4

		Detect a good default tmp directory regardless of platform. (#88)

v1.0.3

		Fix problems with utf8 characters (#84) / semicolons in filenames (#58)

		Small performance improvements

		New test suite and fixture system

v1.0.2

		Exclude node_modules folder from git

		Implement new 'aborted' event

		Fix files in example folder to work with recent node versions

		Make gently a devDependency

See Commits [https://github.com/felixge/node-formidable/compare/v1.0.1...v1.0.2]

v1.0.1

		Fix package.json to refer to proper main directory. (#68, Dean Landolt)

See Commits [https://github.com/felixge/node-formidable/compare/v1.0.0...v1.0.1]

v1.0.0

		Add support for multipart boundaries that are quoted strings. (Jeff Craig)

This marks the beginning of development on version 2.0 which will include
several architectural improvements.

See Commits [https://github.com/felixge/node-formidable/compare/v0.9.11...v1.0.0]

v0.9.11

		Emit 'progress' event when receiving data, regardless of parsing it. (Tim Koschützki)

		Use W3C FileAPI Draft [http://dev.w3.org/2006/webapi/FileAPI/] properties for File class

Important: The old property names of the File class will be removed in a
future release.

See Commits [https://github.com/felixge/node-formidable/compare/v0.9.10...v0.9.11]

Older releases

These releases were done before starting to maintain the above Changelog:

		v0.9.10 [https://github.com/felixge/node-formidable/compare/v0.9.9...v0.9.10]

		v0.9.9 [https://github.com/felixge/node-formidable/compare/v0.9.8...v0.9.9]

		v0.9.8 [https://github.com/felixge/node-formidable/compare/v0.9.7...v0.9.8]

		v0.9.7 [https://github.com/felixge/node-formidable/compare/v0.9.6...v0.9.7]

		v0.9.6 [https://github.com/felixge/node-formidable/compare/v0.9.5...v0.9.6]

		v0.9.5 [https://github.com/felixge/node-formidable/compare/v0.9.4...v0.9.5]

		v0.9.4 [https://github.com/felixge/node-formidable/compare/v0.9.3...v0.9.4]

		v0.9.3 [https://github.com/felixge/node-formidable/compare/v0.9.2...v0.9.3]

		v0.9.2 [https://github.com/felixge/node-formidable/compare/v0.9.1...v0.9.2]

		v0.9.1 [https://github.com/felixge/node-formidable/compare/v0.9.0...v0.9.1]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.9.0 [https://github.com/felixge/node-formidable/compare/v0.8.0...v0.9.0]

		v0.1.0 [https://github.com/felixge/node-formidable/commits/v0.1.0]

License

Formidable is licensed under the MIT license.

Ports

		multipart-parser [http://github.com/FooBarWidget/multipart-parser]: a C++ parser based on formidable

Credits

		Ryan Dahl [http://twitter.com/ryah] for his work on http-parser [http://github.com/ry/http-parser] which heavily inspired multipart_parser.js

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/glob/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/glob/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/reduce-component/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

reduce

array reduce

Installation

 $ component install redventures/reduce

API

var reduce = require('reduce');

var numbers = [0, 1, 2, 3, 4, 5];

var result = reduce(numbers, function(prev, curr){
 return prev + curr;
});

License

Copyright 2012 Red Ventures

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this work except in compliance with the License. You may obtain a copy of the License in the LICENSE file, or at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/glob/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/debug/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.0 / 2014-10-15

		node: implement DEBUG_FD env variable support

		package: update “browserify” to v6.1.0

		package: add “license” field to package.json (#135, @panuhorsmalahti)

2.0.0 / 2014-09-01

		package: update “browserify” to v5.11.0

		node: use stderr rather than stdout for logging (#29, @stephenmathieson)

1.0.4 / 2014-07-15

		dist: recompile

		example: remove console.info() log usage

		example: add “Content-Type” UTF-8 header to browser example

		browser: place %c marker after the space character

		browser: reset the “content” color via color: inherit

		browser: add colors support for Firefox >= v31

		debug: prefer an instance log() function over the global one (#119)

		Readme: update documentation about styled console logs for FF v31 (#116, @wryk)

1.0.3 / 2014-07-09

		Add support for multiple wildcards in namespaces (#122, @seegno)

		browser: fix lint

1.0.2 / 2014-06-10

		browser: update color palette (#113, @gscottolson)

		common: make console logging function configurable (#108, @timoxley)

		node: fix %o colors on old node <= 0.8.x

		Makefile: find node path using shell/which (#109, @timoxley)

1.0.1 / 2014-06-06

		browser: use removeItem() to clear localStorage

		browser, node: don’t set DEBUG if namespaces is undefined (#107, @leedm777)

		package: add “contributors” section

		node: fix comment typo

		README: list authors

1.0.0 / 2014-06-04

		make ms diff be global, not be scope

		debug: ignore empty strings in enable()

		node: make DEBUG_COLORS able to disable coloring

		*: export the colors array

		npmignore: don’t publish the dist dir

		Makefile: refactor to use browserify

		package: add “browserify” as a dev dependency

		Readme: add Web Inspector Colors section

		node: reset terminal color for the debug content

		node: map “%o” to util.inspect()

		browser: map “%j” to JSON.stringify()

		debug: add custom “formatters”

		debug: use “ms” module for humanizing the diff

		Readme: add “bash” syntax highlighting

		browser: add Firebug color support

		browser: add colors for WebKit browsers

		node: apply log to console

		rewrite: abstract common logic for Node & browsers

		add .jshintrc file

0.8.1 / 2014-04-14

		package: re-add the “component” section

0.8.0 / 2014-03-30

		add enable() method for nodejs. Closes #27

		change from stderr to stdout

		remove unnecessary index.js file

0.7.4 / 2013-11-13

		remove “browserify” key from package.json (fixes something in browserify)

0.7.3 / 2013-10-30

		fix: catch localStorage security error when cookies are blocked (Chrome)

		add debug(err) support. Closes #46

		add .browser prop to package.json. Closes #42

0.7.2 / 2013-02-06

		fix package.json

		fix: Mobile Safari (private mode) is broken with debug

		fix: Use unicode to send escape character to shell instead of octal to work with strict mode javascript

0.7.1 / 2013-02-05

		add repository URL to package.json

		add DEBUG_COLORED to force colored output

		add browserify support

		fix component. Closes #24

0.7.0 / 2012-05-04

		Added .component to package.json

		Added debug.component.js build

0.6.0 / 2012-03-16

		Added support for “-” prefix in DEBUG [Vinay Pulim]

		Added .enabled flag to the node version [TooTallNate]

0.5.0 / 2012-02-02

		Added: humanize diffs. Closes #8

		Added debug.disable() to the CS variant

		Removed padding. Closes #10

		Fixed: persist client-side variant again. Closes #9

0.4.0 / 2012-02-01

		Added browser variant support for older browsers [TooTallNate]

		Added debug.enable('project:*') to browser variant [TooTallNate]

		Added padding to diff (moved it to the right)

0.3.0 / 2012-01-26

		Added millisecond diff when isatty, otherwise UTC string

0.2.0 / 2012-01-22

		Added wildcard support

0.1.0 / 2011-12-02

		Added: remove colors unless stderr isatty [TooTallNate]

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/node_modules/utile/node_modules/async/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Async.js

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with node.js [http://nodejs.org], it can also be used directly in the
browser. Also supports component [https://github.com/component/component].

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, each…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Common Pitfalls

Binding a context to an iterator

This section is really about bind, not about async. If you are wondering how to
make async execute your iterators in a given context, or are confused as to why
a method of another library isn’t working as an iterator, study this example:

// Here is a simple object with an (unnecessarily roundabout) squaring method
var AsyncSquaringLibrary = {
 squareExponent: 2,
 square: function(number, callback){
 var result = Math.pow(number, this.squareExponent);
 setTimeout(function(){
 callback(null, result);
 }, 200);
 }
};

async.map([1, 2, 3], AsyncSquaringLibrary.square, function(err, result){
 // result is [NaN, NaN, NaN]
 // This fails because the `this.squareExponent` expression in the square
 // function is not evaluated in the context of AsyncSquaringLibrary, and is
 // therefore undefined.
});

async.map([1, 2, 3], AsyncSquaringLibrary.square.bind(AsyncSquaringLibrary), function(err, result){
 // result is [1, 4, 9]
 // With the help of bind we can attach a context to the iterator before
 // passing it to async. Now the square function will be executed in its
 // 'home' AsyncSquaringLibrary context and the value of `this.squareExponent`
 // will be as expected.
});

Download

The source is available for download from
GitHub [http://github.com/caolan/async].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 29.6kb Uncompressed

In the Browser

So far it’s been tested in IE6, IE7, IE8, FF3.6 and Chrome 5. Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

		each

		eachSeries

		eachLimit

		map

		mapSeries

		mapLimit

		filter

		filterSeries

		reject

		rejectSeries

		reduce

		reduceRight

		detect

		detectSeries

		sortBy

		some

		every

		concat

		concatSeries

Control Flow

		series

		parallel

		parallelLimit

		whilst

		doWhilst

		until

		doUntil

		forever

		waterfall

		compose

		applyEach

		applyEachSeries

		queue

		cargo

		auto

		iterator

		apply

		nextTick

		times

		timesSeries

Utils

		memoize

		unmemoize

		log

		dir

		noConflict

Collections

[bookmark: forEach]
[bookmark: each]

each(arr, iterator, callback)

Applies an iterator function to each item in an array, in parallel.
The iterator is called with an item from the list and a callback for when it
has finished. If the iterator passes an error to this callback, the main
callback for the each function is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.each(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: forEachSeries]
[bookmark: eachSeries]

eachSeries(arr, iterator, callback)

The same as each only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. This means the iterator functions will complete in order.

[bookmark: forEachLimit]
[bookmark: eachLimit]

eachLimit(arr, limit, iterator, callback)

The same as each only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.eachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in the given array through
the iterator function. The iterator is called with an item from the array and a
callback for when it has finished processing. The callback takes 2 arguments,
an error and the transformed item from the array. If the iterator passes an
error to this callback, the main callback for the map function is immediately
called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order, however
the results array will be in the same order as the original array.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: mapLimit]

mapLimit(arr, limit, iterator, callback)

The same as map only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

		arr - An array to iterate over.

		limit - The maximum number of iterators to run at any time.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.mapLimit(['file1','file2','file3'], 1, fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

alias: selectSeries

The same as filter only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as reject, only the iterator is applied to each item in the array
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

aliases: inject, foldl

Reduces a list of values into a single value using an async iterator to return
each successive step. Memo is the initial state of the reduction. This
function only operates in series. For performance reasons, it may make sense to
split a call to this function into a parallel map, then use the normal
Array.prototype.reduce on the results. This function is for situations where
each step in the reduction needs to be async, if you can get the data before
reducing it then it’s probably a good idea to do so.

Arguments

		arr - An array to iterate over.

		memo - The initial state of the reduction.

		iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback(err, reduction) which accepts an optional error as its first
argument, and the state of the reduction as the second. If an error is
passed to the callback, the reduction is stopped and the main callback is
immediately called with the error.

		callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on the items in the array in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in a list that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original array (in terms of order) that passes the test.

If order within the original array is important then look at detectSeries.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], fs.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in the array
in series. This means the result is always the first in the original array (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each value through an async iterator.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, sortValue) which must be called once it
has completed with an error (which can be null) and a value to use as the sort
criteria.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is the items from
the original array sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

		callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies an iterator to each item in a list, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of the arguments passed to the iterator function.

Arguments

		arr - An array to iterate over

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, results) which must be called once it
has completed with an error (which can be null) and an array of results.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as async.concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run an array of functions in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run and the callback for the series is
immediately called with the value of the error. Once the tasks have completed,
the results are passed to the final callback as an array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.series.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 }
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run an array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.parallel.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 }
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: parallel]

parallelLimit(tasks, limit, [callback])

The same as parallel only the tasks are executed in parallel with a maximum of “limit”
tasks executing at any time.

Note that the tasks are not executed in batches, so there is no guarantee that
the first “limit” tasks will complete before any others are started.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

		limit - The maximum number of tasks to run at any time.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls the callback when stopped,
or an error occurs.

Arguments

		test() - synchronous truth test to perform before each execution of fn.

		fn(callback) - A function to call each time the test passes. The function is
passed a callback(err) which must be called once it has completed with an
optional error argument.

		callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: doWhilst]

doWhilst(fn, test, callback)

The post check version of whilst. To reflect the difference in the order of operations test and fn arguments are switched. doWhilst is to whilst as do while is to while in plain JavaScript.

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn, until test returns true. Calls the callback when stopped,
or an error occurs.

The inverse of async.whilst.

[bookmark: doUntil]

doUntil(fn, test, callback)

Like doWhilst except the test is inverted. Note the argument ordering differs from until.

[bookmark: forever]

forever(fn, callback)

Calls the asynchronous function ‘fn’ repeatedly, in series, indefinitely.
If an error is passed to fn’s callback then ‘callback’ is called with the
error, otherwise it will never be called.

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs an array of functions in series, each passing their results to the next in
the array. However, if any of the functions pass an error to the callback, the
next function is not executed and the main callback is immediately called with
the error.

Arguments

		tasks - An array of functions to run, each function is passed a
callback(err, result1, result2, ...) it must call on completion. The first
argument is an error (which can be null) and any further arguments will be
passed as arguments in order to the next task.

		callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: compose]

compose(fn1, fn2...)

Creates a function which is a composition of the passed asynchronous
functions. Each function consumes the return value of the function that
follows. Composing functions f(), g() and h() would produce the result of
f(g(h())), only this version uses callbacks to obtain the return values.

Each function is executed with the this binding of the composed function.

Arguments

		functions... - the asynchronous functions to compose

Example

function add1(n, callback) {
 setTimeout(function () {
 callback(null, n + 1);
 }, 10);
}

function mul3(n, callback) {
 setTimeout(function () {
 callback(null, n * 3);
 }, 10);
}

var add1mul3 = async.compose(mul3, add1);

add1mul3(4, function (err, result) {
 // result now equals 15
});

[bookmark: applyEach]

applyEach(fns, args..., callback)

Applies the provided arguments to each function in the array, calling the
callback after all functions have completed. If you only provide the first
argument then it will return a function which lets you pass in the
arguments as if it were a single function call.

Arguments

		fns - the asynchronous functions to all call with the same arguments

		args... - any number of separate arguments to pass to the function

		callback - the final argument should be the callback, called when all
functions have completed processing

Example

async.applyEach([enableSearch, updateSchema], 'bucket', callback);

// partial application example:
async.each(
 buckets,
 async.applyEach([enableSearch, updateSchema]),
 callback
);

[bookmark: applyEachSeries]

applyEachSeries(arr, iterator, callback)

The same as applyEach only the functions are applied in series.

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue will be processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one is available. Once
a worker has completed a task, the task’s callback is called.

Arguments

		worker(task, callback) - An asynchronous function for processing a queued
task, which must call its callback(err) argument when finished, with an
optional error as an argument.

		concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		unshift(task, [callback]) - add a new task to the front of the queue.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

// add some items to the front of the queue

q.unshift({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

[bookmark: cargo]

cargo(worker, [payload])

Creates a cargo object with the specified payload. Tasks added to the
cargo will be processed altogether (up to the payload limit). If the
worker is in progress, the task is queued until it is available. Once
the worker has completed some tasks, each callback of those tasks is called.

Arguments

		worker(tasks, callback) - An asynchronous function for processing an array of
queued tasks, which must call its callback(err) argument when finished, with
an optional error as an argument.

		payload - An optional integer for determining how many tasks should be
processed per round; if omitted, the default is unlimited.

Cargo objects

The cargo object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		payload - an integer for determining how many tasks should be
process per round. This property can be changed after a cargo is created to
alter the payload on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a cargo object with payload 2

var cargo = async.cargo(function (tasks, callback) {
 for(var i=0; i<tasks.length; i++){
 console.log('hello ' + tasks[i].name);
 }
 callback();
}, 2);

// add some items

cargo.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
cargo.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});
cargo.push({name: 'baz'}, function (err) {
 console.log('finished processing baz');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running functions based on their requirements.
Each function can optionally depend on other functions being completed first,
and each function is run as soon as its requirements are satisfied. If any of
the functions pass an error to their callback, that function will not complete
(so any other functions depending on it will not run) and the main callback
will be called immediately with the error. Functions also receive an object
containing the results of functions which have completed so far.

Note, all functions are called with a results object as a second argument,
so it is unsafe to pass functions in the tasks object which cannot handle the
extra argument. For example, this snippet of code:

async.auto({
 readData: async.apply(fs.readFile, 'data.txt', 'utf-8')
}, callback);

will have the effect of calling readFile with the results object as the last
argument, which will fail:

fs.readFile('data.txt', 'utf-8', cb, {});

Instead, wrap the call to readFile in a function which does not forward the
results object:

async.auto({
 readData: function(cb, results){
 fs.readFile('data.txt', 'utf-8', cb);
 }
}, callback);

Arguments

		tasks - An object literal containing named functions or an array of
requirements, with the function itself the last item in the array. The key
used for each function or array is used when specifying requirements. The
function receives two arguments: (1) a callback(err, result) which must be
called when finished, passing an error (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions.

		callback(err, results) - An optional callback which is called when all the
tasks have been completed. The callback will receive an error as an argument
if any tasks pass an error to their callback. Results will always be passed
but if an error occurred, no other tasks will be performed, and the results
object will only contain partial results.

Example

async.auto({
 get_data: function(callback){
 // async code to get some data
 },
 make_folder: function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 },
 write_file: ['get_data', 'make_folder', function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, filename);
 }],
 email_link: ['write_file', function(callback, results){
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 }]
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 // async code to get some data
 },
 function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 }
],
function(err, results){
 async.series([
 function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 },
 function(callback){
 // once the file is written let's email a link to it...
 }
]);
});

For a complicated series of async tasks using the auto function makes adding
new tasks much easier and makes the code more readable.

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the array,
returning a continuation to call the next one after that. It’s also possible to
‘peek’ the next iterator by doing iterator.next().

This function is used internally by the async module but can be useful when
you want to manually control the flow of functions in series.

Arguments

		tasks - An array of functions to run.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied, a useful
shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 }
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls the callback on a later loop around the event loop. In node.js this just
calls process.nextTick, in the browser it falls back to setImmediate(callback)
if available, otherwise setTimeout(callback, 0), which means other higher priority
events may precede the execution of the callback.

This is used internally for browser-compatibility purposes.

Arguments

		callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two']
});
call_order.push('one')

[bookmark: times]

times(n, callback)

Calls the callback n times and accumulates results in the same manner
you would use with async.map.

Arguments

		n - The number of times to run the function.

		callback - The function to call n times.

Example

// Pretend this is some complicated async factory
var createUser = function(id, callback) {
 callback(null, {
 id: 'user' + id
 })
}
// generate 5 users
async.times(5, function(n, next){
 createUser(n, function(err, user) {
 next(err, user)
 })
}, function(err, users) {
 // we should now have 5 users
});

[bookmark: timesSeries]

timesSeries(n, callback)

The same as times only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

The cache of results is exposed as the memo property of the function returned
by memoize.

Arguments

		fn - the function you to proxy and cache results from.

		hasher - an optional function for generating a custom hash for storing
results, it has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Comes handy in tests.

Arguments

		fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/on-headers/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

on-headers

[image: NPM Version] [https://www.npmjs.org/package/on-headers]
[image: Node.js Version] [http://nodejs.org/download/]
[image: Build Status] [https://travis-ci.org/jshttp/on-headers]
[image: Coverage Status] [https://coveralls.io/r/jshttp/on-headers]
[image: Gittip] [https://www.gittip.com/dougwilson/]

Execute a listener when a response is about to write headers.

Install

$ npm install on-headers

API

var onHeaders = require('on-headers')

onHeaders(res, listener)

This will add the listener listener to fire when headers are emitted for res.
The listener is passed the response object as it’s context (this). Headers are
considered to be emitted only once, right before they are sent to the client.

When this is called multiple times on the same res, the listeners are fired
in the reverse order they were added.

Examples

var http = require('http')
var onHeaders = require('on-headers')

http
.createServer(onRequest)
.listen(3000)

function addPoweredBy() {
 // add if not set by end of request
 if (!this.getHeader('X-Powered-By')) {
 this.addHeader('X-Powered-By', 'Node.js')
 }
}

function onRequest(req, res) {
 onHeaders(res, addPoweredBy)

 res.setHeader('Content-Type', 'text/plain')
 res.end('hello!')
}

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/debug/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/node_modules/utile/node_modules/ncp/LICENSE.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

MIT License

###Copyright (C) 2011 by Charlie McConnell

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/cookie/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie [image: Build Status] [http://travis-ci.org/defunctzombie/node-cookie]

cookie is a basic cookie parser and serializer. It doesn’t make assumptions about how you are going to deal with your cookies. It basically just provides a way to read and write the HTTP cookie headers.

See RFC6265 [http://tools.ietf.org/html/rfc6265] for details about the http header for cookies.

how?

npm install cookie

var cookie = require('cookie');

var hdr = cookie.serialize('foo', 'bar');
// hdr = 'foo=bar';

var cookies = cookie.parse('foo=bar; cat=meow; dog=ruff');
// cookies = { foo: 'bar', cat: 'meow', dog: 'ruff' };

more

The serialize function takes a third parameter, an object, to set cookie options. See the RFC for valid values.

path

cookie path

expires

absolute expiration date for the cookie (Date object)

maxAge

relative max age of the cookie from when the client receives it (seconds)

domain

domain for the cookie

secure

true or false

httpOnly

true or false

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/node_modules/utile/node_modules/i/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

inflect

customizable inflections for nodejs

Installation

npm install i

Usage

Require the module before using

var inflect = require('i')();

All the below api functions can be called directly on a string

inflect.titleize('messages to store') // === 'Messages To Store'
'messages to store'.titleize // === 'Messages To Store'

only if true is passed while initiating

var inflect = require('i')(true);

Pluralize

inflect.pluralize('person'); // === 'people'
inflect.pluralize('octopus'); // === 'octopi'
inflect.pluralize('Hat'); // === 'Hats'

Singularize

inflect.singularize('people'); // === 'person'
inflect.singularize('octopi'); // === 'octopus'
inflect.singularize('Hats'); // === 'Hat'

Camelize

inflect.camelize('message_properties'); // === 'MessageProperties'
inflect.camelize('message_properties', false); // === 'messageProperties'

Underscore

inflect.underscore('MessageProperties'); // === 'message_properties'
inflect.underscore('messageProperties'); // === 'message_properties'

Humanize

inflect.humanize('message_id'); // === 'Message'

Dasherize

inflect.dasherize('message_properties'); // === 'message-properties'
inflect.dasherize('Message Properties'); // === 'Message Properties'

Titleize

inflect.titleize('message_properties'); // === 'Message Properties'
inflect.titleize('message properties to keep'); // === 'Message Properties to Keep'

Demodulize

inflect.demodulize('Message.Bus.Properties'); // === 'Properties'

Tableize

inflect.tableize('MessageBusProperty'); // === 'message_bus_properties'

Classify

inflect.classify('message_bus_properties'); // === 'MessageBusProperty'

Foreign key

inflect.foreign_key('MessageBusProperty'); // === 'message_bus_property_id'
inflect.foreign_key('MessageBusProperty', false); // === 'message_bus_propertyid'

Ordinalize

inflect.ordinalize('1'); // === '1st'

Custom rules for inflection

Custom plural

We can use regexp in any of these custom rules

inflect.inflections.plural('person', 'guys');
inflect.pluralize('person'); // === 'guys'
inflect.singularize('guys'); // === 'guy'

Custom singular

inflect.inflections.singular('guys', 'person')
inflect.singularize('guys'); // === 'person'
inflect.pluralize('person'); // === 'people'

Custom irregular

inflect.inflections.irregular('person', 'guys')
inflect.pluralize('person'); // === 'guys'
inflect.singularize('guys'); // === 'person'

Custom human

inflect.inflections.human(/^(.*)_cnt$/i, '$1_count');
inflect.inflections.humanize('jargon_cnt'); // === 'Jargon count'

Custom uncountable

inflect.inflections.uncountable('oil')
inflect.pluralize('oil'); // === 'oil'
inflect.singularize('oil'); // === 'oil'

Contributors

Here is a list of Contributors [http://github.com/pksunkara/inflect/contributors]

TODO

		More obscure test cases

I accept pull requests and guarantee a reply back within a day

License

MIT/X11

Bug Reports

Report here [http://github.com/pksunkara/inflect/issues]. Guaranteed reply within a day.

Contact

Pavan Kumar Sunkara (pavan.sss1991@gmail.com)

Follow me on github [https://github.com/users/follow?target=pksunkara], twitter [http://twitter.com/pksunkara]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/on-headers/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-08-10

		Honor res.statusCode change in listener

		Move to jshttp orgainzation

		Prevent arguments-related de-opt

0.0.0 / 2014-05-13

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/node_modules/pkginfo/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-pkginfo

An easy way to expose properties on a module from a package.json

Installation

Installing npm (node package manager)

 curl http://npmjs.org/install.sh | sh

Installing pkginfo

 [sudo] npm install pkginfo

Motivation

How often when writing node.js modules have you written the following line(s) of code?

		Hard code your version string into your code

 exports.version = '0.1.0';

		Programmatically expose the version from the package.json

 exports.version = JSON.parse(fs.readFileSync('/path/to/package.json', 'utf8')).version;

In other words, how often have you wanted to expose basic information from your package.json onto your module programmatically? WELL NOW YOU CAN!

Usage

Using pkginfo is idiot-proof, just require and invoke it.

 var pkginfo = require('pkginfo')(module);

 console.dir(module.exports);

By invoking the pkginfo module all of the properties in your package.json file will be automatically exposed on the callee module (i.e. the parent module of pkginfo).

Here’s a sample of the output:

 { name: 'simple-app',
 description: 'A test fixture for pkginfo',
 version: '0.1.0',
 author: 'Charlie Robbins <charlie.robbins@gmail.com>',
 keywords: ['test', 'fixture'],
 main: './index.js',
 scripts: { test: 'vows test/*-test.js --spec' },
 engines: { node: '>= 0.4.0' } }

Expose specific properties

If you don’t want to expose all properties on from your package.json on your module then simple pass those properties to the pkginfo function:

 var pkginfo = require('pkginfo')(module, 'version', 'author');

 console.dir(module.exports);

 { version: '0.1.0',
 author: 'Charlie Robbins <charlie.robbins@gmail.com>' }

If you’re looking for further usage see the examples [https://github.com/indexzero/node-pkginfo/tree/master/examples] included in this repository.

Run Tests

Tests are written in vows [http://vowsjs.org] and give complete coverage of all APIs.

 vows test/*-test.js --spec

Author: Charlie Robbins [http://nodejitsu.com]

License: MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/cookie-signature/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.4 / 2014-06-25

		corrected avoidance of timing attacks (thanks @tenbits!)

1.0.3 / 2014-01-28

		[incorrect] fix for timing attacks

1.0.2 / 2014-01-28

		fix missing repository warning

		fix typo in test

1.0.1 / 2013-04-15

		Revert “Changed underlying HMAC algo. to sha512.”

		Revert “Fix for timing attacks on MAC verification.”

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/node_modules/utile/node_modules/ncp/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ncp - Asynchronous recursive file & directory copying

[image: Build Status] [http://travis-ci.org/AvianFlu/ncp]

Think cp -r, but pure node, and asynchronous. ncp can be used both as a CLI tool and programmatically.

Command Line usage

Usage is simple: ncp [source] [dest] [--limit=concurrency limit] [--filter=filter] --stopOnErr

The ‘filter’ is a Regular Expression - matched files will be copied.

The ‘concurrency limit’ is an integer that represents how many pending file system requests ncp has at a time.

‘stopOnErr’ is a boolean flag that will tell ncp to stop immediately if any
errors arise, rather than attempting to continue while logging errors.

If there are no errors, ncp will output done. when complete. If there are errors, the error messages will be logged to stdout and to ./ncp-debug.log, and the copy operation will attempt to continue.

Programmatic usage

Programmatic usage of ncp is just as simple. The only argument to the completion callback is a possible error.

var ncp = require('ncp').ncp;

ncp.limit = 16;

ncp(source, destination, function (err) {
 if (err) {
 return console.error(err);
 }
 console.log('done!');
});

You can also call ncp like ncp(source, destination, options, callback).
options should be a dictionary. Currently, such options are available:

		options.filter - a RegExp instance, against which each file name is
tested to determine whether to copy it or not, or a function taking single
parameter: copied file name, returning true or false, determining
whether to copy file or not.

		options.transform - a function: function (read, write) { read.pipe(write) }
used to apply streaming transforms while copying.

		options.clobber - boolean=true. if set to false, ncp will not overwrite
destination files that already exist.

Please open an issue if any bugs arise. As always, I accept (working) pull requests, and refunds are available at /dev/null.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/cookie-signature/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

cookie-signature

Sign and unsign cookies.

Example

var cookie = require('cookie-signature');

var val = cookie.sign('hello', 'tobiiscool');
val.should.equal('hello.DGDUkGlIkCzPz+C0B064FNgHdEjox7ch8tOBGslZ5QI');

var val = cookie.sign('hello', 'tobiiscool');
cookie.unsign(val, 'tobiiscool').should.equal('hello');
cookie.unsign(val, 'luna').should.be.false;

License

(The MIT License)

Copyright (c) 2012 LearnBoost

<

tj@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/log4js/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

log4js-node [image: Build Status] [http://travis-ci.org/nomiddlename/log4js-node]

This is a conversion of the log4js [https://github.com/stritti/log4js]
framework to work with node [http://nodejs.org]. I’ve mainly stripped out the browser-specific code and tidied up some of the javascript.

Out of the box it supports the following features:

		coloured console logging

		replacement of node’s console.log functions (optional)

		file appender, with log rolling based on file size

		SMTP appender

		GELF appender

		hook.io appender

		Loggly appender

		Logstash UDP appender

		multiprocess appender (useful when you’ve got worker processes)

		a logger for connect/express servers

		configurable log message layout/patterns

		different log levels for different log categories (make some parts of your app log as DEBUG, others only ERRORS, etc.)

NOTE: from log4js 0.5 onwards you’ll need to explicitly enable replacement of node’s console.log functions. Do this either by calling log4js.replaceConsole() or configuring with an object or json file like this:

{
 appenders: [
 { type: "console" }
],
 replaceConsole: true
}

installation

npm install log4js

usage

Minimalist version:

var log4js = require('log4js');
var logger = log4js.getLogger();
logger.debug("Some debug messages");

By default, log4js outputs to stdout with the coloured layout (thanks to masylum [http://github.com/masylum]), so for the above you would see:

[2010-01-17 11:43:37.987] [DEBUG] [default] - Some debug messages

See example.js for a full example, but here’s a snippet (also in fromreadme.js):

var log4js = require('log4js');
//console log is loaded by default, so you won't normally need to do this
//log4js.loadAppender('console');
log4js.loadAppender('file');
//log4js.addAppender(log4js.appenders.console());
log4js.addAppender(log4js.appenders.file('logs/cheese.log'), 'cheese');

var logger = log4js.getLogger('cheese');
logger.setLevel('ERROR');

logger.trace('Entering cheese testing');
logger.debug('Got cheese.');
logger.info('Cheese is Gouda.');
logger.warn('Cheese is quite smelly.');
logger.error('Cheese is too ripe!');
logger.fatal('Cheese was breeding ground for listeria.');

Output:

[2010-01-17 11:43:37.987] [ERROR] cheese - Cheese is too ripe!
[2010-01-17 11:43:37.990] [FATAL] cheese - Cheese was breeding ground for listeria.

The first 5 lines of the code above could also be written as:

var log4js = require('log4js');
log4js.configure({
 appenders: [
 { type: 'console' },
 { type: 'file', filename: 'logs/cheese.log', category: 'cheese' }
]
});

configuration

You can configure the appenders and log levels manually (as above), or provide a
configuration file (log4js.configure('path/to/file.json')), or a configuration object. The
configuration file location may also be specified via the environment variable
LOG4JS_CONFIG (export LOG4JS_CONFIG=path/to/file.json).
An example file can be found in test/log4js.json. An example config file with log rolling is in test/with-log-rolling.json.
By default, the configuration file is checked for changes every 60 seconds, and if changed, reloaded. This allows changes to logging levels to occur without restarting the application.

To turn off configuration file change checking, configure with:

var log4js = require('log4js');
log4js.configure('my_log4js_configuration.json', {});

To specify a different period:

log4js.configure('file.json', { reloadSecs: 300 });

For FileAppender you can also pass the path to the log directory as an option where all your log files would be stored.

log4js.configure('my_log4js_configuration.json', { cwd: '/absolute/path/to/log/dir' });

If you have already defined an absolute path for one of the FileAppenders in the configuration file, you could add a “absolute”: true to the particular FileAppender to override the cwd option passed. Here is an example configuration file:

my_log4js_configuration.json
{
 "appenders": [
 {
 "type": "file",
 "filename": "relative/path/to/log_file.log",
 "maxLogSize": 20480,
 "backups": 3,
 "category": "relative-logger"
 },
 {
 "type": "file",
 "absolute": true,
 "filename": "/absolute/path/to/log_file.log",
 "maxLogSize": 20480,
 "backups": 10,
 "category": "absolute-logger"
 }
]
}

Documentation for most of the core appenders can be found on the wiki [https://github.com/nomiddlename/log4js-node/wiki/Appenders], otherwise take a look at the tests and the examples.

Documentation

See the wiki [https://github.com/nomiddlename/log4js-node/wiki]. Improve the wiki [https://github.com/nomiddlename/log4js-node/wiki], please.

There’s also an example application [https://github.com/nomiddlename/log4js-example].

Contributing

Contributions welcome, but take a look at the rules [https://github.com/nomiddlename/log4js-node/wiki/Contributing] first.

License

The original log4js was distributed under the Apache 2.0 License, and so is this. I’ve tried to
keep the original copyright and author credits in place, except in sections that I have rewritten
extensively.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/passport/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Passport

[image: Build] [https://travis-ci.org/jaredhanson/passport]
[image: Coverage] [https://coveralls.io/r/jaredhanson/passport]
[image: Quality] [https://codeclimate.com/github/jaredhanson/passport]
[image: Dependencies] [https://david-dm.org/jaredhanson/passport]
[image: Tips] [https://www.gittip.com/jaredhanson/]

Passport is Express [http://expressjs.com/]-compatible authentication
middleware for Node.js [http://nodejs.org/].

Passport’s sole purpose is to authenticate requests, which it does through an
extensible set of plugins known as strategies. Passport does not mount
routes or assume any particular database schema, which maximizes flexiblity and
allows application-level decisions to be made by the developer. The API is
simple: you provide Passport a request to authenticate, and Passport provides
hooks for controlling what occurs when authentication succeeds or fails.

Install

$ npm install passport

Usage

Strategies

Passport uses the concept of strategies to authenticate requests. Strategies
can range from verifying username and password credentials, delegated
authentication using OAuth [http://oauth.net/] (for example, via Facebook [http://www.facebook.com/]
or Twitter [http://twitter.com/]), or federated authentication using OpenID [http://openid.net/].

Before authenticating requests, the strategy (or strategies) used by an
application must be configured.

passport.use(new LocalStrategy(
 function(username, password, done) {
 User.findOne({ username: username }, function (err, user) {
 if (err) { return done(err); }
 if (!user) { return done(null, false); }
 if (!user.verifyPassword(password)) { return done(null, false); }
 return done(null, user);
 });
 }
));

Sessions

Passport will maintain persistent login sessions. In order for persistent
sessions to work, the authenticated user must be serialized to the session, and
deserialized when subsequent requests are made.

Passport does not impose any restrictions on how your user records are stored.
Instead, you provide functions to Passport which implements the necessary
serialization and deserialization logic. In a typical application, this will be
as simple as serializing the user ID, and finding the user by ID when
deserializing.

passport.serializeUser(function(user, done) {
 done(null, user.id);
});

passport.deserializeUser(function(id, done) {
 User.findById(id, function (err, user) {
 done(err, user);
 });
});

Middleware

To use Passport in an Express [http://expressjs.com/] or
Connect [http://senchalabs.github.com/connect/]-based application, configure it
with the required passport.initialize() middleware. If your application uses
persistent login sessions (recommended, but not required), passport.session()
middleware must also be used.

app.configure(function() {
 app.use(express.static(__dirname + '/../../public'));
 app.use(express.cookieParser());
 app.use(express.bodyParser());
 app.use(express.session({ secret: 'keyboard cat' }));
 app.use(passport.initialize());
 app.use(passport.session());
 app.use(app.router);
});

Authenticate Requests

Passport provides an authenticate() function, which is used as route
middleware to authenticate requests.

app.post('/login',
 passport.authenticate('local', { failureRedirect: '/login' }),
 function(req, res) {
 res.redirect('/');
 });

Strategies

Passport has a comprehensive set of over 140 authentication strategies
covering social networking, enterprise integration, API services, and more.
The complete list [https://github.com/jaredhanson/passport/wiki/Strategies] is
available on the wiki [https://github.com/jaredhanson/passport/wiki].

The following table lists commonly used strategies:

Strategy	Protocol	Developer
—————————————————————	————————–	————————————————
Local [https://github.com/jaredhanson/passport-local]	HTML form	Jared Hanson [https://github.com/jaredhanson]
OpenID [https://github.com/jaredhanson/passport-openid]	OpenID	Jared Hanson [https://github.com/jaredhanson]
BrowserID [https://github.com/jaredhanson/passport-browserid]	BrowserID	Jared Hanson [https://github.com/jaredhanson]
Facebook [https://github.com/jaredhanson/passport-facebook]	OAuth 2.0	Jared Hanson [https://github.com/jaredhanson]
Google [https://github.com/jaredhanson/passport-google]	OpenID	Jared Hanson [https://github.com/jaredhanson]
Google [https://github.com/jaredhanson/passport-google-oauth]	OAuth / OAuth 2.0	Jared Hanson [https://github.com/jaredhanson]
Twitter [https://github.com/jaredhanson/passport-twitter]	OAuth	Jared Hanson [https://github.com/jaredhanson]

Examples

		For a complete, working example, refer to the login example [https://github.com/jaredhanson/passport-local/tree/master/examples/login]
included in passport-local [https://github.com/jaredhanson/passport-local].

		Local Strategy: Refer to this tutorial [http://mherman.org/blog/2013/11/11/user-authentication-with-passport-dot-js/] on setting up user authentication via LocalStrategy (passport-local), including a working example found on this repo [https://github.com/mjhea0/passport-local].

		Social Authentication: Refer to this tutorial [http://mherman.org/blog/2013/11/10/social-authentication-with-passport-dot-js/] for setting up various social authentication strategies, including a working example found on this repo [https://github.com/mjhea0/passport-examples].

Related Modules

		Locomotive [https://github.com/jaredhanson/locomotive] — Powerful MVC web framework

		OAuthorize [https://github.com/jaredhanson/oauthorize] — OAuth service provider toolkit

		OAuth2orize [https://github.com/jaredhanson/oauth2orize] — OAuth 2.0 authorization server toolkit

		connect-ensure-login [https://github.com/jaredhanson/connect-ensure-login] — middleware to ensure login sessions

The modules [https://github.com/jaredhanson/passport/wiki/Modules] page on the
wiki [https://github.com/jaredhanson/passport/wiki] lists other useful modules
that build upon or integrate with Passport.

Tests

$ npm install
$ make test

Credits

		Jared Hanson [http://github.com/jaredhanson]

License

The MIT License [http://opensource.org/licenses/MIT]

Copyright (c) 2011-2014 Jared Hanson <http://jaredhanson.net/>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/test/core/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

test/core

test/core directory is a place where tests from node.js core go. They are
here to ensure that node-http-proxy works just fine with all kinds of
different situations, which are covered in core tests, but are not covered in
our tests.

All these tests require little modifications to make them test node-http-proxy,
but we try to keep them as vanilla as possible.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/utils-merge/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

utils-merge

Merges the properties from a source object into a destination object.

Install

$ npm install utils-merge

Usage

var a = { foo: 'bar' }
 , b = { bar: 'baz' };

merge(a, b);
// => { foo: 'bar', bar: 'baz' }

Tests

$ npm install
$ npm test

[image: Build Status] [http://travis-ci.org/jaredhanson/utils-merge]

Credits

		Jared Hanson [http://github.com/jaredhanson]

License

The MIT License [http://opensource.org/licenses/MIT]

Copyright (c) 2013 Jared Hanson <http://jaredhanson.net/>

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-http-proxy [image: Build Status] [http://travis-ci.org/nodejitsu/node-http-proxy]

[image:]

Battle-hardened node.js http proxy

Features

		Reverse proxies incoming http.ServerRequest streams

		Can be used as a CommonJS module in node.js

		Reverse or Forward Proxy based on simple JSON-based configuration

		Supports WebSockets [https://github.com/nodejitsu/node-http-proxy/blob/master/examples/websocket/websocket-proxy.js]

		Supports HTTPS [https://github.com/nodejitsu/node-http-proxy/blob/master/examples/http/proxy-https-to-http.js]

		Minimal request overhead and latency

		Full suite of functional tests

		Battled-hardened through production usage @ nodejitsu.com [http://nodejitsu.com]

		Written entirely in Javascript

		Easy to use API

node-http-proxy is <= 0.8.x compatible, if you’re looking for a >= 0.10 compatible version please check caronte [https://github.com/nodejitsu/node-http-proxy/tree/caronte]

When to use node-http-proxy

Let’s suppose you were running multiple http application servers, but you only wanted to expose one machine to the internet. You could setup node-http-proxy on that one machine and then reverse-proxy the incoming http requests to locally running services which were not exposed to the outside network.

Installing npm (node package manager)

curl https://npmjs.org/install.sh | sh

Installing node-http-proxy

npm install http-proxy

Using node-http-proxy

There are several ways to use node-http-proxy; the library is designed to be flexible so that it can be used by itself, or in conjunction with other node.js libraries / tools:

		Standalone HTTP Proxy server

		Inside of another HTTP server (like Connect)

		In conjunction with a Proxy Routing Table

		As a forward-proxy with a reverse proxy

		From the command-line as a long running process

		customized with 3rd party middleware.

In each of these scenarios node-http-proxy can handle any of these types of requests:

		HTTP Requests (http://)

		HTTPS Requests (https://)

		WebSocket Requests (ws://)

		Secure WebSocket Requests (wss://)

See the examples [https://github.com/nodejitsu/node-http-proxy/tree/master/examples] for more working sample code.

Setup a basic stand-alone proxy server

var http = require('http'),
 httpProxy = require('http-proxy');
//
// Create your proxy server
//
httpProxy.createServer(9000, 'localhost').listen(8000);

//
// Create your target server
//
http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.write('request successfully proxied!' + '\n' + JSON.stringify(req.headers, true, 2));
 res.end();
}).listen(9000);

Setup a stand-alone proxy server with custom server logic

var http = require('http'),
 httpProxy = require('http-proxy');

//
// Create a proxy server with custom application logic
//
httpProxy.createServer(function (req, res, proxy) {
 //
 // Put your custom server logic here
 //
 proxy.proxyRequest(req, res, {
 host: 'localhost',
 port: 9000
 });
}).listen(8000);

http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.write('request successfully proxied: ' + req.url +'\n' + JSON.stringify(req.headers, true, 2));
 res.end();
}).listen(9000);

Setup a stand-alone proxy server with latency (e.g. IO, etc)

var http = require('http'),
 httpProxy = require('http-proxy');

//
// Create a proxy server with custom application logic
//
httpProxy.createServer(function (req, res, proxy) {
 //
 // Buffer the request so that `data` and `end` events
 // are not lost during async operation(s).
 //
 var buffer = httpProxy.buffer(req);

 //
 // Wait for two seconds then respond: this simulates
 // performing async actions before proxying a request
 //
 setTimeout(function () {
 proxy.proxyRequest(req, res, {
 host: 'localhost',
 port: 9000,
 buffer: buffer
 });
 }, 2000);
}).listen(8000);

http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.write('request successfully proxied: ' + req.url +'\n' + JSON.stringify(req.headers, true, 2));
 res.end();
}).listen(9000);

Proxy requests within another http server

var http = require('http'),
 httpProxy = require('http-proxy');

//
// Create a new instance of HttProxy to use in your server
//
var proxy = new httpProxy.RoutingProxy();

//
// Create a regular http server and proxy its handler
//
http.createServer(function (req, res) {
 //
 // Put your custom server logic here, then proxy
 //
 proxy.proxyRequest(req, res, {
 host: 'localhost',
 port: 9000
 });
}).listen(8001);

http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.write('request successfully proxied: ' + req.url +'\n' + JSON.stringify(req.headers, true, 2));
 res.end();
}).listen(9000);

Proxy requests using a ProxyTable

A Proxy Table is a simple lookup table that maps incoming requests to proxy target locations. Take a look at an example of the options you need to pass to httpProxy.createServer:

var options = {
 router: {
 'foo.com/baz': '127.0.0.1:8001',
 'foo.com/buz': '127.0.0.1:8002',
 'bar.com/buz': '127.0.0.1:8003'
 }
};

The above route table will take incoming requests to ‘foo.com/baz’ and forward them to ‘127.0.0.1:8001’. Likewise it will take incoming requests to ‘foo.com/buz’ and forward them to ‘127.0.0.1:8002’. The routes themselves are later converted to regular expressions to enable more complex matching functionality. We can create a proxy server with these options by using the following code:

var proxyServer = httpProxy.createServer(options);
proxyServer.listen(80);

Proxy requests using a ‘Hostname Only’ ProxyTable

As mentioned in the previous section, all routes passes to the ProxyTable are by default converted to regular expressions that are evaluated at proxy-time. This is good for complex URL rewriting of proxy requests, but less efficient when one simply wants to do pure hostname routing based on the HTTP ‘Host’ header. If you are only concerned with hostname routing, you change the lookup used by the internal ProxyTable:

var options = {
 hostnameOnly: true,
 router: {
 'foo.com': '127.0.0.1:8001',
 'bar.com': '127.0.0.1:8002'
 }
}

Notice here that I have not included paths on the individual domains because this is not possible when using only the HTTP ‘Host’ header. Care to learn more? See RFC2616: HTTP/1.1, Section 14.23, “Host” [http://www.ietf.org/rfc/rfc2616.txt].

Proxy requests using a ‘Pathname Only’ ProxyTable

If you dont care about forwarding to different hosts, you can redirect based on the request path.

var options = {
 pathnameOnly: true,
 router: {
 '/wiki': '127.0.0.1:8001',
 '/blog': '127.0.0.1:8002',
 '/api': '127.0.0.1:8003'
 }
}

This comes in handy if you are running separate services or applications on separate paths. Note, using this option disables routing by hostname entirely.

Proxy requests with an additional forward proxy

Sometimes in addition to a reverse proxy, you may want your front-facing server to forward traffic to another location. For example, if you wanted to load test your staging environment. This is possible when using node-http-proxy using similar JSON-based configuration to a proxy table:

var proxyServerWithForwarding = httpProxy.createServer(9000, 'localhost', {
 forward: {
 port: 9000,
 host: 'staging.com'
 }
});
proxyServerWithForwarding.listen(80);

The forwarding option can be used in conjunction with the proxy table options by simply including both the ‘forward’ and ‘router’ properties in the options passed to ‘createServer’.

Listening for proxy events

Sometimes you want to listen to an event on a proxy. For example, you may want to listen to the ‘end’ event, which represents when the proxy has finished proxying a request.

var httpProxy = require('http-proxy');

var server = httpProxy.createServer(function (req, res, proxy) {
 var buffer = httpProxy.buffer(req);

 proxy.proxyRequest(req, res, {
 host: '127.0.0.1',
 port: 9000,
 buffer: buffer
 });
});

server.proxy.on('end', function () {
 console.log("The request was proxied.");
});

server.listen(8000);

It’s important to remember not to listen for events on the proxy object in the function passed to httpProxy.createServer. Doing so would add a new listener on every request, which would end up being a disaster.

Using HTTPS

You have all the full flexibility of node-http-proxy offers in HTTPS as well as HTTP. The two basic scenarios are: with a stand-alone proxy server or in conjunction with another HTTPS server.

Proxying to HTTP from HTTPS

This is probably the most common use-case for proxying in conjunction with HTTPS. You have some front-facing HTTPS server, but all of your internal traffic is HTTP. In this way, you can reduce the number of servers to which your CA and other important security files are deployed and reduce the computational overhead from HTTPS traffic.

Using HTTPS in node-http-proxy is relatively straight-forward:

var fs = require('fs'),
 http = require('http'),
 https = require('https'),
 httpProxy = require('http-proxy');

var options = {
 https: {
 key: fs.readFileSync('path/to/your/key.pem', 'utf8'),
 cert: fs.readFileSync('path/to/your/cert.pem', 'utf8')
 }
};

//
// Create a standalone HTTPS proxy server
//
httpProxy.createServer(8000, 'localhost', options).listen(8001);

//
// Create an instance of HttpProxy to use with another HTTPS server
//
var proxy = new httpProxy.HttpProxy({
 target: {
 host: 'localhost',
 port: 8000
 }
});
https.createServer(options.https, function (req, res) {
 proxy.proxyRequest(req, res)
}).listen(8002);

//
// Create the target HTTPS server for both cases
//
http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.write('hello https\n');
 res.end();
}).listen(8000);

Using two certificates

Suppose that your reverse proxy will handle HTTPS traffic for two different domains fobar.com and barbaz.com.
If you need to use two different certificates you can take advantage of Server Name Indication [http://en.wikipedia.org/wiki/Server_Name_Indication].

var https = require('https'),
 path = require("path"),
 fs = require("fs"),
 crypto = require("crypto");

//
// generic function to load the credentials context from disk
//
function getCredentialsContext (cer) {
 return crypto.createCredentials({
 key: fs.readFileSync(path.join(__dirname, 'certs', cer + '.key')),
 cert: fs.readFileSync(path.join(__dirname, 'certs', cer + '.crt'))
 }).context;
}

//
// A certificate per domain hash
//
var certs = {
 "fobar.com": getCredentialsContext("foobar"),
 "barbaz.com": getCredentialsContext("barbaz")
};

//
// Proxy options
//
// This section assumes that myCert, myKey and myCa are defined (they are not
// in this example). With a SNICallback, the proxy needs a default set of
// certificates to use.
//
var options = {
 https: {
 SNICallback: function (hostname) {
 return certs[hostname];
 },
 cert: myCert,
 key: myKey,
 ca: [myCa]
 },
 hostnameOnly: true,
 router: {
 'fobar.com': '127.0.0.1:8001',
 'barbaz.com': '127.0.0.1:8002'
 }
};

//
// Create a standalone HTTPS proxy server
//
httpProxy.createServer(options).listen(8001);

//
// Create the target HTTPS server
//
http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.write('hello https\n');
 res.end();
}).listen(8000);

Proxying to HTTPS from HTTPS

Proxying from HTTPS to HTTPS is essentially the same as proxying from HTTPS to HTTP, but you must include the target option in when calling httpProxy.createServer or instantiating a new instance of HttpProxy.

var fs = require('fs'),
 https = require('https'),
 httpProxy = require('http-proxy');

var options = {
 https: {
 key: fs.readFileSync('path/to/your/key.pem', 'utf8'),
 cert: fs.readFileSync('path/to/your/cert.pem', 'utf8')
 },
 target: {
 https: true // This could also be an Object with key and cert properties
 }
};

//
// Create a standalone HTTPS proxy server
//
httpProxy.createServer(8000, 'localhost', options).listen(8001);

//
// Create an instance of HttpProxy to use with another HTTPS server
//
var proxy = new httpProxy.HttpProxy({
 target: {
 host: 'localhost',
 port: 8000,
 https: true
 }
});

https.createServer(options.https, function (req, res) {
 proxy.proxyRequest(req, res);
}).listen(8002);

//
// Create the target HTTPS server for both cases
//
https.createServer(options.https, function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.write('hello https\n');
 res.end();
}).listen(8000);

Middleware

node-http-proxy now supports connect middleware. Add middleware functions to your createServer call:

httpProxy.createServer(
 require('connect-gzip').gzip(),
 9000, 'localhost'
).listen(8000);

A regular request we receive is to support the modification of html/xml content that is returned in the response from an upstream server.

Harmon [https://github.com/No9/harmon/] is a stream based middleware plugin that is designed to solve that problem in the most effective way possible.

If you would like to handle errors passed to next() then attach a listener to the proxy:

server = httpProxy.createServer(
 myMiddleWare,
 9000, 'localhost'
).listen(8000);

server.proxy.on('middlewareError', function (err, req, res) {
 // handle the error here and call res.end()
});

Proxying WebSockets

Websockets are handled automatically when using httpProxy.createServer(), however, if you supply a callback inside the createServer call, you will need to handle the ‘upgrade’ proxy event yourself. Here’s how:

var options = {

};

var server = httpProxy.createServer(
 callback/middleware,
 options
);

server.listen(port, function () { ... });
server.on('upgrade', function (req, socket, head) {
 server.proxy.proxyWebSocketRequest(req, socket, head);
});

If you would rather not use createServer call, and create the server that proxies yourself, see below:

var http = require('http'),
 httpProxy = require('http-proxy');

//
// Create an instance of node-http-proxy
//
var proxy = new httpProxy.HttpProxy({
 target: {
 host: 'localhost',
 port: 8000
 }
});

var server = http.createServer(function (req, res) {
 //
 // Proxy normal HTTP requests
 //
 proxy.proxyRequest(req, res);
});

server.on('upgrade', function (req, socket, head) {
 //
 // Proxy websocket requests too
 //
 proxy.proxyWebSocketRequest(req, socket, head);
});

server.listen(8080);

with custom server logic

var httpProxy = require('http-proxy')

var server = httpProxy.createServer(function (req, res, proxy) {
 //
 // Put your custom server logic here
 //
 proxy.proxyRequest(req, res, {
 host: 'localhost',
 port: 9000
 });
})

server.on('upgrade', function (req, socket, head) {
 //
 // Put your custom server logic here
 //
 server.proxy.proxyWebSocketRequest(req, socket, head, {
 host: 'localhost',
 port: 9000
 });
});

server.listen(8080);

Configuring your Socket limits

By default, node-http-proxy will set a 100 socket limit for all host:port proxy targets. You can change this in two ways:

		By passing the maxSockets option to httpProxy.createServer()

		By calling httpProxy.setMaxSockets(n), where n is the number of sockets you with to use.

POST requests and buffering

express.bodyParser will interfere with proxying of POST requests (and other methods that have a request
body). With bodyParser active, proxied requests will never send anything to the upstream server, and
the original client will just hang. See https://github.com/nodejitsu/node-http-proxy/issues/180 for options.

Using node-http-proxy from the command line

When you install this package with npm, a node-http-proxy binary will become available to you. Using this binary is easy with some simple options:

usage: node-http-proxy [options]

All options should be set with the syntax --option=value

options:
 --port PORT Port that the proxy server should run on
 --target HOST:PORT Location of the server the proxy will target
 --config OUTFILE Location of the configuration file for the proxy server
 --silent Silence the log output from the proxy server
 -h, --help You're staring at it

Why doesn’t node-http-proxy have more advanced features like x, y, or z?

If you have a suggestion for a feature currently not supported, feel free to open a support issue [http://github.com/nodejitsu/node-http-proxy/issues]. node-http-proxy is designed to just proxy http requests from one server to another, but we will be soon releasing many other complimentary projects that can be used in conjunction with node-http-proxy.

Options

Http Proxy

createServer() supports the following options

{
 forward: { // options for forward-proxy
 port: 8000,
 host: 'staging.com'
 },
 target : { // options for proxy target
 port : 8000,
 host : 'localhost',
 };
 source : { // additional options for websocket proxying
 host : 'localhost',
 port : 8000,
 https: true
 },
 enable : {
 xforward: true // enables X-Forwarded-For
 },
 changeOrigin: false, // changes the origin of the host header to the target URL
 timeout: 120000 // override the default 2 minute http socket timeout value in milliseconds
}

Run Tests

The test suite is designed to fully cover the combinatoric possibilities of HTTP and HTTPS proxying:

		HTTP –> HTTP

		HTTPS –> HTTP

		HTTPS –> HTTPS

		HTTP –> HTTPS

vows test/*-test.js --spec
vows test/*-test.js --spec --https
vows test/*-test.js --spec --https --target=https
vows test/*-test.js --spec --target=https

License

(The MIT License)

Copyright (c) 2010 Charlie Robbins, Mikeal Rogers, Fedor Indutny, & Marak Squires

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/debug/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

debug

tiny node.js debugging utility modelled after node core’s debugging technique.

Installation

$ npm install debug

Usage

With debug you simply invoke the exported function to generate your debug function, passing it a name which will determine if a noop function is returned, or a decorated console.error, so all of the console format string goodies you’re used to work fine. A unique color is selected per-function for visibility.

Example app.js:

var debug = require('debug')('http')
 , http = require('http')
 , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
 debug(req.method + ' ' + req.url);
 res.end('hello\n');
}).listen(3000, function(){
 debug('listening');
});

// fake worker of some kind

require('./worker');

Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
 debug('doing some work');
}, 1000);

The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: debug http and worker]

[image: debug worker]

Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image:]

When stdout is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:

[image:]

Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use ”:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.

Wildcards

The * character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect.compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character. For example, DEBUG=*,-connect:* would include all debuggers except those starting with “connect:”.

Browser support

Debug works in the browser as well, currently persisted by localStorage. For example if you have worker:a and worker:b as shown below, and wish to debug both type debug.enable('worker:*') in the console and refresh the page, this will remain until you disable with debug.disable().

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
 a('doing some work');
}, 1000);

setInterval(function(){
 b('doing some work');
}, 1200);

Web Inspector Colors

Colors are also enabled on “Web Inspectors” that understand the %c formatting
option. These are WebKit web inspectors, Firefox (since version
31 [https://hacks.mozilla.org/2014/05/editable-box-model-multiple-selection-sublime-text-keys-much-more-firefox-developer-tools-episode-31/])
and the Firebug plugin for Firefox (any version).

Colored output looks something like:

[image:]

stderr vs stdout

You can set an alternative logging method per-namespace by overriding the log method on a per-namespace or globally:

Example stderr.js:

var debug = require('../');
var log = debug('app:log');

// by default console.log is used
log('goes to stdout!');

var error = debug('app:error');
// set this namespace to log via console.error
error.log = console.error.bind(console); // don't forget to bind to console!
error('goes to stderr');
log('still goes to stdout!');

// set all output to go via console.warn
// overrides all per-namespace log settings
debug.log = console.warn.bind(console);
log('now goes to stderr via console.warn');
error('still goes to stderr, but via console.warn now');

Authors

		TJ Holowaychuk

		Nathan Rajlich

License

(The MIT License)

Copyright (c) 2014 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ChangeLog for: node-http-proxy

Version 0.10.0 - 3/18/2013

		Breaking change: proxyResponse events are emitted on the HttpProxy or RoutingProxy instances as originally was intended in 0.9.x.

Version 0.9.1 - 3/9/2013

		Ensure that webSocketProxyError and proxyError both receive the error (indexzero).

Version 0.9.0 - 3/9/2013

		Fix #276 Ensure response.headers.location is defined (indexzero)

		Fix #248 Make options immutable in RoutingProxy (indexzero)

		Fix #359 Do not modify the protocol in redirect request for external sites. (indexzero)

		Fix #373 Do not use “Transfer-Encoding: chunked” header for proxied DELETE requests with no “Content-Length” header. (indexzero)

		Fix #338 Set “content-length” header to “0” if it is not already set on DELETE requests. (indexzero)

		Updates to README.md and Examples (ramitos, jamie-stackhouse, oost, indexzero)

		Fixes to ProxyTable and Routing Proxy (adjohnson916, otavoijr)

		New API for ProxyTable (mikkel, tglines)

		Add options.timeout for specifying socket timeouts (pdoran)

		Improve bin/node-http-proxy (niallo)

		Don’t emit proxyError twice (erasmospunk)

		Fix memory leaks in WebSocket proxying

		Support UNIX Sockets (yosefd)

		Fix truncated chunked respones (jpetazzo)

		Allow upstream listeners to get proxyResponse (colinmollenhour)

Version 0.8.1 - 6/5/2012

		Fix re-emitting of events in RoutingProxy (coderarity)

		New load balancer and middleware examples (marak)

		Docs updated including changelog (lot of gently people)

Version 0.8.0 - 12/23/2011

		Improve support and tests for url segment routing (maxogden)

		Fix aborting connections when request close (c4milo)

		Avoid ‘Transfer-Encoding’ on HTTP/1.0 clients (koichik).

		Support for Node.js 0.6.x (mmalecki)

Version 0.7.3 - 10/4/2011

		Fix setting x-forwarded headers (jesusabdullah)

		Updated examples (AvianFlu)

Version 0.7.0 - 9/10/2011

		Handles to every throw-able resume() call (isaacs)

		Updated tests, README and package.json (indexzero)

		Added HttpProxy.close() method (indexzero)

Version 0.6.6 - 8/31/2011

		Add more examples (dominictarr)

		Use of ‘pkginfo’ (indexzero)

		Handle cases where res.write throws (isaacs)

		Handles to every throw-able res.end call (isaacs)

Version 0.5.11 - 6/21/2011

		Add more examples with WebSockets (indexzero)

		Update the documentation (indexzero)

Version 0.5.7 - 5/19/2011

		Fix to README related to markup and fix some examples (benatkin)

		Improve WebSockets handling (indexzero)

		Improve WebSockets tests (indexzero)

		Improve https tests (olauzon)

		Add devDependencies to package.json (olauzon)

		Add ‘proxyError’ event (indexzero)

		Add ‘x-forwarded-{port|proto}’ headers support (indexzero)

		Keep-Alive connection supported (indexzero)

Version 0.5.0 - 4/15/2011

		Remove winston in favor of custom events (indexzero)

		Add x-forwarded-for Header (indexzero)

		Fix WebSocket support (indexzero)

		Add tests / examples for WebSocket support (indexzero)

		Update .proxyRequest() and .proxyWebSocketRequest() APIs (indexzero)

		Add HTTPS support (indexzero)

		Add tests / examples for HTTPS support (indexzero)

Version 0.4.1 - 3/20/2011

		Include missing dependency in package.json (indexzero)

Version 0.4.0 - 3/20/2011

		Update for node.js 0.4.0 (indexzero)

		Remove pool dependency in favor of http.Agent (indexzero)

		Store buffered data using .buffer() instead of on the HttpProxy instance (indexzero)

		Change the ProxyTable to be a lookup table instead of actively proxying (indexzero)

		Allow for pure host-only matching in ProxyTable (indexzero)

		Use winston for logging (indexzero)

		Improve tests with async setup and more coverage (indexzero)

		Improve code documentation (indexzero)

Version 0.3.1 - 11/22/2010

		Added node-http-proxy binary script (indexzero)

		Added experimental WebSocket support (indutny)

		Added forward proxy functionality (indexzero)

		Added proxy table for multiple target lookup (indexzero)

		Simplified tests using helpers.js (indexzero)

		Fixed uncaughtException bug with invalid proxy target (indutny)

		Added configurable logging for HttpProxy and ProxyTable (indexzero)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/uid-safe/node_modules/base64-url/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

base64-url

Base64 encode, decode, escape and unescape for URL applications.

[image:]

[image: Build Status] [https://travis-ci.org/joaquimserafim/base64-url]

V1

####API

> base64url.encode('Node.js is awesome.');
Tm9kZS5qcyBpcyBhd2Vzb21lLg

> base64url.decode('Tm9kZS5qcyBpcyBhd2Vzb21lLg');
Node.js is awesome.

> base64url.escape(This+is/goingto+escape==);
This-is_goingto-escape

> base64url.unescape('This-is_goingto-escape');
This+is/goingto+escape==

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/node_modules/utile/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

utile [image: Build Status] [http://travis-ci.org/flatiron/utile]

A drop-in replacement for util with some additional advantageous functions

Motivation

Javascript is definitely a “batteries not included language” when compared to languages like Ruby or Python. Node.js has a simple utility library which exposes some basic (but important) functionality:

$ node
> var util = require('util');
> util.
(...)

util.debug util.error util.exec util.inherits util.inspect
util.log util.p util.print util.pump util.puts

When one considers their own utility library, why ever bother requiring util again? That is the approach taken by this module. To compare:

$ node
> var utile = require('./lib')
> utile.
(...)

utile.async utile.capitalize utile.clone utile.cpr utile.createPath utile.debug
utile.each utile.error utile.exec utile.file utile.filter utile.find
utile.inherits utile.log utile.mixin utile.mkdirp utile.p utile.path
utile.print utile.pump utile.puts utile.randomString utile.requireDir uile.requireDirLazy
utile.rimraf

As you can see all of the original methods from util are there, but there are several new methods specific to utile. A note about implementation: no node.js native modules are modified by utile, it simply copies those methods.

Methods

The utile modules exposes some simple utility methods:

		.each(obj, iterator): Iterate over the keys of an object.

		.mixin(target [source0, source1, ...]): Copies enumerable properties from source0 ... sourceN onto target and returns the resulting object.

		.clone(obj): Shallow clones the specified object.

		.capitalize(str): Capitalizes the specified str.

		.randomString(length): randomString returns a pseudo-random ASCII string (subset) the return value is a string of length ⌈bits/6⌉ of characters from the base64 alphabet.

		.filter(obj, test): return an object with the properties that test returns true on.

		.args(arguments): Converts function arguments into actual array with special callback, cb, array, and last properties. Also supports optional argument contracts. See the example [https://github.com/flatiron/utile/blob/master/examples/utile-args.js] for more details.

		.requireDir(directory): Requires all files and directories from directory, returning an object with keys being filenames (without trailing .js) and respective values being return values of require(filename).

		.requireDirLazy(directory): Lazily requires all files and directories from directory, returning an object with keys being filenames (without trailing .js) and respective values (getters) being return values of require(filename).

		.format([string] text, [array] formats, [array] replacements): Replace formats in text with replacements. This will fall back to the original util.format command if it is called improperly.

Packaged Dependencies

In addition to the methods that are built-in, utile includes a number of commonly used dependencies to reduce the number of includes in your package.json. These modules are not eagerly loaded to be respectful of startup time, but instead are lazy-loaded getters on the utile object

		.async: Async utilities for node and the browser [https://github.com/caolan/async]

		.inflect: Customizable inflections for node.js [https://github.com/pksunkara/inflect]

		.mkdirp: Recursively mkdir, like mkdir -p, but in node.js [https://github.com/substack/node-mkdirp]

		.rimraf: A rm -rf util for nodejs [https://github.com/isaacs/rimraf]

		.cpr: Asynchronous recursive file copying with Node.js [https://github.com/avianflu/ncp]

Installation

Installing npm (node package manager)

 curl http://npmjs.org/install.sh | sh

Installing utile

 [sudo] npm install utile

Tests

All tests are written with vows [https://vowsjs.org] and should be run with npm [https://npmjs.org]:

 $ npm test

Author: Nodejitsu Inc. [http://www.nodejitsu.com]

Contributors: Charlie Robbins [http://github.com/indexzero], Dominic Tarr [http://github.com/dominictarr]

License: MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/http-proxy/node_modules/utile/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.1.5 / 2012-09-18

		Fixed problem with underscore values in camelToUnderscore

0.1.4 / 2012-07-26

		Made use of inflect for camel to underscore conversion

0.1.3 / 2012-07-25

		Added camel to underscore conversion and vice-versa

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/parseurl/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

parseurl

[image: NPM version] [http://badge.fury.io/js/parseurl]
[image: Build Status] [https://travis-ci.org/expressjs/parseurl]
[image: Coverage Status] [https://coveralls.io/r/expressjs/parseurl]

Parse a URL with memoization.

Install

$ npm install parseurl

API

var parseurl = require('parseurl')

parseurl(req)

Parse the URL of the given request object (looks at the req.url property)
and return the result. The result is the same as url.parse in Node.js core.
Calling this function multiple times on the same req where req.url does
not change will return a cached parsed object, rather than parsing again.

parseurl.original(req)

Parse the original URL of the given request object and return the result.
This works by trying to parse req.originalUrl if it is a string, otherwise
parses req.url. The result is the same as url.parse in Node.js core.
Calling this function multiple times on the same req where req.originalUrl
does not change will return a cached parsed object, rather than parsing again.

Benchmark

$ npm run-script bench

> parseurl@1.3.0 bench nodejs-parseurl
> node benchmark/index.js

> node benchmark/fullurl.js

 Parsing URL "http://localhost:8888/foo/bar?user=tj&pet=fluffy"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 1,290,780 ops/sec ±0.46% (195 runs sampled)
 nativeurl x 56,401 ops/sec ±0.22% (196 runs sampled)
 parseurl x 55,231 ops/sec ±0.22% (194 runs sampled)

> node benchmark/pathquery.js

 Parsing URL "/foo/bar?user=tj&pet=fluffy"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 1,986,668 ops/sec ±0.27% (190 runs sampled)
 nativeurl x 98,740 ops/sec ±0.21% (195 runs sampled)
 parseurl x 2,628,171 ops/sec ±0.36% (195 runs sampled)

> node benchmark/samerequest.js

 Parsing URL "/foo/bar?user=tj&pet=fluffy" on same request object

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 2,184,468 ops/sec ±0.40% (194 runs sampled)
 nativeurl x 99,437 ops/sec ±0.71% (194 runs sampled)
 parseurl x 10,498,005 ops/sec ±0.61% (186 runs sampled)

> node benchmark/simplepath.js

 Parsing URL "/foo/bar"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 4,535,825 ops/sec ±0.27% (191 runs sampled)
 nativeurl x 98,769 ops/sec ±0.54% (191 runs sampled)
 parseurl x 4,164,865 ops/sec ±0.34% (192 runs sampled)

> node benchmark/slash.js

 Parsing URL "/"

 1 test completed.
 2 tests completed.
 3 tests completed.

 fasturl x 4,908,405 ops/sec ±0.42% (191 runs sampled)
 nativeurl x 100,945 ops/sec ±0.59% (188 runs sampled)
 parseurl x 4,333,208 ops/sec ±0.27% (194 runs sampled)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/parseurl/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.3.0 / 2014-08-09

		Add parseurl.original for parsing req.originalUrl with fallback

		Return undefined if req.url is undefined

1.2.0 / 2014-07-21

		Cache URLs based on original value

		Remove no-longer-needed URL mis-parse work-around

		Simplify the “fast-path” RegExp

1.1.3 / 2014-07-08

		Fix typo

1.1.2 / 2014-07-08

		Seriously fix Node.js 0.8 compatibility

1.1.1 / 2014-07-08

		Fix Node.js 0.8 compatibility

1.1.0 / 2014-07-08

		Incorporate URL href-only parse fast-path

1.0.1 / 2014-03-08

		Add missing require

1.0.0 / 2014-03-08

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/monocle/node_modules/readdirp/examples/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readdirp examples

How to run the examples

Assuming you installed readdirp (npm install readdirp), you can do the following:

		npm explore readdirp

		cd examples

		npm install

At that point you can run the examples with node, i.e., node grep.

stream api

stream-api.js [https://github.com/thlorenz/readdirp/blob/master/examples/stream-api.js]

Demonstrates error and data handling by listening to events emitted from the readdirp stream.

stream api pipe

stream-api-pipe.js [https://github.com/thlorenz/readdirp/blob/master/examples/stream-api-pipe.js]

Demonstrates error handling by listening to events emitted from the readdirp stream and how to pipe the data stream into
another destination stream.

grep

grep.js [https://github.com/thlorenz/readdirp/blob/master/examples/grep.js]

Very naive implementation of grep, for demonstration purposes only.

using callback api

callback-api.js [https://github.com/thlorenz/readdirp/blob/master/examples/callback-api.js]

Shows how to pass callbacks in order to handle errors and/or data.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/depd/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-09-17

		No changes

0.4.5 / 2014-09-09

		Improve call speed to functions using the function wrapper

		Support Node.js 0.6

0.4.4 / 2014-07-27

		Work-around v8 generating empty stack traces

0.4.3 / 2014-07-26

		Fix exception when global Error.stackTraceLimit is too low

0.4.2 / 2014-07-19

		Correct call site for wrapped functions and properties

0.4.1 / 2014-07-19

		Improve automatic message generation for function properties

0.4.0 / 2014-07-19

		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

		Support deprecate.property(fn, prop, message)

0.3.0 / 2014-06-16

		Add NO_DEPRECATION environment variable

0.2.0 / 2014-06-15

		Add deprecate.property(obj, prop, message)

		Remove supports-color dependency for node.js 0.8

0.1.0 / 2014-06-15

		Add deprecate.function(fn, message)

		Add process.on('deprecation', fn) emitter

		Automatically generate message when omitted from deprecate()

0.0.1 / 2014-06-15

		Fix warning for dynamic calls at singe call site

0.0.0 / 2014-06-15

		Initial implementation

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/monocle/node_modules/readdirp/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/depd/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

depd

![NPM Version][npm-version-image] [https://npmjs.org/package/depd]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/depd]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/dougwilson/nodejs-depd]
![Coverage Status][coveralls-image] [https://coveralls.io/r/dougwilson/nodejs-depd?branch=master]
![Gratipay][gratipay-image] [https://www.gratipay.com/dougwilson/]

Deprecate all the things

With great modules comes great responsibility; mark things deprecated!

Install

$ npm install depd

API

var deprecate = require('depd')('my-module')

This library allows you to display deprecation messages to your users.
This library goes above and beyond with deprecation warnings by
introspection of the call stack (but only the bits that it is interested
in).

Instead of just warning on the first invocation of a deprecated
function and never again, this module will warn on the first invocation
of a deprecated function per unique call site, making it ideal to alert
users of all deprecated uses across the code base, rather than just
whatever happens to execute first.

The deprecation warnings from this module also include the file and line
information for the call into the module that the deprecated function was
in.

NOTE this library has a similar interface to the debug module, and
this module uses the calling file to get the boundary for the call stacks,
so you should always create a new deprecate object in each file and not
within some central file.

depd(namespace)

Create a new deprecate function that uses the given namespace name in the
messages and will display the call site prior to the stack entering the
file this function was called from. It is highly suggested you use the
name of your module as the namespace.

deprecate(message)

Call this function from deprecated code to display a deprecation message.
This message will appear once per unique caller site. Caller site is the
first call site in the stack in a different file from the caller of this
function.

If the message is omitted, a message is generated for you based on the site
of the deprecate() call and will display the name of the function called,
similar to the name displayed in a stack trace.

deprecate.function(fn, message)

Call this function to wrap a given function in a deprecation message on any
call to the function. An optional message can be supplied to provide a custom
message.

deprecate.property(obj, prop, message)

Call this function to wrap a given property on object in a deprecation message
on any accessing or setting of the property. An optional message can be supplied
to provide a custom message.

The method must be called on the object where the property belongs (not
inherited from the prototype).

If the property is a data descriptor, it will be converted to an accessor
descriptor in order to display the deprecation message.

process.on(‘deprecation’, fn)

This module will allow easy capturing of deprecation errors by emitting the
errors as the type “deprecation” on the global process. If there are no
listeners for this type, the errors are written to STDERR as normal, but if
there are any listeners, nothing will be written to STDERR and instead only
emitted. From there, you can write the errors in a different format or to a
logging source.

The error represents the deprecation and is emitted only once with the same
rules as writing to STDERR. The error has the following properties:

		message - This is the message given by the library

		name - This is always 'DeprecationError'

		namespace - This is the namespace the deprecation came from

		stack - This is the stack of the call to the deprecated thing

Example error.stack output:

DeprecationError: my-cool-module deprecated oldfunction
 at Object.<anonymous> ([eval]-wrapper:6:22)
 at Module._compile (module.js:456:26)
 at evalScript (node.js:532:25)
 at startup (node.js:80:7)
 at node.js:902:3

process.env.NO_DEPRECATION

As a user of modules that are deprecated, the environment variable NO_DEPRECATION
is provided as a quick solution to silencing deprecation warnings from being
output. The format of this is similar to that of DEBUG:

$ NO_DEPRECATION=my-module,othermod node app.js

This will suppress deprecations from being output for “my-module” and “othermod”.
The value is a list of comma-separated namespaces. To suppress every warning
across all namespaces, use the value * for a namespace.

Providing the argument --no-deprecation to the node executable will suppress
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not suppress the deperecations given to any “deprecation”
event listeners, just the output to STDERR.

process.env.TRACE_DEPRECATION

As a user of modules that are deprecated, the environment variable TRACE_DEPRECATION
is provided as a solution to getting more detailed location information in deprecation
warnings by including the entire stack trace. The format of this is the same as
NO_DEPRECATION:

$ TRACE_DEPRECATION=my-module,othermod node app.js

This will include stack traces for deprecations being output for “my-module” and
“othermod”. The value is a list of comma-separated namespaces. To trace every
warning across all namespaces, use the value * for a namespace.

Providing the argument --trace-deprecation to the node executable will trace
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not trace the deperecations silenced by NO_DEPRECATION.

Display

[image: message]

When a user calls a function in your library that you mark deprecated, they
will see the following written to STDERR (in the given colors, similar colors
and layout to the debug module):

bright cyan bright yellow
| | reset cyan
| | | |
▼ ▼ ▼ ▼
my-cool-module deprecated oldfunction [eval]-wrapper:6:22
▲ ▲ ▲ ▲
| | | |
namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

If the user redirects their STDERR to a file or somewhere that does not support
colors, they see (similar layout to the debug module):

Sun, 15 Jun 2014 05:21:37 GMT my-cool-module deprecated oldfunction at [eval]-wrapper:6:22
▲ ▲ ▲ ▲ ▲
| | | | |
timestamp of message namespace | | location of mycoolmod.oldfunction() call
 | deprecation message
 the word "deprecated"

Examples

Deprecating all calls to a function

This will display a deprecated message about “oldfunction” being deprecated
from “my-module” on STDERR.

var deprecate = require('depd')('my-cool-module')

// message automatically derived from function name
// Object.oldfunction
exports.oldfunction = deprecate.function(function oldfunction() {
 // all calls to function are deprecated
})

// specific message
exports.oldfunction = deprecate.function(function () {
 // all calls to function are deprecated
}, 'oldfunction')

Conditionally deprecating a function call

This will display a deprecated message about “weirdfunction” being deprecated
from “my-module” on STDERR when called with less than 2 arguments.

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 }
}

When calling deprecate as a function, the warning is counted per call site
within your own module, so you can display different deprecations depending
on different situations and the users will still get all the warnings:

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
 if (arguments.length < 2) {
 // calls with 0 or 1 args are deprecated
 deprecate('weirdfunction args < 2')
 } else if (typeof arguments[0] !== 'string') {
 // calls with non-string first argument are deprecated
 deprecate('weirdfunction non-string first arg')
 }
}

Deprecating property access

This will display a deprecated message about “oldprop” being deprecated
from “my-module” on STDERR when accessed. A deprecation will be displayed
when setting the value and when getting the value.

var deprecate = require('depd')('my-cool-module')

exports.oldprop = 'something'

// message automatically derives from property name
deprecate.property(exports, 'oldprop')

// explicit message
deprecate.property(exports, 'oldprop', 'oldprop >= 0.10')

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/monocle/node_modules/readdirp/examples/node_modules/tap-stream/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

tap-stream [image: Build Status] [http://travis-ci.org/thlorenz/tap-stream]

Taps a nodejs stream and logs the data that’s coming through.

npm install tap-stream

Given an object stream we can print out objects passing through and control the detail via the
depth parameter:

objectStream().pipe(tap(0));

[image: depth0]

objectStream().pipe(tap(1));

[image: depth1]

objectStream().pipe(tap(2));

[image: depth2]

For even more control a custom log function may be supplied:

objectStream()
 .pipe(tap(function customLog (data) {
 var nest = data.nest;
 console.log ('Bird: %s, id: %s, age: %s, layed egg: %s', nest.name, data.id, nest.age, nest.egg !== undefined);
 })
);

Bird: yellow rumped warbler, id: 0, age: 1, layed egg: true
Bird: yellow rumped warbler, id: 1, age: 1, layed egg: true

API

tap([depth | log])

Intercepts the stream and logs data that is passing through.

		optional parameter is either a Number or a Function

		if no parameter is given, depth defaults to 0 and log to console.log(util.inspect(..))

		depth controls the depth with which
util.inspect [http://nodejs.org/api/util.html#util_util_inspect_object_showhidden_depth_colors] is called

		log replaces the default logging function with a custom one

Example:

var tap = require('tap-stream');

myStream
 .pipe(tap(1)) // log intermediate results
 .pipe(..) // continute manipulating the data

Object stream

Included in order to give context for above examples.

function objectStream () {
 var s = new Stream()
 , objects = 0;

 var iv = setInterval(
 function () {
 s.emit('data', {
 id: objects
 , created: new Date()
 , nest: {
 name: 'yellow rumped warbler'
 , age: 1
 , egg: { name: 'unknown' , age: 0 }
 }
 }
 , 4
);

 if (++objects === 2) {
 s.emit('end');
 clearInterval(iv);
 }
 }
 , 200);
 return s;
}

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/uid-safe/node_modules/mz/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-06-18

		use bluebird by default if found

		support node 0.8

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/monocle/node_modules/readdirp/examples/node_modules/event-stream/node_modules/duplexer/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

duplexer ![build status][1] [http://travis-ci.org/Raynos/duplexer]

Creates a duplex stream

Taken from event-stream [https://github.com/dominictarr/event-stream#duplex-writestream-readstream]

duplex (writeStream, readStream)

Takes a writable stream and a readable stream and makes them appear as a readable writable stream.

It is assumed that the two streams are connected to each other in some way.

Example

var grep = cp.exec('grep Stream')

duplex(grep.stdin, grep.stdout)

Installation

npm install duplexer

Tests

make test

Contributors

		Dominictarr

		Raynos

MIT Licenced

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/uid-safe/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

UID Safe

Create cryptographically secure UIDs safe for both cookie and URL usage.
This is in contrast to modules such as rand-token [https://github.com/sehrope/node-rand-token]
and uid2 [https://github.com/coreh/uid2] whose UIDs are actually skewed
due to the use of % and unnecessarily truncate the UID.
Use this if you could still use UIDs with - and _ in them.

API

var uid = require('uid-safe')

uid(byteLength, [cb])

Asynchronously create a UID with a specific byte length.
Because base64 encoding is used underneath, this is not the string length!
For example, to create a UID of length 24, you want a byte length of 18!

If cb is not defined, a promise is returned.
However, to use promises, you must either install bluebird [https://github.com/petkaantonov/bluebird]
or use a version of node.js that has native promises,
otherwise your process will crash and die.

uid(18).then(function (string) {
 // do something with the string
})

uid(18, function (err, string) {
 if (err) throw err
 // do something with the string
})

uid.sync(byteLength)

A synchronous version of above.

var string = uid.sync(18)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Karma [image: Build Status] [http://travis-ci.org/karma-runner/karma] [image: Dependency Status] [https://david-dm.org/karma-runner/karma] [image: devDependency Status] [https://david-dm.org/karma-runner/karma#info=devDependencies]

A simple tool that allows you to execute JavaScript code in multiple
real browsers.

The main purpose of Karma is to make your TDD development easy,
fast, and fun.

When should I use Karma?

		You want to test code in real browsers.

		You want to test code in multiple browsers (desktop, mobile,
tablets, etc.).

		You want to execute your tests locally during development.

		You want to execute your tests on a continuous integration server.

		You want to execute your tests on every save.

		You love your terminal.

		You don’t want your (testing) life to suck.

		You want to use Istanbul [https://github.com/gotwarlost/istanbul] to automagically generate coverage
reports.

		You want to use RequireJS [http://requirejs.org/] for your source files.

But I still want to use _insert testing library_

Karma is not a testing framework, nor an assertion library.
Karma just launches a HTTP server, and generates the test runner HTML file you probably already know from your favourite testing framework.
So for testing purposes you can use pretty much anything you like. There are already plugins for most of the common testing frameworks:

		Jasmine [https://github.com/karma-runner/karma-jasmine]

		Mocha [https://github.com/karma-runner/karma-mocha]

		QUnit [https://github.com/karma-runner/karma-qunit]

		and many others [https://www.npmjs.org/browse/keyword/karma-adapter]

If you can’t find an adapter for your favourite framework, don’t worry and write your own.
It’s not that hard and we are here to help.

Which Browsers can I use?

All the major browsers are supported, if you want to know more see the
browsers [http://karma-runner.github.io/0.8/config/browsers.html] page.

Troubleshooting

See FAQ [http://karma-runner.github.io/0.12/intro/faq.html].

I want to use it. Where do I sign?

You don’t need to sign anything but here are some resources to help
you to get started...

Obligatory Screencast.

Every serious project has a screencast, so here is ours. Just click
here [http://www.youtube.com/watch?v=MVw8N3hTfCI] and let the show begin.

Installation.

See installation [http://karma-runner.github.io/0.12/intro/installation.html].

Using it.

See configuration [http://karma-runner.github.io/0.10/intro/configuration.html].

I still don’t get it. Where can I get help?

		Docs [http://karma-runner.github.io]

		Mailing List [https://groups.google.com/forum/#!forum/karma-users]

		Issue Tracker [https://github.com/karma-runner/karma/issues]

		@JsKarma [http://twitter.com/JsKarma] on Twitter

This is so great. I want to help.

Please, see
contributing [http://karma-runner.github.io/0.12/dev/contributing.html].

Why did you create this?

Throughout the development of AngularJS [http://angularjs.org/], we’ve been using JSTD [http://code.google.com/p/js-test-driver/] for
testing. I really think that JSTD is a great idea. Unfortunately, we
had many problems with JSTD, so we decided to write our own test
runner based on the same idea. We wanted a simple tool just for
executing JavaScript tests that is both stable and fast. That’s why we
use the awesome Socket.io [http://socket.io/] library and Node.js [http://nodejs.org/].

My boss wants a license. So where is it?

MIT License [https://raw.github.com/karma-runner/karma/master/LICENSE]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/uid-safe/node_modules/mz/node_modules/native-or-bluebird/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

native-or-bluebird

![NPM version][npm-image] [https://npmjs.org/package/native-or-bluebird]
![Build status][travis-image] [https://travis-ci.org/normalize/native-or-bluebird]
![Test coverage][coveralls-image] [https://coveralls.io/r/normalize/native-or-bluebird?branch=master]
![Dependency Status][david-image] [https://david-dm.org/normalize/native-or-bluebird]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/native-or-bluebird]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Use either bluebird or the native Promise implementation.
If no implementation is found, an error will be thrown:

var Promise = require('native-or-bluebird');

The goal of this library is to be able to eventually remove this line
from your code and use native Promises, allowing you to
to write future-compatible code with ease.
You should install bluebird in your libraries for maximum compatibility.

If you do not want an error to be thrown,
require() the Promise implementation directly.
If no implementation is found, undefined will be returned.

var Promise = require('native-or-bluebird/promise');
if (Promise) // do stuff with promises

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [bookmark: 0.12.25]

0.12.25 (2014-11-14)

Bug Fixes

		add emscripten memory image as binary suffix (f6b2b561 [http://github.com/karma-runner/karma/commit/f6b2b561c5d5e083cd204df9564024cac163b611])

		Wrap url.parse to always return an object for query property (72452e9f [http://github.com/karma-runner/karma/commit/72452e9fce4c42dc843c1157c19c08d39e3996df], closes #1182 [http://github.com/karma-runner/karma/issues/1182])

		client.html: always open debug.html in a new browser process (d176bcf4 [http://github.com/karma-runner/karma/commit/d176bcf47e9b3a7df8c6ae691f767f1012214c53])

		preprocessor: calculate sha1 on content returned from a preprocessor (6cf79557 [http://github.com/karma-runner/karma/commit/6cf795576bd6d77decac68ecc4838871b6df4836], closes #1204 [http://github.com/karma-runner/karma/issues/1204])

		runner: Fix typo in CSS class name for .idle (fc5a7ce0 [http://github.com/karma-runner/karma/commit/fc5a7ce0904a78ece6a9cfa29215b17bd5c1929d])

[bookmark: v0.12.24]

v0.12.24 (2014-09-30)

Bug Fixes

		Wrap url.parse to always return an object for query property (72452e9f [http://github.com/karma-runner/karma/commit/72452e9fce4c42dc843c1157c19c08d39e3996df], closes #1182 [http://github.com/karma-runner/karma/issues/1182])

[bookmark: 0.12.23]

0.12.23 (2014-08-28)

Bug Fixes

		file_list: Incorrect response after remove and add file (0dbc0201 [http://github.com/karma-runner/karma/commit/0dbc0201b2d1f7c909f74816cc50bc68013fc70f])

		preprocessor: Throw error if can’t open file (bb4edde9 [http://github.com/karma-runner/karma/commit/bb4edde9f15a07e6dac0d4dc01731f1e277d34a4])

Features

		init: install coffee-script automatically (e876db63 [http://github.com/karma-runner/karma/commit/e876db63dc5c4708345f5cdc335195fe4a5b8808], closes #1152 [http://github.com/karma-runner/karma/issues/1152])

[bookmark: 0.12.22]

0.12.22 (2014-08-19)

Bug Fixes

		preprocessor: treat *.tgz, *.tbz2, *.txz & *.xz as binary (7b642449 [http://github.com/karma-runner/karma/commit/7b642449811b0c0af63147f74159c6dbb8900563])

[bookmark: 0.12.21]

0.12.21 (2014-08-05)

Bug Fixes

		web-server: cache static files (eb5bd53f [http://github.com/karma-runner/karma/commit/eb5bd53ff0b6dc01e247fce9af01d0ed97d8c9ba])

[bookmark: 0.12.20]

0.12.20 (2014-08-05)

Bug Fixes

		config: #1113 Watching is not working properly on linux (c91ffbc0 [http://github.com/karma-runner/karma/commit/c91ffbc05f78f2c17dcc43039300cdf045e64ccc], closes #1113 [http://github.com/karma-runner/karma/issues/1113])

		preprocessor:
		treat *.gz files as binary (1b56932f [http://github.com/karma-runner/karma/commit/1b56932fb49e0f3793f00599e11c24f6254236f4])

		treat *.swf files as binary (62d7d387 [http://github.com/karma-runner/karma/commit/62d7d3873ed3e046ab24530cb20297ddad51cf85])

[bookmark: 0.12.19]

0.12.19 (2014-07-26)

Bug Fixes

		proxy: More useful proxyError log message (96640a75 [http://github.com/karma-runner/karma/commit/96640a75dab089255c0619733ca9d5f9fe80127d])

[bookmark: 0.12.18]

0.12.18 (2014-07-25)

Bug Fixes

		watcher: handle paths on Windows (6164d869 [http://github.com/karma-runner/karma/commit/6164d8699c0f07fd8fcbae88221eb35d99fb02e4])

[bookmark: 0.12.17]

0.12.17 (2014-07-11)

Bug Fixes

		logging: Summarize SKIPPED tests in debug.html. Before: hundreds of SKIPPING lines in con (a01100f5 [http://github.com/karma-runner/karma/commit/a01100f5c6404366dd4219b9bf6c3161300dc735], closes #1111 [http://github.com/karma-runner/karma/issues/1111])

		server: Force clients disconnect on Windows (28239f42 [http://github.com/karma-runner/karma/commit/28239f420460bdb9dd3b71f8088a0dfc1277dca6], closes #1109 [http://github.com/karma-runner/karma/issues/1109])

		travis_ci: converted node versions as string (25ee6fc9 [http://github.com/karma-runner/karma/commit/25ee6fc9c57e11a012ecc3910fcb72386a3403a1])

Features

		serve ePub as binary files (82ed0c6e [http://github.com/karma-runner/karma/commit/82ed0c6e94e77757270e6694f7082eac5ef5e066])

		preprocessor: add ‘mp3’ and ‘ogg’ as binary formats to avoid media corruption in the browser. (65a0767e [http://github.com/karma-runner/karma/commit/65a0767e8024879e3a5c4557f376d8b6684530e8])

[bookmark: v0.12.16]

v0.12.16 (2014-05-10)

Bug Fixes

		launcher: cancel kill timeout when process exits cleanly (bd662744 [http://github.com/karma-runner/karma/commit/bd662744bfbe353ccb63c7a795f691d12530129c], closes #946 [http://github.com/karma-runner/karma/issues/946])

[bookmark: v0.12.15]

v0.12.15 (2014-05-08)

Bug Fixes

		server: don’t wait for socket.io store expiration timeout (cd30a422 [http://github.com/karma-runner/karma/commit/cd30a422fbc3d9d96b9aae791063a20d02a5f195])

[bookmark: v0.12.14]

v0.12.14 (2014-04-27)

Bug Fixes

		debug.html: Added whitespace after ‘SKIPPED’ (218ee859 [http://github.com/karma-runner/karma/commit/218ee859d8c8f1c7d2f47435548030f367f1e05d])

[bookmark: v0.12.13]

v0.12.13 (2014-04-27)

Bug Fixes

		preprocessor: serve NaCl binaries (1cc6a1e3 [http://github.com/karma-runner/karma/commit/1cc6a1e34b24768bffdaf47fb5e36559f5dc5135])

[bookmark: v0.12.12]

v0.12.12 (2014-04-25)

Bug Fixes

		server: properly close flash transport (de89cd33 [http://github.com/karma-runner/karma/commit/de89cd33b772d373569d2db2e9066c6656016aa3])

[bookmark: v0.12.11]

v0.12.11 (2014-04-25)

Bug Fixes

		preprocessor: remove ts from binary extensions (82698523 [http://github.com/karma-runner/karma/commit/8269852304d2d420bb25a0e4bb13bba58a339f39])

[bookmark: v0.12.10]

v0.12.10 (2014-04-23)

Bug Fixes

		server: clear web server close timeout on clean close (34123fed [http://github.com/karma-runner/karma/commit/34123fed2fbe99b3a9a39ad5e0a141d55decb9f6])

[bookmark: v0.12.9]

v0.12.9 (2014-04-14)

Bug Fixes

		web-server: strip scheme, host and port (06a0da09 [http://github.com/karma-runner/karma/commit/06a0da09320340a988513285046b577b4a7518fd])

[bookmark: v0.12.8]

v0.12.8 (2014-04-14)

Bug Fixes

		web-server: inline the config, when serving debug.html (1eb36430 [http://github.com/karma-runner/karma/commit/1eb36430ca26a769cd8fd2ab5a471aecb31cad9f])

[bookmark: v0.12.7]

v0.12.7 (2014-04-14)

Bug Fixes

		don’t crash/terminate upon errors within chokidar (2c389311 [http://github.com/karma-runner/karma/commit/2c389311ce683646675adccf5a7b7b3160335148])

		preprocessor: consider SVG files as text files, not binary files (ff288036 [http://github.com/karma-runner/karma/commit/ff2880369f0c4e8b78d95bb20365cead340f8fc9], closes #1026 [http://github.com/karma-runner/karma/issues/1026])

[bookmark: v0.12.6]

v0.12.6 (2014-04-09)

[bookmark: v0.12.5]

v0.12.5 (2014-04-08)

Bug Fixes

		reporters: format fix for console log (d2d1377d [http://github.com/karma-runner/karma/commit/d2d1377d1be0da17196a1c82bf5584997d502b68], closes #934 [http://github.com/karma-runner/karma/issues/934])

[bookmark: v0.12.4]

v0.12.4 (2014-04-06)

Bug Fixes

		init: Fix type in init text (e34465b0 [http://github.com/karma-runner/karma/commit/e34465b01cc583cac9645acc98d20acbf471c856], closes #954 [http://github.com/karma-runner/karma/issues/954])

[bookmark: v0.12.3]

v0.12.3 (2014-04-01)

Bug Fixes

		web-server: implement a timeout on webServer.close() (fe3dca78 [http://github.com/karma-runner/karma/commit/fe3dca781def0a5f813e598fe73eb97b3f55d223], closes #952 [http://github.com/karma-runner/karma/issues/952])

Features

		web-server: run karma using multiple emulation modes, #631 (b9a2930a [http://github.com/karma-runner/karma/commit/b9a2930a7fead5f29eb5f62b1a87739c4cf2e04b], closes #936 [http://github.com/karma-runner/karma/issues/936])

[bookmark: v0.12.2]

v0.12.2 (2014-03-30)

[bookmark: v0.12.1]

v0.12.1 (2014-03-16)

Features

		preprocessor: Adding the dat file extension as a recognised binary. (be923571 [http://github.com/karma-runner/karma/commit/be923571751199e0d795f620425fdf6eaf3f9818])

[bookmark: v0.12.0]

v0.12.0 (2014-03-10)

Bug Fixes

		serving binary files (8a30cf55 [http://github.com/karma-runner/karma/commit/8a30cf55751bbaec672597f4f0ed66fe8742095f], closes #864 [http://github.com/karma-runner/karma/issues/864], #885 [http://github.com/karma-runner/karma/issues/885])

		config:
		fail if client.args is set to a non array (fe4eaec0 [http://github.com/karma-runner/karma/commit/fe4eaec09f1b7d34270dec7f948cd9441ef6fe48])

		allow CoffeeScript 1.7 to be used (a1583dec [http://github.com/karma-runner/karma/commit/a1583decd97438a241f99287159da2948eb3a95f])

		runner: Karma hangs when file paths have \u in them #924 (1199fc4d [http://github.com/karma-runner/karma/commit/1199fc4d7ee7be2d48a707876ddb857544cf2fb4], closes #924 [http://github.com/karma-runner/karma/issues/924])

		web-server:
		detach listeners after running (3baa8e19 [http://github.com/karma-runner/karma/commit/3baa8e1979003e4136e48515c0ba1815a950ca19])

		close webserver after running (f9dee468 [http://github.com/karma-runner/karma/commit/f9dee4681cad716b56748e275680fb09e574978c])

Features

		remove dependency on coffee-script (af2d0e72 [http://github.com/karma-runner/karma/commit/af2d0e72599d242c59ebefd6c3c965bf8496399e])

		config: better error when Coffee/Live Script not installed (aca84dc9 [http://github.com/karma-runner/karma/commit/aca84dc9c6f4a966280bfcd080317c7c9d498f53])

		init: generate test-main.(js/coffee) for RequireJS projects (85900c93 [http://github.com/karma-runner/karma/commit/85900c93f070264d71fdae6c257285767119c5c2])

[bookmark: v0.11.14]

v0.11.14 (2014-02-04)

Features

		preprocessor: allow preprocessor to cancel test run (4d669bf3 [http://github.com/karma-runner/karma/commit/4d669bf36b091e8808c9a280900fe19c8b2a72cc], closes #550 [http://github.com/karma-runner/karma/issues/550])

		reporter: use spaces rather than tabs when formatting errors (112becf7 [http://github.com/karma-runner/karma/commit/112becf7ffa79d2519777300be0beff568114fe6])

		web-server: include html files as
 (03d7b106 [http://github.com/karma-runner/karma/commit/03d7b1065e31e6a42e67a0eb3e22009731865648])

[bookmark: v0.11.13]

v0.11.13 (2014-01-19)

Bug Fixes

		launcher: compatibility with old launchers (df557cec [http://github.com/karma-runner/karma/commit/df557cec8093de301a8d7dea4ddca8670629c0af])

Features

		support LiveScript configuration (88deebe7 [http://github.com/karma-runner/karma/commit/88deebe74a0b6f01e23f3ceefea5811183218600])

[bookmark: v0.11.12]

v0.11.12 (2013-12-25)

Bug Fixes

		client: show error if an adapter is removed (a8b250cf [http://github.com/karma-runner/karma/commit/a8b250cf6a89cf064f67ecb1e2c040cc224d91e9])

Features

		deps: update all deps (355a762c [http://github.com/karma-runner/karma/commit/355a762c0fd709261ff1403213bb10db6aa0a396], closes #794 [http://github.com/karma-runner/karma/issues/794])

		reporter: support source maps (rewrite stack traces) (70e4abd9 [http://github.com/karma-runner/karma/commit/70e4abd9b8db6b05de557ca6e9204339a21be06b], closes #594 [http://github.com/karma-runner/karma/issues/594])

		watcher: use polling on Mac (66f50d7e [http://github.com/karma-runner/karma/commit/66f50d7e584d4cbde820e70746be3f3378440fa8])

[bookmark: v0.11.11]

v0.11.11 (2013-12-23)

Bug Fixes

		events: resolve async events without any listener (4e4bba88 [http://github.com/karma-runner/karma/commit/4e4bba8803d1e4f461e568cc2e2ccf82e369721d])

		launcher:
		compatibility with Node v0.8 (6a46be96 [http://github.com/karma-runner/karma/commit/6a46be96499876e9aa0892325d783627bd1c535d])

		compatibility with old launchers (ffb74800 [http://github.com/karma-runner/karma/commit/ffb74800638417910f453e108c8a4c6ffabaee29])

[bookmark: v0.11.10]

v0.11.10 (2013-12-22)

Bug Fixes

		completion: add missin –log-level for karma init (1e79eb55 [http://github.com/karma-runner/karma/commit/1e79eb553e40530adef36b30b35a79f7a8026ddf])

		init: clean the terminal if killed (e2aa7497 [http://github.com/karma-runner/karma/commit/e2aa74972ce84388a49090533e353b61bd9b16ed])

Features

		revert default usePolling to false (e88fbc24 [http://github.com/karma-runner/karma/commit/e88fbc24dd34e7976cae2547bad07e6f044a768b])

		config:
		remove default preprocessors (coffee, html2js) (ada74d55 [http://github.com/karma-runner/karma/commit/ada74d55aaf02882a5e12031838404e9ade07d36])

		Add the abillity to supress the client console. This adds the client config opti (4734962d [http://github.com/karma-runner/karma/commit/4734962de747c2a8eab5c8078954bd567e4b4410], closes #744 [http://github.com/karma-runner/karma/issues/744])

		set default host/port from env vars (0a6a0ee4 [http://github.com/karma-runner/karma/commit/0a6a0ee4dd443250521d7898ab3086e7fc4f3afc])

		Allow tests be to run in a new window instead of iframe (471e3a8a [http://github.com/karma-runner/karma/commit/471e3a8a506836ba9711637d325c680cfbfff64f])

		init:
		install karma-coffee-preprocessor (29f5cf2d [http://github.com/karma-runner/karma/commit/29f5cf2d4b8c16a49d8528e02f781ef394e19191])

		add nodeunit, nunit frameworks (b4da1a08 [http://github.com/karma-runner/karma/commit/b4da1a08b98414e903440d6ec2df7e94b48daea8])

		install missing plugins (frameworks, launchers) (1ba70a6f [http://github.com/karma-runner/karma/commit/1ba70a6fa673fbbb0c1750c777974662989dbf67])

		launcher: log how long it took each browser to capture (8dd54369 [http://github.com/karma-runner/karma/commit/8dd54369f2ec3377ca1cf2d9c3cdacdc80a1331a])

Breaking Changes

		Karma does not ship with any plugin. You need to explicitly install all the plugins you need. karma init can help with this.

Removed plugins that need to be installed explicitly are:

		karma-jasmine

		karma-requirejs

		karma-coffee-preprocessor

		karma-html2js-preprocessor

		karma-chrome-launcher

		karma-firefox-launcher

		karma-phantomjs-launcher

		karma-script-launcher (e033d561 [http://github.com/karma-runner/karma/commit/e033d5618a98e1f83323bb650e0eaf89c339e5b5])

[bookmark: v0.11.9]

v0.11.9 (2013-12-03)

Features

		browser: add browserNoActivity configuration (bca8faad [http://github.com/karma-runner/karma/commit/bca8faad91b91baa898e3eba74fe0fa7336971c3])

[bookmark: v0.11.8]

v0.11.8 (2013-12-03)

Bug Fixes

		reporter: remove SHAs from stack traces (d7c31f97 [http://github.com/karma-runner/karma/commit/d7c31f97be654f08d484563282a68d59638c5693])

		web-server: correct caching headers for SHAs (bf27e80b [http://github.com/karma-runner/karma/commit/bf27e80bb8ff3e60d19b408803596145c821bae7])

Features

		web-server: disable gzip compression (5ee886bc [http://github.com/karma-runner/karma/commit/5ee886bc16fc5a2bd08101d351027345530f87df])

[bookmark: v0.11.7]

v0.11.7 (2013-12-02)

Bug Fixes

		keep all sockets in the case an old socket will survive (a5945ebc [http://github.com/karma-runner/karma/commit/a5945ebcf11c4b17b99c40b78d7e2946f79c77c2])

		reuse browser instance when restarting disconnected browser (1f1a8ebf [http://github.com/karma-runner/karma/commit/1f1a8ebf38827fe772c631de200fdfa4a705a40b])

		client: redirect to redirect_url after all messages are sent (4d05602c [http://github.com/karma-runner/karma/commit/4d05602c803a6645d6c0e9404a60ed380f0329ee])

Features

		plugins: ignore some non-plugins package names (01776030 [http://github.com/karma-runner/karma/commit/01776030a294ef051b6454c2fb9bc3f980a6d36a])

[bookmark: v0.11.6]

v0.11.6 (2013-12-01)

Bug Fixes

		config:
		ignore empty string patterns (66c86a66 [http://github.com/karma-runner/karma/commit/66c86a6689aaac82006fa47762bd86496ad76bf7])

		apply CLI logger options as soon as we can (16179b08 [http://github.com/karma-runner/karma/commit/16179b08021334cfab02a9dcba8d7f4bd219bc5e])

		preprocess: set correct extension for the preprocessed path (c9a64d2f [http://github.com/karma-runner/karma/commit/c9a64d2f1a94c0a7dab2fcde79696c139d958c57], closes #843 [http://github.com/karma-runner/karma/issues/843])

Features

		add browserDisconnectTolerance config option (19590e1f [http://github.com/karma-runner/karma/commit/19590e1f66fd6c3b0d3fc9e90000c705198e0e70])

		make autoWatch true by default (8454898c [http://github.com/karma-runner/karma/commit/8454898c5e2b56cb81f0c808153b5f82cfac62a4])

		browser: improve logging (71b542ad [http://github.com/karma-runner/karma/commit/71b542adc6d6bd24d0ab2bb5cb0a473e1813804a])

		client: show error if no adapter is included (7213877f [http://github.com/karma-runner/karma/commit/7213877f3542a4c65d91d2dbde6633b928aba049])

		web-server:
		use SHA hash instead of timestamps (6e31cb24 [http://github.com/karma-runner/karma/commit/6e31cb249ee5b32d91f37ea516ca0f84bddc5aa9], closes #520 [http://github.com/karma-runner/karma/issues/520])

		cache preprocessed files (c786ee2e [http://github.com/karma-runner/karma/commit/c786ee2ea19d2fcef078a30cecb70d69036a4803])

Breaking Changes

		autoWatch is true by default. If you rely on the default value being false, please set it in karma.conf.js explicitly to false.
(8454898c [http://github.com/karma-runner/karma/commit/8454898c5e2b56cb81f0c808153b5f82cfac62a4])

[bookmark: v0.11.5]

v0.11.5 (2013-11-25)

Bug Fixes

		do not execute already executing browsers (00136cf6 [http://github.com/karma-runner/karma/commit/00136cf6d818b9bc6e4d77504e3ce1ed3d23d611])

Features

		launcher: send SIGKILL if SIGINT does not kill the browser (c0fa49aa [http://github.com/karma-runner/karma/commit/c0fa49aa7c56f14a3836986e8629411a72515a78])

[bookmark: v0.11.4]

v0.11.4 (2013-11-21)

Bug Fixes

		browser: reply “start” event (4fde43de [http://github.com/karma-runner/karma/commit/4fde43deee22b53fcca52132c51c27f4012d2933])

[bookmark: v0.11.3]

v0.11.3 (2013-11-20)

Bug Fixes

		config: not append empty module if no custom launcher/rep/prep (ee15a4e4 [http://github.com/karma-runner/karma/commit/ee15a4e446e9f35949a2fdde7cbdbecdd7ca0750])

		watcher: allow parentheses in a pattern (438eb8dd [http://github.com/karma-runner/karma/commit/438eb8ddbc0b82cd5ab299f6f27f5ae3cc29a20f], closes #728 [http://github.com/karma-runner/karma/issues/728])

Features

		remove karma binary in favor of karma-cli (c7d46270 [http://github.com/karma-runner/karma/commit/c7d46270aca83ecfe78f69fa923bc574c0b5bfdc])

		config: log if no config file is specified (ce4c5646 [http://github.com/karma-runner/karma/commit/ce4c5646dfff7bd40abfd1f9e51dc4f5b779bf4a])

Breaking Changes

		The karma module does not export karma binary anymore. The recommended way is to have local modules (karma and all the plugins that your project needs) stored in your package.json. You can run that particular Karma by ./node_modules/karma/bin/karma. Or you can have karma-cli installed globally on your system, which enables you to use the karma command.

The global karma command (installed by karma-cli) does look for local version of Karma (including parent directories) first and fall backs to a global one.

The bin/karma binary does not look for any other instances of Karma and just runs the one that it belongs to.

(c7d46270 [http://github.com/karma-runner/karma/commit/c7d46270aca83ecfe78f69fa923bc574c0b5bfdc])

[bookmark: v0.11.2]

v0.11.2 (2013-11-03)

Bug Fixes

		config: use polling by default (53978c42 [http://github.com/karma-runner/karma/commit/53978c42f10088fb29d09597817c5dde58aeb32b])

		proxy: handle proxied socket.io websocket transport upgrade (fcc2a98f [http://github.com/karma-runner/karma/commit/fcc2a98f6af5f71a929130825b18db56557f29f7])

[bookmark: v0.11.1]

v0.11.1 (2013-10-25)

Bug Fixes

		launcher kill method which was throwing an error if no callback was specified bu (5439f1cb [http://github.com/karma-runner/karma/commit/5439f1cbbdce9de0c2193171f75798587221e257])

		static: Use full height for the iFrame. Fix based on PR #714. (f95daf3c [http://github.com/karma-runner/karma/commit/f95daf3ce0af11b3c58dc09ef852ef0378b484fd])

		watcher:
		ignore double “add” events (6cbaac7a [http://github.com/karma-runner/karma/commit/6cbaac7aba0534c9a7688f6953c61505fcd1289c])

		improve watching efficiency (6a272aa5 [http://github.com/karma-runner/karma/commit/6a272aa5763eb0c728b76adc3b12bb12abc1aaca], closes #616 [http://github.com/karma-runner/karma/issues/616])

Features

		redirect client to “return_url” if specified (6af2c897 [http://github.com/karma-runner/karma/commit/6af2c897f3b35060a146efdef7da597ba53d8cdd])

		config: add usePolling config (18514d63 [http://github.com/karma-runner/karma/commit/18514d63534c82094b231eb1e0b0e41011519183])

		watcher: ignore initial “add” events (dde1da4c [http://github.com/karma-runner/karma/commit/dde1da4c78470fec3565920df418a3786fb57797])

[bookmark: v0.11.0]

v0.11.0 (2013-08-26)

Bug Fixes

		support reconnecting for manually captured browsers (a8ac6d2d [http://github.com/karma-runner/karma/commit/a8ac6d2d86cad3898d21f019b6fc0a5a2b99cd00])

		reporter: print browser stats immediately after it finishes (65202d87 [http://github.com/karma-runner/karma/commit/65202d870fa602e70483aeebbf87d0e11d6c1017])

Features

		don’t wait for all browsers and start executing immediately (8647266f [http://github.com/karma-runner/karma/commit/8647266fd592fe245aaf2be964319d3026432e33], closes #57 [http://github.com/karma-runner/karma/issues/57])

[bookmark: v0.10.2]

v0.10.2 (2013-08-21)

Bug Fixes

		don’t mark a browser captured if already being killed/timeouted (21230979 [http://github.com/karma-runner/karma/commit/212309795861cf599dbcc0ed60fff612ccf25cf5], closes #88 [http://github.com/karma-runner/karma/issues/88])

Features

		sync page unload (disconnect) (ac9b3f01 [http://github.com/karma-runner/karma/commit/ac9b3f01e88ce2cf91fc86aca9cecfdb8177a6fa])

		buffer result messages when polling (c4ad6970 [http://github.com/karma-runner/karma/commit/c4ad69709103110a066ae1d9652af69e42434c6b])

		allow browser to reconnect during the test run (cbe2851b [http://github.com/karma-runner/karma/commit/cbe2851baa55312f00be420e0345283b33326266], closes #82 [http://github.com/karma-runner/karma/issues/82], #590 [http://github.com/karma-runner/karma/issues/590])

[bookmark: v0.10.1]

v0.10.1 (2013-08-06)

Bug Fixes

		cli: Always pass an instance of fs to processArgs. (06532b70 [http://github.com/karma-runner/karma/commit/06532b7042371f270c227a1a7f859f2dab5afac1], closes #677 [http://github.com/karma-runner/karma/issues/677])

		init: set default filename (34d49b13 [http://github.com/karma-runner/karma/commit/34d49b138f3bee8f17e1e9e343012d82887f906b], closes #680 [http://github.com/karma-runner/karma/issues/680], #681 [http://github.com/karma-runner/karma/issues/681])

[bookmark: v0.10.0]

v0.10.0 (2013-08-06)

[bookmark: v0.9.8]

v0.9.8 (2013-08-05)

Bug Fixes

		init: install plugin as dev dependency (46b7a402 [http://github.com/karma-runner/karma/commit/46b7a402fb8d700b10e2d72908c309d27212b5a0])

		runner: do not confuse client args with the config file (6f158aba [http://github.com/karma-runner/karma/commit/6f158abaf923dad6878a64da2d8a3c2c56ae604f])

Features

		config: default config can be karma.conf.js or karma.conf.coffee (d4a06f29 [http://github.com/karma-runner/karma/commit/d4a06f296c4d805f2dccd85b4898766593af4d66])

		runner:
		support config files (449e4a1a [http://github.com/karma-runner/karma/commit/449e4a1ad8b8543f84f1953c875cfbdf5692caa7], closes #625 [http://github.com/karma-runner/karma/issues/625])

		add –no-refresh to disable re-globbing (b9c670ac [http://github.com/karma-runner/karma/commit/b9c670accbde8d027bdc3e09a4080c546b05853c])

[bookmark: v0.9.7]

v0.9.7 (2013-07-31)

Bug Fixes

		init: trim the inputs (b72355cb [http://github.com/karma-runner/karma/commit/b72355cbeadc8e907e48bbd7d9a11e6de17343f7], closes #663 [http://github.com/karma-runner/karma/issues/663])

		web-server: correct urlRegex in custom handlers (a641c2c1 [http://github.com/karma-runner/karma/commit/a641c2c1dd0f5f1e0045e7cff1516d2820a8204e])

Features

		basic bash/zsh completion (9dc1cf6a [http://github.com/karma-runner/karma/commit/9dc1cf6a6e095653fed6c79c4896c71af8af1953])

		runner: allow passing changed/added/removed files (b598106d [http://github.com/karma-runner/karma/commit/b598106de1295f3e1e58338a8eca2b60f99175c3])

		watcher: make the batching delay configurable (fa139312 [http://github.com/karma-runner/karma/commit/fa139312a0fff981f11182c17ba6979dccca1105])

[bookmark: v0.9.6]

v0.9.6 (2013-07-28)

Features

		pass command line opts through to browser (00d63d0b [http://github.com/karma-runner/karma/commit/00d63d0b965a998b04d1917d4c4421abc24cec18])

		web-server: compress responses (gzip/deflate) (8e8a2d44 [http://github.com/karma-runner/karma/commit/8e8a2d4418e7abef7dca42e58bf09c95b07687b2])

Breaking Changes

		runnerPort is merged with port
if you are using karma run with custom --runer-port, please change that to --port.
(ca4c4d88 [http://github.com/karma-runner/karma/commit/ca4c4d88b9a4a1992f7975aa32b37a008394847b])

[bookmark: v0.9.5]

v0.9.5 (2013-07-21)

Bug Fixes

		detect a full page reload, show error and recover (15d80f47 [http://github.com/karma-runner/karma/commit/15d80f47a227839e9b0d54aeddf49b9aa9afe8aa], closes #27 [http://github.com/karma-runner/karma/issues/27])

		better serialization in dump/console.log (fd46365d [http://github.com/karma-runner/karma/commit/fd46365d1fd3a9bea15c04abeb7df33a3a2d96a4], closes #640 [http://github.com/karma-runner/karma/issues/640])

		browsers_change event always has collection as arg (42bf787f [http://github.com/karma-runner/karma/commit/42bf787f87304e6be23dd3dac893b3c3f77d6764])

		init: generate config with the new syntax (6b27fee5 [http://github.com/karma-runner/karma/commit/6b27fee5a43a7d02e706355f62fe5105b4966c43])

		reporter: prevent throwing exception when null is sent to formatter (3b49c385 [http://github.com/karma-runner/karma/commit/3b49c385fcc8ef96e72be390df058bd278b40c17])

		watcher: ignore fs.stat errors (74ccc9a8 [http://github.com/karma-runner/karma/commit/74ccc9a8017f869bd7bbbf8831415964110a7073])

Features

		capture window.alert (284c4f5c [http://github.com/karma-runner/karma/commit/284c4f5c9c481759fe564627a00d72ba5c54e433])

		ship html2js preprocessor as a default plugin (37ecf416 [http://github.com/karma-runner/karma/commit/37ecf41600a9b255ab3d57327cc83d64751642f5])

		fail if zero tests executed (5670415e [http://github.com/karma-runner/karma/commit/5670415ecdc5e54902b479c78df5c3c422855e5c], closes #468 [http://github.com/karma-runner/karma/issues/468])

		launcher: normalize quoted paths (f2155e0c [http://github.com/karma-runner/karma/commit/f2155e0c3305538c0fb95791e56f34743977a865], closes #491 [http://github.com/karma-runner/karma/issues/491])

		web-server: serve css files (4e305545 [http://github.com/karma-runner/karma/commit/4e305545ddf2726c1fe65c46efd5e7c1045ac041], closes #431 [http://github.com/karma-runner/karma/issues/431])

[bookmark: v0.9.4]

v0.9.4 (2013-06-28)

Bug Fixes

		config:
		make the config changes backwards compatible (593ad853 [https://github.com/karma-runner/karma/commit/593ad853c330a7856f2112db2bfb288f67948fa6])

		better errors if file invalid or does not exist (74b533be [https://github.com/karma-runner/karma/commit/74b533beb34c115f5080d412a03573d269d540aa])

		allow parsing the config multiple times (78a7094e [https://github.com/karma-runner/karma/commit/78a7094e0f262c431e904f99cf356be53eee3510])

		launcher: better errors when loading launchers (504e848c [https://github.com/karma-runner/karma/commit/504e848cf66b065380fa72e07f5337ae2d6e35b5])

		preprocessor:
		do not show duplicate warnings (47c641f7 [https://github.com/karma-runner/karma/commit/47c641f7560d28e0d9eac7ae010566d296d5b628])

		better errors when loading preprocessors (3390a00b [https://github.com/karma-runner/karma/commit/3390a00b49c513a6da60f48044462118436130f8])

		reporter: better errors when loading reporters (c645c060 [https://github.com/karma-runner/karma/commit/c645c060c4f381902c2005eefe5b3a7bfa63cdcc])

Features

		config: pass the config object rather than a wrapper (d2a3c854 [https://github.com/karma-runner/karma/commit/d2a3c8546dc4b10bb9194047a1c11963639f3730])

Breaking Changes

		please update your karma.conf.js as follows (d2a3c854 [https://github.com/karma-runner/karma/commit/d2a3c8546dc4b10bb9194047a1c11963639f3730]):

// before:
module.exports = function(karma) {
 karma.configure({port: 123});
 karma.defineLauncher('x', 'Chrome', {
 flags: ['--disable-web-security']
 });
 karma.definePreprocessor('y', 'coffee', {
 bare: false
 });
 karma.defineReporter('z', 'coverage', {
 type: 'html'
 });
};

// after:
module.exports = function(config) {
 config.set({
 port: 123,
 customLaunchers: {
 'x': {
 base: 'Chrome',
 flags: ['--disable-web-security']
 }
 },
 customPreprocessors: {
 'y': {
 base: 'coffee',
 bare: false
 }
 },
 customReporters: {
 'z': {
 base: 'coverage',
 type: 'html'
 }
 }
 });
};

[bookmark: v0.9.3]

v0.9.3 (2013-06-16)

Bug Fixes

		capturing console.log on IE (fa4b686a [https://github.com/karma-runner/karma/commit/fa4b686a81ad826f256a4ca63c772af7ad6e411e], closes #329 [https://github.com/karma-runner/karma/issues/329])

		config: fix the warning when using old syntax (5e55d797 [https://github.com/karma-runner/karma/commit/5e55d797f7544a45c3042e301bbf71e8b830daf3])

		init: generate correct indentation (5fc17957 [https://github.com/karma-runner/karma/commit/5fc17957be761c06f6ae120c5d3ba800dba8d3a4])

		launcher:
		ignore exit code when killing/timeouting (1029bf2d [https://github.com/karma-runner/karma/commit/1029bf2d7d3d22986aa41439d2ce4115770f4dbd], closes #444 [https://github.com/karma-runner/karma/issues/444])

		handle ENOENT error, do not retry (7d790b29 [https://github.com/karma-runner/karma/commit/7d790b29c09c1f3784fe648b7d5ed16add10b4ca], closes #452 [https://github.com/karma-runner/karma/issues/452])

		logger: configure the logger as soon as possible (0607d67c [https://github.com/karma-runner/karma/commit/0607d67c15eab58ce83cce14ada70a1e2a9f17e9])

		preprocessor: use graceful-fs to prevent EACCESS errors (279bcab5 [https://github.com/karma-runner/karma/commit/279bcab54019a0f0af72c7c08017cf4cdefebe46], closes #566 [https://github.com/karma-runner/karma/issues/566])

		watcher: watch files that match watched directory (39401175 [https://github.com/karma-runner/karma/commit/394011753b918b8db807f31da9f5c316e296cf32], closes #521 [https://github.com/karma-runner/karma/issues/521])

Features

		simplify loading plugins using patterns like karma-* (405a5a62 [https://github.com/karma-runner/karma/commit/405a5a62d2ecc47a46b2ff069bfeb624f0b06982])

		client: capture all console.* log methods (683e6dcb [https://github.com/karma-runner/karma/commit/683e6dcb9132de3caee39c809b5b58efe8236564])

		config:
		make socket.io transports configurable (bbd5eb86 [https://github.com/karma-runner/karma/commit/bbd5eb8688b2bc1e3dd04910aa68fd19c5036b31])

		allow configurable launchers, preprocessors, reporters (76bdac16 [https://github.com/karma-runner/karma/commit/76bdac1681f012749648f5a76b4a9d96c7a5ef20], closes #317 [https://github.com/karma-runner/karma/issues/317])

		add warning if old constants are used (7233c5fb [https://github.com/karma-runner/karma/commit/7233c5fb9e1c105032000bbcb9afaddf72ccbc97])

		require config as a regular module (a37fd6f7 [https://github.com/karma-runner/karma/commit/a37fd6f7d28036b8da5fe98634cf711cebafc1ff], closes #304 [https://github.com/karma-runner/karma/issues/304])

		helper: improve useragent detection (eb58768e [https://github.com/karma-runner/karma/commit/eb58768e32baf13b45d9649743d7ef45798ffb27])

		init:
		generate coffee config files (d2173717 [https://github.com/karma-runner/karma/commit/d21737176c1d866a11249d626a75440b398171ce])

		improve the questions a bit (baecadb2 [https://github.com/karma-runner/karma/commit/baecadb2f1a8f31c233edacafb1f8a4b736ea243])

		proxy: add https proxy support (be878dc5 [https://github.com/karma-runner/karma/commit/be878dc545a0dd266d5686387c976ce70f1a095c])

Breaking Changes

		Update your karma.conf.js to export a config function (a37fd6f7 [https://github.com/karma-runner/karma/commit/a37fd6f7d28036b8da5fe98634cf711cebafc1ff]):

module.exports = function(karma) {
 karma.configure({
 autoWatch: true,
 // ...
 });
};

[bookmark: v0.9.2]

v0.9.2 (2013-04-16)

Bug Fixes

		better error reporting when loading plugins (d9078a8e [https://github.com/karma-runner/karma/commit/d9078a8eca41df15f26b53e2375f722a48d0992d])

		config:
		Separate ENOENT error handler from others (e49dabe7 [https://github.com/karma-runner/karma/commit/e49dabe783d6cfb2ee97b70ac01953e82f70f831])

		ensure basePath is always resolved (2e5c5aaa [https://github.com/karma-runner/karma/commit/2e5c5aaaddc4ad4e1ee9c8fa0388d3916827f403])

Features

		allow inlined plugins (3034bcf9 [https://github.com/karma-runner/karma/commit/3034bcf9b074b693afab9c62856346d6f305d0c0])

		debug: show skipped specs and failure details in the console (42ab936b [https://github.com/karma-runner/karma/commit/42ab936b254983faa8ab0ee76a6278fb3aff7fa2])

[bookmark: v0.9.1]

v0.9.1 (2013-04-04)

Bug Fixes

		init: to not give false warning about missing requirejs (562607a1 [https://github.com/karma-runner/karma/commit/562607a16221b256c6e92ad2029154aac88eec8d])

Features

		ship coffee-preprocessor and requirejs as default plugins (f34e30db [https://github.com/karma-runner/karma/commit/f34e30db4d25d484a30d12e3cb1c41069c0b263a])

[bookmark: v0.9.0]

v0.9.0 (2013-04-03)

Bug Fixes

		global error handler should propagate errors (dec0c196 [https://github.com/karma-runner/karma/commit/dec0c19651c251dcbc16c44a57775bcb37f78cf1], closes #368 [https://github.com/karma-runner/karma/issues/368])

		config:
		Check if configFilePath is a string. Fixes #447. (98724b6e [https://github.com/karma-runner/karma/commit/98724b6ef5a6ba60d487e7b774056832c6ca9d8c])

		do not change urlRoot even if proxied (8c138b50 [https://github.com/karma-runner/karma/commit/8c138b504046a3aeb230b71e1049aa60ee46905d])

		coverage: always send a result object (62c3c679 [https://github.com/karma-runner/karma/commit/62c3c6790659f8f82f8a2ca5646aa424eeb28842], closes #365 [https://github.com/karma-runner/karma/issues/365])

		init:
		generate plugins and frameworks config (17798d55 [https://github.com/karma-runner/karma/commit/17798d55988d61070f2b9f59574217208f2b497e])

		fix for failing “testacular init” on Windows (0b5b3853 [https://github.com/karma-runner/karma/commit/0b5b385383f13ac8f29fa6e591a8634eefa04ab7])

		preprocessor: resolve relative patterns to basePath (c608a9e5 [https://github.com/karma-runner/karma/commit/c608a9e5a34a49da2971add8759a9422b74fa6fd], closes #382 [https://github.com/karma-runner/karma/issues/382])

		runner: send exit code as string (ca75aafd [https://github.com/karma-runner/karma/commit/ca75aafdf6b7b425ee151c2ae4ede37933befe1f], closes #403 [https://github.com/karma-runner/karma/issues/403])

Features

		display the version when starting (39617395 [https://github.com/karma-runner/karma/commit/396173952addce3f6e904310686a42b102aa53f8], closes #391 [https://github.com/karma-runner/karma/issues/391])

		allow multiple preprocessors (1d17c1aa [https://github.com/karma-runner/karma/commit/1d17c1aacf607d6c4269f05df97d024bc9ca994e])

		allow plugins (125ab4f8 [https://github.com/karma-runner/karma/commit/125ab4f88a7cf49fd7df32264a9847847e2326ca])

		config:
		always ignore the config file itself (103bc0f8 [https://github.com/karma-runner/karma/commit/103bc0f878a8870770c8a8afce0a3fbf8a516ea7])

		normalize string preprocessors into an array (4dde1608 [https://github.com/karma-runner/karma/commit/4dde16087d0a704a47528d44e23ace0c536d8c72])

		web-server: allow custom file handlers and mime types (2df88287 [https://github.com/karma-runner/karma/commit/2df8828742041fd09c0b45d6a62ebd7552116589])

Breaking Changes

		reporters, launchers, preprocessors, adapters are separate plugins now, in order to use them, you need to install the npm package (probably add it as a devDependency into your package.json) and load in the karma.conf.js with plugins = ['karma-jasmine', ...]. Karma ships with couple of default plugins (karma-jasmine, karma-chrome-launcher, karma-phantomjs-launcher).

		frameworks (such as jasmine, mocha, qunit) are configured using frameworks = ['jasmine']; instead of prepending JASMINE_ADAPTER into files.

[bookmark: v0.8.0]

v0.8.0 (2013-03-18)

Breaking Changes

		rename the project to “Karma”:

		whenever you call the “testacular” binary, change it to “karma”, eg. testacular start becomes karma start.

		if you rely on default name of the config file, change it to karma.conf.js.

		if you access __testacular__ object in the client code, change it to __karma__, eg. window.__testacular__.files becomes window.__karma__.files. (026a20f7 [https://github.com/karma-runner/karma/commit/026a20f7b467eb3b39c68ed509acc06e5dad58e6])

[bookmark: v0.6.1]

v0.6.1 (2013-03-18)

Bug Fixes

		config: do not change urlRoot even if proxied (1be1ae1d [https://github.com/karma-runner/karma/commit/1be1ae1dc7ff7314f4ac2854815cb39d31362f14])

		coverage: always send a result object (2d210aa6 [https://github.com/karma-runner/karma/commit/2d210aa6697991f2eba05de58a696c5210485c88], closes #365 [https://github.com/karma-runner/karma/issues/365])

		reporter.teamcity: report spec names and proper browser name (c8f6f5ea [https://github.com/karma-runner/karma/commit/c8f6f5ea0c5c40d37b511d51b49bd22c9da5ea86])

[bookmark: v0.6.0]

v0.6.0 (2013-02-22)

[bookmark: v0.5.11]

v0.5.11 (2013-02-21)

Bug Fixes

		adapter.requirejs: do not configure baseUrl automatically (63f3f409 [https://github.com/karma-runner/karma/commit/63f3f409ae85a5137396a7ed6537bedfe4437cb3], closes #291 [https://github.com/karma-runner/karma/issues/291])

		init: add missing browsers (Opera, IE) (f39e5645 [https://github.com/karma-runner/karma/commit/f39e5645ec561c2681d907f7c1611f01911ee8fd])

		reporter.junit: Add browser log output to JUnit.xml (f108799a [https://github.com/karma-runner/karma/commit/f108799a4d8fd95b8c0250ee83c23ada25d026b9], closes #302 [https://github.com/karma-runner/karma/issues/302])

Features

		add Teamcity reporter (03e700ae [https://github.com/karma-runner/karma/commit/03e700ae2234ca7ddb8f9235343e3b0c80868bbd])

		adapter.jasmine: remove only last failed specs anti-feature (435bf72c [https://github.com/karma-runner/karma/commit/435bf72cb12112462940c8114fbaa19f9de38531], closes #148 [https://github.com/karma-runner/karma/issues/148])

		config: allow empty config file when called programmatically (f3d77424 [https://github.com/karma-runner/karma/commit/f3d77424009f621e1fb9d60eeec7f052ebb3c585], closes #358 [https://github.com/karma-runner/karma/issues/358])

[bookmark: v0.5.10]

v0.5.10 (2013-02-14)

Bug Fixes

		init: fix the logger configuration (481dc3fd [https://github.com/karma-runner/karma/commit/481dc3fd75f45a0efa8aabdb1c71e8234b9e8a06], closes #340 [https://github.com/karma-runner/karma/issues/340])

		proxy: fix crashing proxy when browser hangs connection (1c78a01a [https://github.com/karma-runner/karma/commit/1c78a01a19411accb86f0bde9e040e5088752575])

Features

		set urlRoot to /karma/ when proxying the root (8b4fd64d [https://github.com/karma-runner/karma/commit/8b4fd64df6b7d07b5479e43dcd8cd2aa5e1efc9c])

		adapter.requirejs: normalize paths before appending timestamp (94889e7d [https://github.com/karma-runner/karma/commit/94889e7d2de701c67a2612e3fc6a51bfae891d36])

		update dependencies to the latest (93f96278 [https://github.com/karma-runner/karma/commit/93f9627817f2d5d9446de9935930ca85cfa7df7f], e34d8834 [https://github.com/karma-runner/karma/commit/e34d8834d69ec4e022fcd6e1be4055add96d693c])

[bookmark: v0.5.9]

v0.5.9 (2013-02-06)

Bug Fixes

		adapter.requirejs: show error if no timestamp defined for a file (59dbdbd1 [https://github.com/karma-runner/karma/commit/59dbdbd136baa87467b9b9a4cb6ce226ae87bbef])

		init: fix logger configuration (557922d7 [https://github.com/karma-runner/karma/commit/557922d71941e0929f9cdc0d3794424a1f27b311])

		reporter: remove newline from base reporter browser dump (dfae18b6 [https://github.com/karma-runner/karma/commit/dfae18b63b413a1e6240d00b9dc0521ac0386ec5], closes #297 [https://github.com/karma-runner/karma/issues/297])

		reporter.dots: only add newline to message when needed (dbe1155c [https://github.com/karma-runner/karma/commit/dbe1155cb57fc4caa792f83f45288238db0fc7e0]

Features

		add “debug” button to easily open debugging window (da85aab9 [https://github.com/karma-runner/karma/commit/da85aab927edd1614e4e05b136dee834344aa3cb])

		config: support running on a custom hostname (b8c5fe85 [https://github.com/karma-runner/karma/commit/b8c5fe8533b13fd59cbf48972d2021069a84ae5b])

		reporter.junit: add a ‘skipped’ tag for skipped testcases (6286406e [https://github.com/karma-runner/karma/commit/6286406e0a36a61125ea16d6f49be07030164cb0], closes #321 [https://github.com/karma-runner/karma/issues/321])

v0.5.8

		Fix #283

		Suppress global leak for istanbul

		Fix growl reporter to work with testacular run

		Upgrade jasmine to 1.3.1

		Fix file sorting

		Fix #265

		Support for more mime-types on served static files

		Fix opening Chrome on Windows

		Upgrade growly to 1.1.0

v0.5.7

		Support code coverage for qunit.

		Rename port-runner option in cli to runner-port

		Fix proxy handler (when no proxy defined)

		Fix #65

v0.5.6

		Growl reporter !

		Batch changes (eg. git checkout causes only single run now)

		Handle uncaught errors and disconnect all browsers

		Global binary prefers local versions

v0.5.5

		Add QUnit adapter

		Report console.log()

v0.5.4

		Fix PhantomJS launcher

		Fix html2js preprocessor

		NG scenario adapter: show html output

v0.5.3

		Add code coverage !

v0.5.2

		Init: ask about using Require.js

v0.5.1

		Support for Require.js

		Fix testacular init basePath

v0.5.0

		Add preprocessor for LiveScript

		Fix JUnit reporter

		Enable process global in config file

		Add OS name in the browser name

		NG scenario adapter: hide other outputs to make it faster

		Allow config to be written in CoffeeScript

		Allow espaced characters in served urls

v0.4.0 (stable)

v0.3.12

		Allow calling run() pragmatically from JS

v0.3.11

		Fix runner to wait for stdout, stderr

		Make routing proxy always changeOrigin

v0.3.10

		Fix angular-scenario adapter + junit reporter

		Use flash socket if web socket not available

v0.3.9

		Retry starting a browser if it does not capture

		Update mocha to 1.5.0

		Handle mocha’s xit

v0.3.8

		Kill browsers that don’t capture in captureTimeout ms

		Abort build if any browser fails to capture

		Allow multiple profiles of Firefox

v0.3.7

		Remove Travis hack

		Fix Safari launcher

v0.3.6

		Remove custom launcher (constructor)

		Launcher - use random id to allow multiple instances of the same browser

		Fix Firefox launcher (creating profile)

		Fix killing browsers on Linux and Windows

v0.3.5

		Fix opera launcher to create new prefs with disabling all pop-ups

v0.3.4

		Change “reporter” config to “reporters”

		Allow multiple reporters

		Fix angular-scenario adapter to report proper description

		Add JUnit xml reporter

		Fix loading files from multiple drives on Windows

		Fix angular-scenario adapter to report total number of tests

v0.3.3

		Allow proxying files, not only directories

v0.3.2

		Disable autoWatch if singleRun

		Add custom script browser launcher

		Fix cleaning temp folders

v0.3.1

		Run tests on start (if watching enabled)

		Add launcher for IE8, IE9

v0.3.0

		Change browser binaries on linux to relative

		Add report-slower-than to CLI options

		Fix PhantomJS binary on Travis CI

v0.2.0 (stable)

v0.1.3

		Launch Canary with crankshaft disabled

		Make the captured page nicer

v0.1.2

		Fix jasmine memory leaks

		support __filename and __dirname in config files

v0.1.1

		Report slow tests (add reportSlowerThan config option)

		Report time in minutes if it’s over 60 seconds

		Mocha adapter: add ability to fail during beforeEach/afterEach hooks

		Mocha adapter: add dump()

		NG scenario adapter: failure includes step name

		Redirect /urlRoot to /urlRoot/

		Fix serving with urlRoot

v0.1.0

		Adapter for AngularJS scenario runner

		Allow serving Testacular from a subpath

		Fix race condition in testacular run

		Make testacular one binary (remove testacular-run, use testacular run)

		Add support for proxies

		Init script for generating config files (testacular init)

		Start Firefox without custom profile if it fails

		Preserve order of watched paths for easier debugging

		Change default port to 9876

		Require node v0.8.4+

v0.0.17

		Fix race condition in manually triggered run

		Fix autoWatch config

v0.0.16

		Mocha adapter

		Fix watching/resolving on Windows

		Allow glob patterns

		Watch new files

		Watch removed files

		Remove unused config (autoWatchInterval)

v0.0.15

		Remove absolute paths from urls (fixes Windows issue with C:\)

		Add browser launcher for PhantomJS

		Fix some more windows issues

v0.0.14

		Allow require() inside config file

		Allow custom browser launcher

		Add browser launcher for Opera, Safari

		Ignore signals on windows (not supported yet)

v0.0.13

		Single run mode (capture browsers, run tests, exit)

		Start browser automatically (chrome, canary, firefox)

		Allow loading external files (urls)

v0.0.12

		Allow console in config

		Warning if pattern does not match any file

v0.0.11

		Add timing (total / net - per specs)

		Dots reporter - wrap at 80

v0.0.10

		Add DOTS reporter

		Add no-colors option for reporters

		Fix web server to expose only specified files

v0.0.9

		Proper exit code for runner

		Dynamic port asigning (if port already in use)

		Add log-leve, log-colors cli arguments + better –help

		Fix some IE errors (indexOf, forEach fallbacks)

v0.0.8

		Allow overriding configuration by cli arguments (+ –version, –help)

		Persuade IE8 to not cache context.html

		Exit runner if no captured browser

		Fix delayed execution (streaming to runner)

		Complete run if browser disconnects

		Ignore results from previous run (after server reconnecting)

		Server disconnects - cancel execution, clear browser info

v0.0.7

		Rename to Testacular

v0.0.6

		Better debug mode (no caching, no timestamps)

		Make dump() a bit better

		Disconnect browsers on SIGTERM (kill, killall default)

v0.0.5

		Fix memory (some :-D) leaks

		Add dump support

		Add runner.html

v0.0.4

		Progress bar reporting

		Improve error formatting

		Add Jasmine lib (with iit, ddescribe)

		Reconnect client each 2sec, remove exponential growing

v0.0.3

		Jasmine adapter: ignore last failed filter in exclusive mode

		Jasmine adapter: add build (no global space pollution)

0.0.2

		Run only last failed tests (jasmine adapter)

0.0.1

		Initial version with only very basic features

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/uid-safe/node_modules/mz/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

MZ - Modernize node.js

![NPM version][npm-image] [https://npmjs.org/package/mz]
![Build status][travis-image] [https://travis-ci.org/normalize/mz]
![Test coverage][coveralls-image] [https://coveralls.io/r/normalize/mz?branch=master]
![Dependency Status][david-image] [https://david-dm.org/normalize/mz]
![License][license-image]
![Downloads][downloads-image] [https://npmjs.org/package/mz]
![Gittip][gittip-image] [https://www.gittip.com/jonathanong/]

Modernize node.js to current ECMAScript specifications!
node.js will not update their API to ES6+ for a while [https://github.com/joyent/node/issues/7549].
This library is a wrapper for various aspects of node.js’ API.

Installation and Usage

Set mz as a dependency and install it.

npm i mz

Then prefix the relevant require()s with mz/:

var fs = require('mz/fs')

fs.exists(__filename).then(function (exists) {
 if (exists) // do something
})

Personally, I use this with generator-based control flow libraries such as co [https://github.com/visionmedia/co] so I don’t need to use implementation-specific wrappers like co-fs [https://github.com/visionmedia/co-fs].

var co = require('co')
var fs = require('mz/fs')

co(function* () {
 if (yield fs.exists(__filename)) // do something
})()

Promisification

Many node methods are converted into promises.
Any properties that are deprecated or aren’t asynchronous will simply be proxied.
The modules wrapped are:

		child_process

		crypto

		dns

		fs

		zlib

var exec = require('mz/child_process').exec

exec('node --version').then(function (stdout) {
 console.log(stdout)
})

Promise Engine

If you’ve installed bluebird [https://github.com/petkaantonov/bluebird],
bluebird [https://github.com/petkaantonov/bluebird] will be used.
mz does not install bluebird [https://github.com/petkaantonov/bluebird] for you.

Otherwise, if you’re using a node that has native v8 Promises (v0.11.13+),
then that will be used.

Otherwise, this library will crash the process and exit,
so you might as well install bluebird [https://github.com/petkaantonov/bluebird] as a dependency!

FAQ

Can I use this in production?

If you do, you should probably install bluebird [https://github.com/petkaantonov/bluebird] as
native v8 promises are still pretty raw.

Will this make my app faster?

Nope, probably slower actually.

Can I add more features?

Sure.
Open an issue.

Currently, the plans are to eventually support:

		ECMAScript7 Streams

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/monocle/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [https://travis-ci.org/samccone/monocle]

Monocle – a tool for watching things

[image: logo] [https://raw.github.com/samccone/monocle/master/logo.png]

Have you ever wanted to watch a folder and all of its files/nested folders for changes. well now you can!

Installation

npm install monocle

Usage

Watch a directory:

var monocle = require('monocle')()
monocle.watchDirectory({
 root: <root directory>,
 fileFilter: <optional>,
 directoryFilter: <optional>,
 listener: fn(fs.stat+ object), //triggered on file change / addition
 complete: <fn> //file watching all set up
});

The listener will recive an object with the following

 name: <filename>,
 path: <filepath-relative>,
 fullPath: <filepath-absolute>,
 parentDir: <parentDir-relative>,
 fullParentDir: <parentDir-absolute>,
 stat: <see fs.stats>

fs.stats [http://nodejs.org/api/fs.html#fs_class_fs_stats]

When a new file is added to the directoy it triggers a file change and thus will be passed to your specified listener.

The two filters are passed through to readdirp. More documentation can be found here [https://github.com/thlorenz/readdirp#filters]

Watch a list of files:

Monocle.watchFiles({
 files: [], //path of file(s)
 listener: <fn(fs.stat+ object)>, //triggered on file / addition
 complete: <fn> //file watching all set up
});

Just watch path

Just an alias of watchFiles and watchDirectory so you don’t need to tell if that’s a file or a directory by yourself. Parameter passed to path can be a string or a array of string.

Monocle.watchPaths({
 path: [], //list of paths, or a string of path
 fileFilter: <optional>, // `*.js` for example
 listener: <fn(fs.stat+ object)>, //triggered on file / addition
 complete: <fn> //file watching all set up
});

Force to use fs.watch

You can use the USE_FS_WATCH env variable set to true, to force this behavior regardless of platform.

Why not just use fs.watch ?

		file watching is really bad cross platforms in node

		you need to be smart when using fs.watch as compared to fs.watchFile

		Monocle takes care of this logic for you!

		windows systems use fs.watch

		osx and linux uses fs.watchFile

License

BSD

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

express-session

![NPM Version][npm-image] [https://npmjs.org/package/express-session]
![NPM Downloads][downloads-image] [https://npmjs.org/package/express-session]
![Build Status][travis-image] [https://travis-ci.org/expressjs/session]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/session?branch=master]
![Gratipay][gratipay-image] [https://gratipay.com/dougwilson/]

Installation

$ npm install express-session

API

var express = require('express')
var session = require('express-session')

var app = express()

app.use(session({secret: 'keyboard cat'}))

session(options)

Setup session store with the given options.

Session data is not saved in the cookie itself, just the session ID.

Options

		name - cookie name (formerly known as key). (default: 'connect.sid')

		store - session store instance.

		secret - session cookie is signed with this secret to prevent tampering.

		cookie - session cookie settings.
		(default: { path: '/', httpOnly: true, secure: false, maxAge: null })

		genid - function to call to generate a new session ID. (default: uses uid2 library)

		rolling - forces a cookie set on every response. This resets the expiration date. (default: false)

		resave - forces session to be saved even when unmodified. (default: true)

		proxy - trust the reverse proxy when setting secure cookies (via “x-forwarded-proto” header). When set to true, the “x-forwarded-proto” header will be used. When set to false, all headers are ignored. When left unset, will use the “trust proxy” setting from express. (default: undefined)

		saveUninitialized - forces a session that is “uninitialized” to be saved to the store. A session is uninitialized when it is new but not modified. This is useful for implementing login sessions, reducing server storage usage, or complying with laws that require permission before setting a cookie. (default: true)

		unset - controls result of unsetting req.session (through delete, setting to null, etc.). This can be “keep” to keep the session in the store but ignore modifications or “destroy” to destroy the stored session. (default: 'keep')

options.genid

Generate a custom session ID for new sessions. Provide a function that returns a string that will be used as a session ID. The function is given req as the first argument if you want to use some value attached to req when generating the ID.

NOTE be careful you generate unique IDs so your sessions do not conflict.

app.use(session({
 genid: function(req) {
 return genuuid(); // use UUIDs for session IDs
 },
 secret: 'keyboard cat'
}))

Cookie options

Please note that secure: true is a recommended option. However, it requires an https-enabled website, i.e., HTTPS is necessary for secure cookies.
If secure is set, and you access your site over HTTP, the cookie will not be set. If you have your node.js behind a proxy and are using secure: true, you need to set “trust proxy” in express:

var app = express()
app.set('trust proxy', 1) // trust first proxy
app.use(session({
 secret: 'keyboard cat',
 cookie: { secure: true }
}))

For using secure cookies in production, but allowing for testing in development, the following is an example of enabling this setup based on NODE_ENV in express:

var app = express()
var sess = {
 secret: 'keyboard cat',
 cookie: {}
}

if (app.get('env') === 'production') {
 app.set('trust proxy', 1) // trust first proxy
 sess.cookie.secure = true // serve secure cookies
}

app.use(session(sess))

By default cookie.maxAge is null, meaning no “expires” parameter is set
so the cookie becomes a browser-session cookie. When the user closes the
browser the cookie (and session) will be removed.

req.session

To store or access session data, simply use the request property req.session,
which is (generally) serialized as JSON by the store, so nested objects
are typically fine. For example below is a user-specific view counter:

app.use(session({ secret: 'keyboard cat', cookie: { maxAge: 60000 }}))

app.use(function(req, res, next) {
 var sess = req.session
 if (sess.views) {
 sess.views++
 res.setHeader('Content-Type', 'text/html')
 res.write('<p>views: ' + sess.views + '</p>')
 res.write('<p>expires in: ' + (sess.cookie.maxAge / 1000) + 's</p>')
 res.end()
 } else {
 sess.views = 1
 res.end('welcome to the session demo. refresh!')
 }
})

Session.regenerate()

To regenerate the session simply invoke the method, once complete
a new SID and Session instance will be initialized at req.session.

req.session.regenerate(function(err) {
 // will have a new session here
})

Session.destroy()

Destroys the session, removing req.session, will be re-generated next request.

req.session.destroy(function(err) {
 // cannot access session here
})

Session.reload()

Reloads the session data.

req.session.reload(function(err) {
 // session updated
})

Session.save()

req.session.save(function(err) {
 // session saved
})

Session.touch()

Updates the .maxAge property. Typically this is
not necessary to call, as the session middleware does this for you.

req.session.cookie

Each session has a unique cookie object accompany it. This allows
you to alter the session cookie per visitor. For example we can
set req.session.cookie.expires to false to enable the cookie
to remain for only the duration of the user-agent.

Cookie.maxAge

Alternatively req.session.cookie.maxAge will return the time
remaining in milliseconds, which we may also re-assign a new value
to adjust the .expires property appropriately. The following
are essentially equivalent

var hour = 3600000
req.session.cookie.expires = new Date(Date.now() + hour)
req.session.cookie.maxAge = hour

For example when maxAge is set to 60000 (one minute), and 30 seconds
has elapsed it will return 30000 until the current request has completed,
at which time req.session.touch() is called to reset req.session.maxAge
to its original value.

req.session.cookie.maxAge // => 30000

Session Store Implementation

Every session store must implement the following methods

		.get(sid, callback)

		.set(sid, session, callback)

		.destroy(sid, callback)

Recommended methods include, but are not limited to:

		.length(callback)

		.clear(callback)

For an example implementation view the connect-redis [http://github.com/visionmedia/connect-redis] repo.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/commander/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Commander.js

The complete solution for node.js [http://nodejs.org] command-line interfaces, inspired by Ruby’s commander [https://github.com/visionmedia/commander].

[image: Build Status] [http://travis-ci.org/visionmedia/commander.js]

Installation

$ npm install commander

Option parsing

Options with commander are defined with the .option() method, also serving as documentation for the options. The example below parses args and options from process.argv, leaving remaining args as the program.args array which were not consumed by options.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
 .version('0.0.1')
 .option('-p, --peppers', 'Add peppers')
 .option('-P, --pineapple', 'Add pineapple')
 .option('-b, --bbq', 'Add bbq sauce')
 .option('-c, --cheese [type]', 'Add the specified type of cheese [marble]', 'marble')
 .parse(process.argv);

console.log('you ordered a pizza with:');
if (program.peppers) console.log(' - peppers');
if (program.pineapple) console.log(' - pineapple');
if (program.bbq) console.log(' - bbq');
console.log(' - %s cheese', program.cheese);

Short flags may be passed as a single arg, for example -abc is equivalent to -a -b -c. Multi-word options such as “–template-engine” are camel-cased, becoming program.templateEngine etc.

Automated –help

The help information is auto-generated based on the information commander already knows about your program, so the following --help info is for free:

 $./examples/pizza --help

 Usage: pizza [options]

 Options:

 -V, --version output the version number
 -p, --peppers Add peppers
 -P, --pineapple Add pineapple
 -b, --bbq Add bbq sauce
 -c, --cheese <type> Add the specified type of cheese [marble]
 -h, --help output usage information

Coercion

function range(val) {
 return val.split('..').map(Number);
}

function list(val) {
 return val.split(',');
}

program
 .version('0.0.1')
 .usage('[options] <file ...>')
 .option('-i, --integer <n>', 'An integer argument', parseInt)
 .option('-f, --float <n>', 'A float argument', parseFloat)
 .option('-r, --range <a>..', 'A range', range)
 .option('-l, --list <items>', 'A list', list)
 .option('-o, --optional [value]', 'An optional value')
 .parse(process.argv);

console.log(' int: %j', program.integer);
console.log(' float: %j', program.float);
console.log(' optional: %j', program.optional);
program.range = program.range || [];
console.log(' range: %j..%j', program.range[0], program.range[1]);
console.log(' list: %j', program.list);
console.log(' args: %j', program.args);

Custom help

You can display arbitrary -h, --help information
by listening for “–help”. Commander will automatically
exit once you are done so that the remainder of your program
does not execute causing undesired behaviours, for example
in the following executable “stuff” will not output when
--help is used.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('../');

function list(val) {
 return val.split(',').map(Number);
}

program
 .version('0.0.1')
 .option('-f, --foo', 'enable some foo')
 .option('-b, --bar', 'enable some bar')
 .option('-B, --baz', 'enable some baz');

// must be before .parse() since
// node's emit() is immediate

program.on('--help', function(){
 console.log(' Examples:');
 console.log('');
 console.log(' $ custom-help --help');
 console.log(' $ custom-help -h');
 console.log('');
});

program.parse(process.argv);

console.log('stuff');

yielding the following help output:

Usage: custom-help [options]

Options:

 -h, --help output usage information
 -V, --version output the version number
 -f, --foo enable some foo
 -b, --bar enable some bar
 -B, --baz enable some baz

Examples:

 $ custom-help --help
 $ custom-help -h

.outputHelp()

Output help information without exiting.

.help()

Output help information and exit immediately.

Links

		API documentation [http://visionmedia.github.com/commander.js/]

		ascii tables [https://github.com/LearnBoost/cli-table]

		progress bars [https://github.com/visionmedia/node-progress]

		more progress bars [https://github.com/substack/node-multimeter]

		examples [https://github.com/visionmedia/commander.js/tree/master/examples]

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.9.1 / 2014-10-22

		Remove unnecessary empty write call
		Fixes Node.js 0.11.14 behavior change

		Helps work-around Node.js 0.10.1 zlib bug

1.9.0 / 2014-09-16

		deps: debug@~2.1.0
		Implement DEBUG_FD env variable support

		deps: depd@~1.0.0

1.8.2 / 2014-09-15

		Use crc instead of buffer-crc32 for speed

		deps: depd@0.4.5

1.8.1 / 2014-09-08

		Keep req.session.save non-enumerable

		Prevent session prototype methods from being overwritten

1.8.0 / 2014-09-07

		Do not resave already-saved session at end of request

		deps: cookie-signature@1.0.5

		deps: debug@~2.0.0

1.7.6 / 2014-08-18

		Fix exception on res.end(null) calls

1.7.5 / 2014-08-10

		Fix parsing original URL

		deps: on-headers@~1.0.0

		deps: parseurl@~1.3.0

1.7.4 / 2014-08-05

		Fix response end delay for non-chunked responses

1.7.3 / 2014-08-05

		Fix res.end patch to call correct upstream res.write

1.7.2 / 2014-07-27

		deps: depd@0.4.4
		Work-around v8 generating empty stack traces

1.7.1 / 2014-07-26

		deps: depd@0.4.3
		Fix exception when global Error.stackTraceLimit is too low

1.7.0 / 2014-07-22

		Improve session-ending error handling
		Errors are passed to next(err) instead of console.error

		deps: debug@1.0.4

		deps: depd@0.4.2
		Add TRACE_DEPRECATION environment variable

		Remove non-standard grey color from color output

		Support --no-deprecation argument

		Support --trace-deprecation argument

1.6.5 / 2014-07-11

		Do not require req.originalUrl

		deps: debug@1.0.3
		Add support for multiple wildcards in namespaces

1.6.4 / 2014-07-07

		Fix blank responses for stores with synchronous operations

1.6.3 / 2014-07-04

		Fix resave deprecation message

1.6.2 / 2014-07-04

		Fix confusing option deprecation messages

1.6.1 / 2014-06-28

		Fix saveUninitialized deprecation message

1.6.0 / 2014-06-28

		Add deprecation message to undefined resave option

		Add deprecation message to undefined saveUninitialized option

		Fix res.end patch to return correct value

		Fix res.end patch to handle multiple res.end calls

		Reject cookies with missing signatures

1.5.2 / 2014-06-26

		deps: cookie-signature@1.0.4
		fix for timing attacks

1.5.1 / 2014-06-21

		Move hard-to-track-down req.secret deprecation message

1.5.0 / 2014-06-19

		Debug name is now “express-session”

		Deprecate integration with cookie-parser middleware

		Deprecate looking for secret in req.secret

		Directly read cookies; cookie-parser no longer required

		Directly set cookies; res.cookie no longer required

		Generate session IDs with uid-safe, faster and even less collisions

1.4.0 / 2014-06-17

		Add genid option to generate custom session IDs

		Add saveUninitialized option to control saving uninitialized sessions

		Add unset option to control unsetting req.session

		Generate session IDs with rand-token by default; reduce collisions

		deps: buffer-crc32@0.2.3

1.3.1 / 2014-06-14

		Add description in package for npmjs.org listing

1.3.0 / 2014-06-14

		Integrate with express “trust proxy” by default

		deps: debug@1.0.2

1.2.1 / 2014-05-27

		Fix resave such that resave: true works

1.2.0 / 2014-05-19

		Add resave option to control saving unmodified sessions

1.1.0 / 2014-05-12

		Add name option; replacement for key option

		Use setImmediate in MemoryStore for node.js >= 0.10

1.0.4 / 2014-04-27

		deps: debug@0.8.1

1.0.3 / 2014-04-19

		Use res.cookie() instead of res.setHeader()

		deps: cookie@0.1.2

1.0.2 / 2014-02-23

		Add missing dependency to package.json

1.0.1 / 2014-02-15

		Add missing dependencies to package.json

1.0.0 / 2014-02-15

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/jsdom/node_modules/htmlparser2/node_modules/readable-stream/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/monocle/node_modules/readdirp/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/monocle/node_modules/readdirp/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

readdirp [image: Build Status] [http://travis-ci.org/thlorenz/readdirp]

Recursive version of fs.readdir [http://nodejs.org/docs/latest/api/fs.html#fs_fs_readdir_path_callback]. Exposes a stream api.

var readdirp = require('readdirp');
 , path = require('path')
 , es = require('event-stream');

// print out all JavaScript files along with their size

var stream = readdirp({ root: path.join(__dirname), fileFilter: '*.js' });
stream
 .on('warn', function (err) {
 console.error('non-fatal error', err);
 // optionally call stream.destroy() here in order to abort and cause 'close' to be emitted
 })
 .on('error', function (err) { console.error('fatal error', err); })
 .pipe(es.mapSync(function (entry) {
 return { path: entry.path, size: entry.stat.size };
 }))
 .pipe(es.stringify())
 .pipe(process.stdout);

Meant to be one of the recursive versions of fs [http://nodejs.org/docs/latest/api/fs.html] functions, e.g., like mkdirp [https://github.com/substack/node-mkdirp].

Table of Contents generated with DocToc [http://doctoc.herokuapp.com/]

		Installation

		API
		entry stream

		options

		entry info

		Filters

		Callback API
		allProcessed

		fileProcessed

		More Examples
		stream api

		stream api pipe

		grep

		using callback api

		tests

Installation

npm install readdirp

API

var entryStream = readdirp (options)

Reads given root recursively and returns a stream of entry infos.

entry stream

Behaves as follows:

		emit('data') passes an entry info whenever one is found

		emit('warn') passes a non-fatal Error that prevents a file/directory from being processed (i.e., if it is
inaccessible to the user)

		emit('error') passes a fatal Error which also ends the stream (i.e., when illegal options where passed)

		emit('end') called when all entries were found and no more will be emitted (i.e., we are done)

		emit('close') called when the stream is destroyed via stream.destroy() (which could be useful if you want to
manually abort even on a non fatal error) - at that point the stream is no longer readable and no more entries,
warning or errors are emitted

		the stream is paused initially in order to allow pipe and on handlers be connected before data or errors are
emitted

		the stream is resumed automatically during the next event loop

		to learn more about streams, consult the stream-handbook [https://github.com/substack/stream-handbook]

options

		root: path in which to start reading and recursing into subdirectories

		fileFilter: filter to include/exclude files found (see Filters for more)

		directoryFilter: filter to include/exclude directories found and to recurse into (see Filters for more)

		depth: depth at which to stop recursing even if more subdirectories are found

entry info

Has the following properties:

		parentDir : directory in which entry was found (relative to given root)

		fullParentDir : full path to parent directory

		name : name of the file/directory

		path : path to the file/directory (relative to given root)

		fullPath : full path to the file/directory found

		stat : built in stat object [http://nodejs.org/docs/v0.4.9/api/fs.html#fs.Stats]

		Example: (assuming root was /User/dev/readdirp)

 parentDir : 'test/bed/root_dir1',
 fullParentDir : '/User/dev/readdirp/test/bed/root_dir1',
 name : 'root_dir1_subdir1',
 path : 'test/bed/root_dir1/root_dir1_subdir1',
 fullPath : '/User/dev/readdirp/test/bed/root_dir1/root_dir1_subdir1',
 stat : [...]

Filters

There are three different ways to specify filters for files and directories respectively.

		function: a function that takes an entry info as a parameter and returns true to include or false to exclude the entry

		glob string: a string (e.g., *.js) which is matched using minimatch [https://github.com/isaacs/minimatch], so go there for more
information.

Globstars (**) are not supported since specifiying a recursive pattern for an already recursive function doesn’t make sense.

Negated globs (as explained in the minimatch documentation) are allowed, e.g., !*.txt matches everything but text files.

		array of glob strings: either need to be all inclusive or all exclusive (negated) patterns otherwise an error is thrown.

['*.json', '*.js'] includes all JavaScript and Json files.

`['!.git', '!node_modules']` includes all directories except the '.git' and 'node_modules'.

Directories that do not pass a filter will not be recursed into.

Callback API

Although the stream api is recommended, readdirp also exposes a callback based api.

readdirp (options, callback1 [, callback2])

If callback2 is given, callback1 functions as the fileProcessed callback, and callback2 as the allProcessed callback.

If only callback1 is given, it functions as the allProcessed callback.

allProcessed

		function with err and res parameters, e.g., function (err, res) { ... }

		err: array of errors that occurred during the operation, res may still be present, even if errors occurred

		res: collection of file/directory entry infos

fileProcessed

		function with entry info parameter e.g., function (entryInfo) { ... }

More Examples

on('error', ..), on('warn', ..) and on('end', ..) handling omitted for brevity

var readdirp = require('readdirp');

// Glob file filter
readdirp({ root: './test/bed', fileFilter: '*.js' })
 .on('data', function (entry) {
 // do something with each JavaScript file entry
 });

// Combined glob file filters
readdirp({ root: './test/bed', fileFilter: ['*.js', '*.json'] })
 .on('data', function (entry) {
 // do something with each JavaScript and Json file entry
 });

// Combined negated directory filters
readdirp({ root: './test/bed', directoryFilter: ['!.git', '!*modules'] })
 .on('data', function (entry) {
 // do something with each file entry found outside '.git' or any modules directory
 });

// Function directory filter
readdirp({ root: './test/bed', directoryFilter: function (di) { return di.name.length === 9; } })
 .on('data', function (entry) {
 // do something with each file entry found inside directories whose name has length 9
 });

// Limiting depth
readdirp({ root: './test/bed', depth: 1 })
 .on('data', function (entry) {
 // do something with each file entry found up to 1 subdirectory deep
 });

// callback api
readdirp(
 { root: '.' }
 , function(fileInfo) {
 // do something with file entry here
 }
 , function (err, res) {
 // all done, move on or do final step for all file entries here
 }
);

Try more examples by following instructions [https://github.com/thlorenz/readdirp/blob/master/examples/Readme.md]
on how to get going.

stream api

stream-api.js [https://github.com/thlorenz/readdirp/blob/master/examples/stream-api.js]

Demonstrates error and data handling by listening to events emitted from the readdirp stream.

stream api pipe

stream-api-pipe.js [https://github.com/thlorenz/readdirp/blob/master/examples/stream-api-pipe.js]

Demonstrates error handling by listening to events emitted from the readdirp stream and how to pipe the data stream into
another destination stream.

grep

grep.js [https://github.com/thlorenz/readdirp/blob/master/examples/grep.js]

Very naive implementation of grep, for demonstration purposes only.

using callback api

callback-api.js [https://github.com/thlorenz/readdirp/blob/master/examples/callback-api.js]

Shows how to pass callbacks in order to handle errors and/or data.

tests

The readdirp tests [https://github.com/thlorenz/readdirp/blob/master/test/readdirp.js] also will give you a good idea on
how things work.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/express-session/node_modules/crc/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

crc

[image: GitTip] [https://www.gittip.com/alexgorbatchev/]
[image: Dependency status] [https://david-dm.org/alexgorbatchev/node-crc]
[image: devDependency Status] [https://david-dm.org/alexgorbatchev/node-crc#info=devDependencies]
[image: Build Status] [https://travis-ci.org/alexgorbatchev/node-crc]

[image: NPM] [https://npmjs.org/package/node-crc]

Module for calculating Cyclic Redundancy Check (CRC).

Features

		Version 3 is 3-4 times faster than version 2.

		Pure JavaScript implementation, no dependencies.

		Provides CRC Tables for optimized calculations.

		Provides support for the following CRC algorithms:
		CRC1 crc.crc1(…)

		CRC8 crc.crc8(…)

		CRC8 1-Wire crc.crc81wire(…)

		CRC16 crc.crc16(…)

		CRC16 CCITT crc.crc16ccitt(…)

		CRC16 Modbus crc.crc16modbus(…)

		CRC24 crc.crc24(…)

		CRC32 crc.crc32(…)

Installation

npm install crc

Running tests

$ npm install
$ npm test

Usage Example

Calculate a CRC32:

var crc = require('crc');

crc.crc32('hello').toString(16);
=> "3610a686"

Calculate a CRC32 of a file:

crc.crc32(fs.readFileSync('README.md', 'utf8')).toString(16);
=> "127ad531"

Or using a Buffer:

crc.crc32(fs.readFileSync('README.md')).toString(16);
=> "127ad531"

Incrementally calculate a CRC32:

value = crc32('one');
value = crc32('two', value);
value = crc32('three', value);
value.toString(16);
=> "09e1c092"

Thanks!

pycrc [http://www.tty1.net/pycrc/] library is which the source of all of the CRC tables.

License

The MIT License (MIT)

Copyright (c) 2014 Alex Gorbatchev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/jade/node_modules/monocle/node_modules/readdirp/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/which/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 The “which” util from npm’s guts.

Finds the first instance of a specified executable in the PATH
environment variable. Does not cache the results, so hash -r is not
needed when the PATH changes.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/node_modules/accepts/node_modules/mime-types/node_modules/mime-db/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-db

![NPM Version][npm-version-image] [https://npmjs.org/package/mime-db]
![NPM Downloads][npm-downloads-image] [https://npmjs.org/package/mime-db]
![Node.js Version][node-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-db]
![Coverage Status][coveralls-image] [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consistents of a single, public JSON file and does not include any logic,
allowing it to remain as unopinionated as possible with an API.
It aggregates data from the following sources:

		http://www.iana.org/assignments/media-types/media-types.xhtml

		http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Usage

npm i mime-db

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

If you’re crazy enough to use this in the browser,
you can just grab the JSON file:

https://cdn.rawgit.com/jshttp/mime-db/master/db.json

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

		.source - where the mime type is defined.
If not set, it’s probably a custom media type.
		apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

		iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

		.extensions[] - known extensions associated with this mime type.

		.compressible - whether a file of this type is can be gzipped.

		.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Repository Structure

		scripts - these are scripts to run to build the database

		src/ - this is a folder of files created from remote sources like Apache and IANA

		lib/ - this is a folder of our own custom sources and db, which will be merged into db.json

		db.json - the final built JSON file for end-user usage

Contributing

To edit the database, only make PRs against files in the lib/ folder.
To update the build, run npm run update.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself. When set, an empty list is returned if there are
no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/grunt-legacy-util/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

grunt-legacy-util

deprecated utilities from grunt

[image: Build Status] [http://travis-ci.org/gruntjs/grunt-legacy-util]
[image: Built with Grunt] [http://gruntjs.com/]

With the next major release of Grunt, we will no longer support these APIs. Where possible, please use the recommended modules in their place. If you would like to support or improve any of these APIs, please notify us when you have published a backwards compatible npm module

—

we will then recommend its usage here.

grunt.util.namespace use getobject [https://www.npmjs.org/package/getobject]grunt.util.hooker use hooker [https://www.npmjs.org/package/hooker]grunt.util.async use async [https://www.npmjs.org/package/async]grunt.util._ use lodash [https://www.npmjs.org/package/lodash]grunt.util.exit use exit [https://www.npmjs.org/package/exit]grunt.util.callbackifygrunt.util.errorgrunt.util.linefeedgrunt.util.normalizelfgrunt.util.kindOf use lodash [https://www.npmjs.org/package/lodash]grunt.util.toArray
grunt.util.repeatgrunt.util.pluralizegrunt.util.recurse use traverse [https://www.npmjs.org/package/traverse]grunt.util.spawn

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/node_modules/batch/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.5.1 / 2014-06-19

		add repository field to readme (exciting)

0.5.0 / 2013-07-29

		add .throws(true) to opt-in to responding with an array of error objects

		make new optional

0.4.0 / 2013-06-05

		add catching of immediate callback errors

0.3.2 / 2013-03-15

		remove Emitter call in constructor

0.3.1 / 2013-03-13

		add Emitter() mixin for client. Closes #8

0.3.0 / 2013-03-13

		add component.json

		add result example

		add .concurrency support

		add concurrency example

		add parallel example

0.2.1 / 2012-11-08

		add .start, .end, and .duration properties

		change dependencies to devDependencies

0.2.0 / 2012-10-04

		add progress events. Closes #5 (BREAKING CHANGE)

0.1.1 / 2012-07-03

		change “complete” event to “progress”

0.1.0 / 2012-07-03

		add Emitter inheritance and emit “complete” [burcu]

0.0.3 / 2012-06-02

		Callback results should be in the order of the queued functions.

0.0.2 / 2012-02-12

		any node

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/node_modules/batch/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

batch

Simple async batch with concurrency control and progress reporting.

Installation

$ npm install batch

API

var Batch = require('batch')
 , batch = new Batch;

batch.concurrency(4);

ids.forEach(function(id){
 batch.push(function(done){
 User.get(id, done);
 });
});

batch.on('progress', function(e){

});

batch.end(function(err, users){

});

Progress events

Contain the “job” index, response value, duration information, and completion data.

{ index: 1,
 value: 'bar',
 pending: 2,
 total: 3,
 complete: 2,
 percent: 66,
 start: Thu Oct 04 2012 12:25:53 GMT-0700 (PDT),
 end: Thu Oct 04 2012 12:25:53 GMT-0700 (PDT),
 duration: 0 }

License

(The MIT License)

Copyright (c) 2013 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.2.1 / 2014-09-05

		deps: accepts@~1.1.0

		deps: debug@~2.0.0

1.2.0 / 2014-08-25

		Add debug messages

		Resolve relative paths at middleware setup

1.1.6 / 2014-08-10

		Fix URL parsing

		deps: parseurl@~1.3.0

1.1.5 / 2014-07-27

		Fix Content-Length calculation for multi-byte file names

		deps: accepts@~1.0.7
		deps: negotiator@0.4.7

1.1.4 / 2014-06-20

		deps: accepts@~1.0.5

1.1.3 / 2014-06-20

		deps: accepts@~1.0.4
		use mime-types

1.1.2 / 2014-06-19

		deps: batch@0.5.1

1.1.1 / 2014-06-11

		deps: accepts@1.0.3

1.1.0 / 2014-05-29

		Fix content negotiation when no Accept header

		Properly support all HTTP methods

		Support vanilla node.js http servers

		Treat ENAMETOOLONG as code 414

		Use accepts for negotiation

1.0.3 / 2014-05-20

		Fix error from non-statable files in HTML view

1.0.2 / 2014-04-28

		Add stylesheet option

		deps: negotiator@0.4.3

1.0.1 / 2014-03-05

		deps: negotiator@0.4.2

1.0.0 / 2014-03-05

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/findup-sync/node_modules/glob/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/vhost/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

vhost

![NPM Version][npm-image] [https://npmjs.org/package/vhost]
![NPM Downloads][downloads-image] [https://npmjs.org/package/vhost]
![Build Status][travis-image] [https://travis-ci.org/expressjs/vhost]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/vhost]
![Gratipay][gratipay-image] [https://gratipay.com/dougwilson/]

Install

$ npm install vhost

API

var vhost = require('vhost')

vhost(hostname, server)

Create a new middleware function to hand off request to server when the incoming
host for the request matches hostname.

hostname can be a string or a RegExp object. When hostname is a string it can
contain * to match 1 or more characters in that section of the hostname. When
hostname is a RegExp, it will be forced to case-insensitive (since hostnames are)
and will be forced to match based on the start and end of the hostname.

When host is matched and the request is sent down to a vhost handler, the req.vhost
property will be populated with an object. This object will have numeric properties
corresponding to each wildcard (or capture group if RegExp object provided) and the
hostname that was matched.

// for match of "foo.bar.example.com:8080" against "*.*.example.com":
req.vhost.host === 'foo.bar.example.com:8080'
req.vhost.hostname === 'foo.bar.example.com'
req.vhost.length === 2
req.vhost[0] === 'foo'
req.vhost[1] === 'bar'

Examples

using with connect for static serving

var connect = require('connect')
var serveStatic = require('serve-static')
var vhost = require('vhost')

var mailapp = connect()

// add middlewares to mailapp for mail.example.com

// create app to serve static files on subdomain
var staticapp = connect()
staticapp.use(serveStatic('public'))

// create main app
var app = connect()

// add vhost routing to main app for mail
app.use(vhost('mail.example.com', mailapp))

// route static assets for "assets-*" subdomain to get
// around max host connections limit on browsers
app.use(vhost('assets-*.example.com', staticapp))

// add middlewares and main usage to app

app.listen(3000)

using with connect for user subdomains

var connect = require('connect')
var serveStatic = require('serve-static')
var vhost = require('vhost')

var mainapp = connect()

// add middlewares to mainapp for the main web site

// create app that will server user content from public/{username}/
var userapp = connect()

userapp.use(function(req, res, next){
 var username = req.vhost[0] // username is the "*"

 // pretend request was for /{username}/* for file serving
 req.originalUrl = req.url
 req.url = '/' + username + req.url

 next()
})
userapp.use(serveStatic('public'))

// create main app
var app = connect()

// add vhost routing for main app
app.use(vhost('userpages.local', mainapp))
app.use(vhost('www.userpages.local', mainapp))

// listen on all subdomains for user pages
app.use(vhost('*.userpages.local', userapp))

app.listen(3000)

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/findup-sync/node_modules/glob/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/node_modules/accepts/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.1.3 / 2014-11-09

		deps: mime-types@~2.0.3
		deps: mime-db@~1.2.0

1.1.2 / 2014-10-14

		deps: negotiator@0.4.9
		Fix error when media type has invalid parameter

1.1.1 / 2014-09-28

		deps: mime-types@~2.0.2
		deps: mime-db@~1.1.0

		deps: negotiator@0.4.8
		Fix all negotiations to be case-insensitive

		Stable sort preferences of same quality according to client order

1.1.0 / 2014-09-02

		update mime-types

1.0.7 / 2014-07-04

		Fix wrong type returned from type when match after unknown extension

1.0.6 / 2014-06-24

		deps: negotiator@0.4.7

1.0.5 / 2014-06-20

		fix crash when unknown extension given

1.0.4 / 2014-06-19

		use mime-types

1.0.3 / 2014-06-11

		deps: negotiator@0.4.6
		Order by specificity when quality is the same

1.0.2 / 2014-05-29

		Fix interpretation when header not in request

		deps: pin negotiator@0.4.5

1.0.1 / 2014-01-18

		Identity encoding isn’t always acceptable

		deps: negotiator@~0.4.0

1.0.0 / 2013-12-27

		Genesis

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/findup-sync/node_modules/glob/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

serve-index

![NPM Version][npm-image] [https://npmjs.org/package/serve-index]
![NPM Downloads][downloads-image] [https://npmjs.org/package/serve-index]
![Build Status][travis-image] [https://travis-ci.org/expressjs/serve-index]
![Test Coverage][coveralls-image] [https://coveralls.io/r/expressjs/serve-index?branch=master]
![Gittip][gittip-image] [https://www.gittip.com/dougwilson/]

Serves pages that contain directory listings for a given path.

Install

$ npm install serve-index

API

var serveIndex = require('serve-index')

serveIndex(path, options)

Returns middlware that serves an index of the directory in the given path.

The path is based off the req.url value, so a req.url of '/some/dir
with a path of 'public' will look at 'public/some/dir'. If you are using
something like express, you can change the URL “base” with app.use (see
the express example).

Options

Serve index accepts these properties in the options object.

filter

Apply this filter function to files. Defaults to false.

hidden

Display hidden (dot) files. Defaults to false.

icons

Display icons. Defaults to false.

stylesheet

Optional path to a CSS stylesheet. Defaults to a built-in stylesheet.

template

Optional path to an HTML template. Defaults to a built-in template.

The following tokens are replaced in templates:

		{directory} with the name of the directory.

		{files} with the HTML of an unordered list of file links.

		{linked-path} with the HTML of a link to the directory.

		{style} with the specified stylesheet and embedded images.

view

Display mode. tiles and details are available. Defaults to tiles.

Examples

Serve directory indexes with vanilla node.js http server

var finalhandler = require('finalhandler')
var http = require('http')
var serveIndex = require('serve-index')
var serveStatic = require('serve-static')

// Serve directory indexes for public/ftp folder (with icons)
var index = serveIndex('public/ftp', {'icons': true})

// Serve up public/ftp folder files
var serve = serveStatic('public/ftp')

// Create server
var server = http.createServer(function onRequest(req, res){
 var done = finalhandler(req, res)
 serve(req, res, function onNext(err) {
 if (err) return done(err)
 index(req, res, done)
 })
})

// Listen
server.listen(3000)

Serve directory indexes with express

var express = require('express')
var serveIndex = require('serve-index')

var app = express()

// Serve URLs like /ftp/thing as public/ftp/thing
app.use('/ftp', serveIndex('public/ftp', {'icons': true}))
app.listen()

License

MIT. The Silk [http://www.famfamfam.com/lab/icons/silk/] icons
are created by/copyright of FAMFAMFAM [http://www.famfamfam.com/].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/findup-sync/node_modules/glob/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/node_modules/accepts/node_modules/negotiator/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

negotiator

![NPM Version][npm-image] [https://npmjs.org/package/negotiator]
![NPM Downloads][downloads-image] [https://npmjs.org/package/negotiator]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/negotiator]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/negotiator?branch=master]

An HTTP content negotiator for Node.js

Installation

$ npm install negotiator

API

var Negotiator = require('negotiator')

Accept Negotiation

availableMediaTypes = ['text/html', 'text/plain', 'application/json']

// The negotiator constructor receives a request object
negotiator = new Negotiator(request)

// Let's say Accept header is 'text/html, application/*;q=0.2, image/jpeg;q=0.8'

negotiator.mediaTypes()
// -> ['text/html', 'image/jpeg', 'application/*']

negotiator.mediaTypes(availableMediaTypes)
// -> ['text/html', 'application/json']

negotiator.mediaType(availableMediaTypes)
// -> 'text/html'

You can check a working example at examples/accept.js.

Methods

mediaTypes(availableMediaTypes):

Returns an array of preferred media types ordered by priority from a list of available media types.

mediaType(availableMediaType):

Returns the top preferred media type from a list of available media types.

Accept-Language Negotiation

negotiator = new Negotiator(request)

availableLanguages = 'en', 'es', 'fr'

// Let's say Accept-Language header is 'en;q=0.8, es, pt'

negotiator.languages()
// -> ['es', 'pt', 'en']

negotiator.languages(availableLanguages)
// -> ['es', 'en']

language = negotiator.language(availableLanguages)
// -> 'es'

You can check a working example at examples/language.js.

Methods

languages(availableLanguages):

Returns an array of preferred languages ordered by priority from a list of available languages.

language(availableLanguages):

Returns the top preferred language from a list of available languages.

Accept-Charset Negotiation

availableCharsets = ['utf-8', 'iso-8859-1', 'iso-8859-5']

negotiator = new Negotiator(request)

// Let's say Accept-Charset header is 'utf-8, iso-8859-1;q=0.8, utf-7;q=0.2'

negotiator.charsets()
// -> ['utf-8', 'iso-8859-1', 'utf-7']

negotiator.charsets(availableCharsets)
// -> ['utf-8', 'iso-8859-1']

negotiator.charset(availableCharsets)
// -> 'utf-8'

You can check a working example at examples/charset.js.

Methods

charsets(availableCharsets):

Returns an array of preferred charsets ordered by priority from a list of available charsets.

charset(availableCharsets):

Returns the top preferred charset from a list of available charsets.

Accept-Encoding Negotiation

availableEncodings = ['identity', 'gzip']

negotiator = new Negotiator(request)

// Let's say Accept-Encoding header is 'gzip, compress;q=0.2, identity;q=0.5'

negotiator.encodings()
// -> ['gzip', 'identity', 'compress']

negotiator.encodings(availableEncodings)
// -> ['gzip', 'identity']

negotiator.encoding(availableEncodings)
// -> 'gzip'

You can check a working example at examples/encoding.js.

Methods

encodings(availableEncodings):

Returns an array of preferred encodings ordered by priority from a list of available encodings.

encoding(availableEncodings):

Returns the top preferred encoding from a list of available encodings.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/grunt-legacy-log/node_modules/lodash/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Lo-Dash v2.4.1

A utility library delivering consistency, customization [http://lodash.com/custom-builds], performance [http://lodash.com/benchmarks], & extras [http://lodash.com/#features].

Download

Check out our wiki for details over the differences between builds.

		Modern builds perfect for newer browsers/environments:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.min.js]

		Compatibility builds for older environment support too:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.min.js]

		Underscore builds to use as a drop-in replacement:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.min.js]

CDN copies are available on cdnjs [http://cdnjs.com/libraries/lodash.js/] & jsDelivr [http://www.jsdelivr.com/#!lodash]. For smaller file sizes, create custom builds [http://lodash.com/custom-builds] with only the features needed.

Love modules? We’ve got you covered with lodash-amd [https://npmjs.org/package/lodash-amd], lodash-es6 [https://github.com/lodash/lodash-es6], lodash-node [https://npmjs.org/package/lodash-node], & npm packages [https://npmjs.org/browse/keyword/lodash-modularized] per method.

Dive in

There’s plenty of documentation [http://lodash.com/docs], unit tests [http://lodash.com/tests], & benchmarks [http://lodash.com/benchmarks].

Check out DevDocs as a fast, organized, & searchable interface for our documentation.

The full changelog for this release is available on our wiki [https://github.com/lodash/lodash/wiki/Changelog].

A list of upcoming features is available on our roadmap [https://github.com/lodash/lodash/wiki/Roadmap].

Features not in Underscore

		AMD loader support (curl [https://github.com/cujojs/curl], dojo [http://dojotoolkit.org/], requirejs [http://requirejs.org/], etc.)

		(…) [http://lodash.com/docs#] supports intuitive chaining

		_.at [http://lodash.com/docs#at] for cherry-picking collection values

		_.bindKey [http://lodash.com/docs#bindKey] for binding “lazy” [http://michaux.ca/articles/lazy-function-definition-pattern] defined methods

		_.clone [http://lodash.com/docs#clone] supports shallow cloning of Date & RegExp objects

		_.cloneDeep [http://lodash.com/docs#cloneDeep] for deep cloning arrays & objects

		_.constant [http://lodash.com/docs#constant] & _.property [http://lodash.com/docs#property] function generators for composing functions

		_.contains [http://lodash.com/docs#contains] accepts a fromIndex

		_.create [http://lodash.com/docs#create] for easier object inheritance

		_.createCallback [http://lodash.com/docs#createCallback] for extending callbacks in methods & mixins

		_.curry [http://lodash.com/docs#curry] for creating curried [http://hughfdjackson.com/javascript/2013/07/06/why-curry-helps/] functions

		_.debounce [http://lodash.com/docs#debounce] & _.throttle [http://lodash.com/docs#throttle] accept additional options for more control

		_.findIndex [http://lodash.com/docs#findIndex] & _.findKey [http://lodash.com/docs#findKey] for finding indexes & keys

		_.forEach [http://lodash.com/docs#forEach] is chainable & supports exiting early

		_.forIn [http://lodash.com/docs#forIn] for iterating own & inherited properties

		_.forOwn [http://lodash.com/docs#forOwn] for iterating own properties

		_.isPlainObject [http://lodash.com/docs#isPlainObject] for checking if values are created by Object

		_.mapValues [http://lodash.com/docs#mapValues] for mapping [http://lodash.com/docs#map] values to an object

		_.memoize [http://lodash.com/docs#memoize] exposes the cache of memoized functions

		_.merge [http://lodash.com/docs#merge] for a deep _.extend [http://lodash.com/docs#extend]

		_.noop [http://lodash.com/docs#noop] for function placeholders

		_.now [http://lodash.com/docs#now] as a cross-browser Date.now alternative

		_.parseInt [http://lodash.com/docs#parseInt] for consistent behavior

		_.pull [http://lodash.com/docs#pull] & _.remove [http://lodash.com/docs#remove] for mutating arrays

		_.random [http://lodash.com/docs#random] supports returning floating-point numbers

		_.runInContext [http://lodash.com/docs#runInContext] for easier mocking

		_.sortBy [http://lodash.com/docs#sortBy] supports sorting by multiple properties

		_.support [http://lodash.com/docs#support] for flagging environment features

		_.template [http://lodash.com/docs#template] supports “imports” [http://lodash.com/docs#templateSettings_imports] options & ES6 template delimiters [http://people.mozilla.org/~jorendorff/es6-draft.html#sec-literals-string-literals]

		_.transform [http://lodash.com/docs#transform] as a powerful alternative to _.reduce [http://lodash.com/docs#reduce] for transforming objects

		_.where [http://lodash.com/docs#where] supports deep object comparisons

		_.xor [http://lodash.com/docs#xor] as a companion to _.difference [http://lodash.com/docs#difference], _.intersection [http://lodash.com/docs#intersection], & _.union [http://lodash.com/docs#union]

		_.zip [http://lodash.com/docs#zip] is capable of unzipping values

		_.omit [http://lodash.com/docs#omit], _.pick [http://lodash.com/docs#pick], &
more [http://lodash.com/docs] accept callbacks

		_.contains [http://lodash.com/docs#contains], _.toArray [http://lodash.com/docs#toArray], &
more [http://lodash.com/docs] accept strings

		_.filter [http://lodash.com/docs#filter], _.map [http://lodash.com/docs#map], &
more [http://lodash.com/docs] support *“_.pluck”* & *“_.where”* shorthands

		_.findLast [http://lodash.com/docs#findLast], _.findLastIndex [http://lodash.com/docs#findLastIndex], &
more [http://lodash.com/docs] right-associative methods

Resources

		Podcasts

		JavaScript Jabber [http://javascriptjabber.com/079-jsj-lo-dash-with-john-david-dalton/]

		Posts

		Say “Hello” to Lo-Dash [http://kitcambridge.be/blog/say-hello-to-lo-dash/]

		Custom builds in Lo-Dash 2.0 [http://kitcambridge.be/blog/custom-builds-in-lo-dash-2-dot-0/]

		Videos

		Introduction [https://vimeo.com/44154599]

		Origins [https://vimeo.com/44154600]

		Optimizations & builds [https://vimeo.com/44154601]

		Native method use [https://vimeo.com/48576012]

		Testing [https://vimeo.com/45865290]

		CascadiaJS ’12 [http://www.youtube.com/watch?v=dpPy4f_SeEk]

A list of other community created podcasts, posts, & videos is available on our wiki [https://github.com/lodash/lodash/wiki/Resources].

Support

Tested in Chrome 5~31, Firefox 2~25, IE 6-11, Opera 9.25~17, Safari 3-7, Node.js 0.6.21~0.10.22, Narwhal 0.3.2, PhantomJS 1.9.2, RingoJS 0.9, & Rhino 1.7RC5.

Automated browser test results are available [https://saucelabs.com/u/lodash] as well as Travis CI [https://travis-ci.org/] builds for lodash [https://travis-ci.org/lodash/lodash/], lodash-cli [https://travis-ci.org/lodash/lodash-cli/], lodash-amd [https://travis-ci.org/lodash/lodash-amd/], lodash-node [https://travis-ci.org/lodash/lodash-node/], & grunt-lodash [https://travis-ci.org/lodash/grunt-lodash].

Special thanks to Sauce Labs [https://saucelabs.com/] for providing automated browser testing.

[image: Sauce Labs] [https://saucelabs.com/]

Installation & usage

In browsers:

<script src="lodash.js"></script>

Using npm [http://npmjs.org/]:

npm i --save lodash

{sudo} npm i -g lodash
npm ln lodash

In Node.js [http://nodejs.org/] & Ringo [http://ringojs.org/]:

var _ = require('lodash');
// or as Underscore
var _ = require('lodash/dist/lodash.underscore');

Notes:

		Don’t assign values to special variable [http://nodejs.org/api/repl.html#repl_repl_features] _ when in the REPL

		If Lo-Dash is installed globally, run npm ln lodash [http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/] in your project’s root directory before requiring it

In Rhino [http://www.mozilla.org/rhino/]:

load('lodash.js');

In an AMD loader:

require({
 'packages': [
 { 'name': 'lodash', 'location': 'path/to/lodash', 'main': 'lodash' }
]
},
['lodash'], function(_) {
 console.log(_.VERSION);
});

Author

| [image: twitter/jdalton] [https://twitter.com/jdalton] |
|—|
| John-David Dalton [http://allyoucanleet.com/] |

Contributors

[image: twitter/blainebublitz] [https://twitter.com/blainebublitz]	[image: twitter/kitcambridge] [https://twitter.com/kitcambridge]	[image: twitter/mathias] [https://twitter.com/mathias]
—	—	—
Blaine Bublitz [http://www.iceddev.com/]	Kit Cambridge [http://kitcambridge.be/]	Mathias Bynens [http://mathiasbynens.be/]

[image: Bitdeli Badge] [https://bitdeli.com/free]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/node_modules/accepts/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

accepts

![NPM Version][npm-image] [https://npmjs.org/package/accepts]
![NPM Downloads][downloads-image] [https://npmjs.org/package/accepts]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/accepts]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/accepts]

Higher level content negotation based on negotiator [https://github.com/federomero/negotiator]. Extracted from koa [https://github.com/koajs/koa] for general use.

In addition to negotatior, it allows:

		Allows types as an array or arguments list, ie (['text/html', 'application/json']) as well as ('text/html', 'application/json').

		Allows type shorthands such as json.

		Returns false when no types match

		Treats non-existent headers as *

API

var accept = new Accepts(req)

var accepts = require('accepts')

http.createServer(function (req, res) {
 var accept = accepts(req)
})

accept[property]()

Returns all the explicitly accepted content property as an array in descending priority.

		accept.types()

		accept.encodings()

		accept.charsets()

		accept.languages()

They are also aliased in singular form such as accept.type(). accept.languages() is also aliased as accept.langs(), etc.

Note: you should almost never do this in a real app as it defeats the purpose of content negotiation.

Example:

// in Google Chrome
var encodings = accept.encodings() // -> ['sdch', 'gzip', 'deflate']

Since you probably don’t support sdch, you should just supply the encodings you support:

var encoding = accept.encodings('gzip', 'deflate') // -> 'gzip', probably

accept[property](values, ...)

You can either have values be an array or have an argument list of values.

If the client does not accept any values, false will be returned.
If the client accepts any values, the preferred value will be return.

For accept.types(), shorthand mime types are allowed.

Example:

// req.headers.accept = 'application/json'

accept.types('json') // -> 'json'
accept.types('html', 'json') // -> 'json'
accept.types('html') // -> false

// req.headers.accept = ''
// which is equivalent to `*`

accept.types() // -> [], no explicit types
accept.types('text/html', 'text/json') // -> 'text/html', since it was first

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/grunt-legacy-log/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

grunt-legacy-log

The Grunt 0.4.x logger.

[image: Build Status] [http://travis-ci.org/gruntjs/grunt-legacy-log]
[image: Built with Grunt] [http://gruntjs.com/]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/node_modules/accepts/node_modules/mime-types/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

mime-types

![NPM Version][npm-image] [https://npmjs.org/package/mime-types]
![NPM Downloads][downloads-image] [https://npmjs.org/package/mime-types]
![Node.js Version][node-version-image] [http://nodejs.org/download/]
![Build Status][travis-image] [https://travis-ci.org/jshttp/mime-types]
![Test Coverage][coveralls-image] [https://coveralls.io/r/jshttp/mime-types]

The ultimate javascript content-type utility.

Similar to node-mime [https://github.com/broofa/node-mime], except:

		No fallbacks. Instead of naively returning the first available type, mime-types simply returns false,
so do var type = mime.lookup('unrecognized') || 'application/octet-stream'.

		No new Mime() business, so you could do var lookup = require('mime-types').lookup.

		Additional mime types are added such as jade and stylus via mime-db [https://github.com/jshttp/mime-db]

		No .define() functionality

Otherwise, the API is compatible.

Install

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://github.com/jshttp/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/x-markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/x-markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions...] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/serve-index/node_modules/accepts/node_modules/mime-types/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.3 / 2014-11-09

		deps: mime-db@~1.2.0
		Add new mime types

2.0.2 / 2014-09-28

		deps: mime-db@~1.1.0
		Add new mime types

		Add additional compressible

		Update charsets

2.0.1 / 2014-09-07

		Support Node.js 0.6

2.0.0 / 2014-09-02

		Use mime-db

		Remove .define()

1.0.2 / 2014-08-04

		Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

		Add text/jsx type

1.0.0 / 2014-05-12

		Return false for unknown types

		Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/findup-sync/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

findup-sync [image: Build Status] [http://travis-ci.org/cowboy/node-findup-sync]

Find the first file matching a given pattern in the current directory or the nearest ancestor directory.

Getting Started

Install the module with: npm install findup-sync

var findup = require('findup-sync');

// Start looking in the CWD.
var filepath1 = findup('{a,b}*.txt');

// Start looking somewhere else, and ignore case (probably a good idea).
var filepath2 = findup('{a,b}*.txt', {cwd: '/some/path', nocase: true});

Usage

findup(patternOrPatterns [, minimatchOptions])

patternOrPatterns

Type: String or ArrayDefault: none

One or more wildcard glob patterns. Or just filenames.

minimatchOptions

Type: ObjectDefault: {}

Options to be passed to minimatch [https://github.com/isaacs/minimatch].

Note that if you want to start in a different directory than the current working directory, specify a cwd property here.

Contributing

In lieu of a formal styleguide, take care to maintain the existing coding style. Add unit tests for any new or changed functionality. Lint and test your code using Grunt [http://gruntjs.com/].

Release History

2014-03-14 - v0.1.3 - Updated dependencies.2013-03-08 - v0.1.2 - Updated dependencies. Fixed a Node 0.9.x bug. Updated unit tests to work cross-platform.2012-11-15 - v0.1.1 - Now works without an options object.2012-11-01 - v0.1.0 - Initial release.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/js-yaml/node_modules/argparse/node_modules/underscore/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 __
 /\ \ __
 __ __ ___ _\ \ __ _ __ ____ ___ ___ _ __ __ /_\ ____
/\ \/\ \ /' _ `\ /'_ \ /'__`\/\ __\/ ,__\ / ___\ / __`\/\ __\/'__`\ \/\ \ /',__\
\ \ _\ \/\ \/\ \/\ \ \ \/\ __/\ \ \//__, `\/\ __//\ \ \ \ \ \//\ __/ __ \ \ \/__, `\
 \ ____/\ _\ _\ ___,_\ ____\\ _\\/____/\ ____\ ____/\ _\\ ____\/_\ _\ \ \/____/
 \/___/ \/_/\/_/\/__,_ /\/____/ \/_/ \/___/ \/____/\/___/ \/_/ \/____/\/_//\ _\ \/___/
 \ ____/
 \/___/

Underscore.js is a utility-belt library for JavaScript that provides
support for the usual functional suspects (each, map, reduce, filter...)
without extending any core JavaScript objects.

For Docs, License, Tests, and pre-packed downloads, see:
http://underscorejs.org

Many thanks to our contributors:
https://github.com/documentcloud/underscore/contributors

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/vhost/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

3.0.0 / 2014-08-29

		Remove support for sub-http servers; use the handle function

2.0.0 / 2014-06-08

		Accept RegExp object for hostname

		Provide req.vhost object

		Remove old invocation of server.onvhost

		String hostname with * behaves more like SSL certificates
		Matches 1 or more characters instead of zero

		No longer matches ”.” characters

		Support IPv6 literal in Host header

1.0.0 / 2014-03-05

		Genesis from connect

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/findup-sync/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Glob

Match files using the patterns the shell uses, like stars and stuff.

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

Attention: node-glob users!

The API has changed dramatically between 2.x and 3.x. This library is
now 100% JavaScript, and the integer flags have been replaced with an
options object.

Also, there’s an event emitter class, proper tests, and all the other
things you’ve come to expect from node modules.

And best of all, no compilation!

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Features

Please see the minimatch
documentation [https://github.com/isaacs/minimatch] for more details.

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options])

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instanting the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		error The error encountered. When an error is encountered, the
glob object is in an undefined state, and should be discarded.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

		statCache Collection of all the stat results the glob search
performed.

		cache Convenience object. Each field has the following possible
values:
		false - Path does not exist

		true - Path exists

		1 - Path exists, and is not a directory

		2 - Path exists, and is a directory

		[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		abort Stop the search.

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the glob object, as well.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence. It will cause
ELOOP to be triggered one level sooner in the case of cyclical
symbolic links.

		silent When an unusual error is encountered
when attempting to read a directory, a warning will be printed to
stderr. Set the silent option to true to suppress these warnings.

		strict When an unusual error is encountered
when attempting to read a directory, the process will just continue on
in search of other matches. Set the strict option to raise an error
in these cases.

		cache See cache property above. Pass in a previously generated
cache object to save some fs calls.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary to
set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set.
Set this flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that case-insensitive
filesystems will sometimes result in glob returning results that are
case-insensitively matched anyway, since readdir and stat will not
raise an error.

		debug Set to enable debug logging in minimatch and glob.

		globDebug Set to enable debug logging in glob, but not minimatch.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes. For the vast majority
of operations, this is never a problem.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/connect/node_modules/bytes/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.0.0 / 2014-05-05

		add negative support. fixes #6

0.3.0 / 2014-03-19

		added terabyte support

0.2.1 / 2013-04-01

		add .component

0.2.0 / 2012-10-28

		bytes(200).should.eql(‘200b’)

0.1.0 / 2012-07-04

		add bytes to string conversion [yields]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/findup-sync/node_modules/lodash/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Lo-Dash v2.4.1

A utility library delivering consistency, customization [http://lodash.com/custom-builds], performance [http://lodash.com/benchmarks], & extras [http://lodash.com/#features].

Download

Check out our wiki for details over the differences between builds.

		Modern builds perfect for newer browsers/environments:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.min.js]

		Compatibility builds for older environment support too:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.min.js]

		Underscore builds to use as a drop-in replacement:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.min.js]

CDN copies are available on cdnjs [http://cdnjs.com/libraries/lodash.js/] & jsDelivr [http://www.jsdelivr.com/#!lodash]. For smaller file sizes, create custom builds [http://lodash.com/custom-builds] with only the features needed.

Love modules? We’ve got you covered with lodash-amd [https://npmjs.org/package/lodash-amd], lodash-es6 [https://github.com/lodash/lodash-es6], lodash-node [https://npmjs.org/package/lodash-node], & npm packages [https://npmjs.org/browse/keyword/lodash-modularized] per method.

Dive in

There’s plenty of documentation [http://lodash.com/docs], unit tests [http://lodash.com/tests], & benchmarks [http://lodash.com/benchmarks].

Check out DevDocs as a fast, organized, & searchable interface for our documentation.

The full changelog for this release is available on our wiki [https://github.com/lodash/lodash/wiki/Changelog].

A list of upcoming features is available on our roadmap [https://github.com/lodash/lodash/wiki/Roadmap].

Features not in Underscore

		AMD loader support (curl [https://github.com/cujojs/curl], dojo [http://dojotoolkit.org/], requirejs [http://requirejs.org/], etc.)

		(…) [http://lodash.com/docs#] supports intuitive chaining

		_.at [http://lodash.com/docs#at] for cherry-picking collection values

		_.bindKey [http://lodash.com/docs#bindKey] for binding “lazy” [http://michaux.ca/articles/lazy-function-definition-pattern] defined methods

		_.clone [http://lodash.com/docs#clone] supports shallow cloning of Date & RegExp objects

		_.cloneDeep [http://lodash.com/docs#cloneDeep] for deep cloning arrays & objects

		_.constant [http://lodash.com/docs#constant] & _.property [http://lodash.com/docs#property] function generators for composing functions

		_.contains [http://lodash.com/docs#contains] accepts a fromIndex

		_.create [http://lodash.com/docs#create] for easier object inheritance

		_.createCallback [http://lodash.com/docs#createCallback] for extending callbacks in methods & mixins

		_.curry [http://lodash.com/docs#curry] for creating curried [http://hughfdjackson.com/javascript/2013/07/06/why-curry-helps/] functions

		_.debounce [http://lodash.com/docs#debounce] & _.throttle [http://lodash.com/docs#throttle] accept additional options for more control

		_.findIndex [http://lodash.com/docs#findIndex] & _.findKey [http://lodash.com/docs#findKey] for finding indexes & keys

		_.forEach [http://lodash.com/docs#forEach] is chainable & supports exiting early

		_.forIn [http://lodash.com/docs#forIn] for iterating own & inherited properties

		_.forOwn [http://lodash.com/docs#forOwn] for iterating own properties

		_.isPlainObject [http://lodash.com/docs#isPlainObject] for checking if values are created by Object

		_.mapValues [http://lodash.com/docs#mapValues] for mapping [http://lodash.com/docs#map] values to an object

		_.memoize [http://lodash.com/docs#memoize] exposes the cache of memoized functions

		_.merge [http://lodash.com/docs#merge] for a deep _.extend [http://lodash.com/docs#extend]

		_.noop [http://lodash.com/docs#noop] for function placeholders

		_.now [http://lodash.com/docs#now] as a cross-browser Date.now alternative

		_.parseInt [http://lodash.com/docs#parseInt] for consistent behavior

		_.pull [http://lodash.com/docs#pull] & _.remove [http://lodash.com/docs#remove] for mutating arrays

		_.random [http://lodash.com/docs#random] supports returning floating-point numbers

		_.runInContext [http://lodash.com/docs#runInContext] for easier mocking

		_.sortBy [http://lodash.com/docs#sortBy] supports sorting by multiple properties

		_.support [http://lodash.com/docs#support] for flagging environment features

		_.template [http://lodash.com/docs#template] supports “imports” [http://lodash.com/docs#templateSettings_imports] options & ES6 template delimiters [http://people.mozilla.org/~jorendorff/es6-draft.html#sec-literals-string-literals]

		_.transform [http://lodash.com/docs#transform] as a powerful alternative to _.reduce [http://lodash.com/docs#reduce] for transforming objects

		_.where [http://lodash.com/docs#where] supports deep object comparisons

		_.xor [http://lodash.com/docs#xor] as a companion to _.difference [http://lodash.com/docs#difference], _.intersection [http://lodash.com/docs#intersection], & _.union [http://lodash.com/docs#union]

		_.zip [http://lodash.com/docs#zip] is capable of unzipping values

		_.omit [http://lodash.com/docs#omit], _.pick [http://lodash.com/docs#pick], &
more [http://lodash.com/docs] accept callbacks

		_.contains [http://lodash.com/docs#contains], _.toArray [http://lodash.com/docs#toArray], &
more [http://lodash.com/docs] accept strings

		_.filter [http://lodash.com/docs#filter], _.map [http://lodash.com/docs#map], &
more [http://lodash.com/docs] support *“_.pluck”* & *“_.where”* shorthands

		_.findLast [http://lodash.com/docs#findLast], _.findLastIndex [http://lodash.com/docs#findLastIndex], &
more [http://lodash.com/docs] right-associative methods

Resources

		Podcasts

		JavaScript Jabber [http://javascriptjabber.com/079-jsj-lo-dash-with-john-david-dalton/]

		Posts

		Say “Hello” to Lo-Dash [http://kitcambridge.be/blog/say-hello-to-lo-dash/]

		Custom builds in Lo-Dash 2.0 [http://kitcambridge.be/blog/custom-builds-in-lo-dash-2-dot-0/]

		Videos

		Introduction [https://vimeo.com/44154599]

		Origins [https://vimeo.com/44154600]

		Optimizations & builds [https://vimeo.com/44154601]

		Native method use [https://vimeo.com/48576012]

		Testing [https://vimeo.com/45865290]

		CascadiaJS ’12 [http://www.youtube.com/watch?v=dpPy4f_SeEk]

A list of other community created podcasts, posts, & videos is available on our wiki [https://github.com/lodash/lodash/wiki/Resources].

Support

Tested in Chrome 5~31, Firefox 2~25, IE 6-11, Opera 9.25~17, Safari 3-7, Node.js 0.6.21~0.10.22, Narwhal 0.3.2, PhantomJS 1.9.2, RingoJS 0.9, & Rhino 1.7RC5.

Automated browser test results are available [https://saucelabs.com/u/lodash] as well as Travis CI [https://travis-ci.org/] builds for lodash [https://travis-ci.org/lodash/lodash/], lodash-cli [https://travis-ci.org/lodash/lodash-cli/], lodash-amd [https://travis-ci.org/lodash/lodash-amd/], lodash-node [https://travis-ci.org/lodash/lodash-node/], & grunt-lodash [https://travis-ci.org/lodash/grunt-lodash].

Special thanks to Sauce Labs [https://saucelabs.com/] for providing automated browser testing.

[image: Sauce Labs] [https://saucelabs.com/]

Installation & usage

In browsers:

<script src="lodash.js"></script>

Using npm [http://npmjs.org/]:

npm i --save lodash

{sudo} npm i -g lodash
npm ln lodash

In Node.js [http://nodejs.org/] & Ringo [http://ringojs.org/]:

var _ = require('lodash');
// or as Underscore
var _ = require('lodash/dist/lodash.underscore');

Notes:

		Don’t assign values to special variable [http://nodejs.org/api/repl.html#repl_repl_features] _ when in the REPL

		If Lo-Dash is installed globally, run npm ln lodash [http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/] in your project’s root directory before requiring it

In Rhino [http://www.mozilla.org/rhino/]:

load('lodash.js');

In an AMD loader:

require({
 'packages': [
 { 'name': 'lodash', 'location': 'path/to/lodash', 'main': 'lodash' }
]
},
['lodash'], function(_) {
 console.log(_.VERSION);
});

Author

| [image: twitter/jdalton] [https://twitter.com/jdalton] |
|—|
| John-David Dalton [http://allyoucanleet.com/] |

Contributors

[image: twitter/blainebublitz] [https://twitter.com/blainebublitz]	[image: twitter/kitcambridge] [https://twitter.com/kitcambridge]	[image: twitter/mathias] [https://twitter.com/mathias]
—	—	—
Blaine Bublitz [http://www.iceddev.com/]	Kit Cambridge [http://kitcambridge.be/]	Mathias Bynens [http://mathiasbynens.be/]

[image: Bitdeli Badge] [https://bitdeli.com/free]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/js-yaml/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.5 / 2013-04-26

		Close security issue in !!js/function constructor.
Big thanks to @nealpoole for security audit.

2.0.4 / 2013-04-08

		Updated .npmignore to reduce package size

2.0.3 / 2013-02-26

		Fixed dumping of empty arrays ans objects. ([] and {} instead of null)

2.0.2 / 2013-02-15

		Fixed input validation: tabs are printable characters.

2.0.1 / 2013-02-09

		Fixed error, when options not passed to function cass

2.0.0 / 2013-02-09

		Full rewrite. New architecture. Fast one-stage parsing.

		Changed custom types API.

		Added YAML dumper.

1.0.3 / 2012-11-05

		Fixed utf-8 files loading.

1.0.2 / 2012-08-02

		Pull out hand-written shims. Use ES5-Shims for old browsers support. See #44.

		Fix timstamps incorectly parsed in local time when no time part specified.

1.0.1 / 2012-07-07

		Fixes TypeError: 'undefined' is not an object under Safari. Thanks Phuong.

		Fix timestamps incorrectly parsed in local time. Thanks @caolan. Closes #46.

1.0.0 / 2012-07-01

		y, yes, n, no, on, off are not converted to Booleans anymore.
Fixes #42.

		require(filename) now returns a single document and throws an Error if
file contains more than one document.

		CLI was merged back from js-yaml.bin

0.3.7 / 2012-02-28

		Fix export of addConstructor(). Closes #39.

0.3.6 / 2012-02-22

		Removed AMD parts - too buggy to use. Need help to rewrite from scratch

		Removed YUI compressor warning (renamed double variable). Closes #40.

0.3.5 / 2012-01-10

		Workagound for .npmignore fuckup under windows. Thanks to airportyh.

0.3.4 / 2011-12-24

		Fixes str[] for oldIEs support.

		Adds better has change support for browserified demo.

		improves compact output of Error. Closes #33.

0.3.3 / 2011-12-20

		jsyaml executable moved to separate module.

		adds compact stringification of Errors.

0.3.2 / 2011-12-16

		Fixes ug with block style scalars. Closes #26.

		All sources are passing JSLint now.

		Fixes bug in Safari. Closes #28.

		Fixes bug in Opers. Closes #29.

		Improves browser support. Closes #20.

		Added jsyaml executable.

		Added !!js/function support. Closes #12.

0.3.1 / 2011-11-18

		Added AMD support for browserified version.

		Wrapped browserified js-yaml into closure.

		Fixed the resolvement of non-specific tags. Closes #17.

		Added permalinks for online demo YAML snippets. Now we have YPaste service, lol.

		Added !!js/regexp and !!js/undefined types. Partially solves #12.

		Fixed !!set mapping.

		Fixed month parse in dates. Closes #19.

0.3.0 / 2011-11-09

		Removed JS.Class dependency. Closes #3.

		Added browserified version. Closes #13.

		Added live demo of browserified version.

		Ported some of the PyYAML tests. See #14.

		Fixed timestamp bug when fraction was given.

0.2.2 / 2011-11-06

		Fixed crash on docs without —. Closes #8.

		Fixed miltiline string parse

		Fixed tests/comments for using array as key

0.2.1 / 2011-11-02

		Fixed short file read (<4k). Closes #9.

0.2.0 / 2011-11-02

		First public release

 © Copyright .
 Created using Sphinx 1.3.1.

_static/minus.png

node_modules/grunt/node_modules/getobject/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

getobject [image: Build Status] [http://travis-ci.org/cowboy/node-getobject]

get.and.set.deep.objects.easily = true;

Getting Started

Install the module with: npm install getobject

var getobject = require('getobject');

Contributing

In lieu of a formal styleguide, take care to maintain the existing coding style. Add unit tests for any new or changed functionality. Lint and test your code using Grunt [http://gruntjs.com/].

Release History

(Nothing yet)

License

Copyright (c) 2013 “Cowboy” Ben Alman
Licensed under the MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/js-yaml/node_modules/esprima/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Esprima (esprima.org [http://esprima.org]) is a high performance,
standard-compliant ECMAScript [http://www.ecma-international.org/publications/standards/Ecma-262.htm]
parser written in ECMAScript (also popularly known as
JavaScript [http://en.wikipedia.org/wiki/JavaScript>JavaScript]).
Esprima is created and maintained by Ariya Hidayat [http://twitter.com/ariyahidayat],
with the help of many contributors [https://github.com/ariya/esprima/contributors].

Esprima runs on web browsers (IE 6+, Firefox 1+, Safari 3+, Chrome 1+, Konqueror 4.6+, Opera 8+) as well as
Node.js [http://nodejs.org].

Features

		Full support for ECMAScript 5.1 [http://www.ecma-international.org/publications/standards/Ecma-262.htm](ECMA-262)

		Sensible syntax tree format [http://esprima.org/doc/index.html#ast] compatible with Mozilla
Parser AST [https://developer.mozilla.org/en/SpiderMonkey/Parser_API]

		Heavily tested (> 550 unit tests [http://esprima.org/test/] with solid 100% statement coverage)

		Optional tracking of syntax node location (index-based and line-column)

		Experimental support for ES6/Harmony (module, class, destructuring, ...)

Esprima is blazing fast (see the benchmark suite [http://esprima.org/test/benchmarks.html]).
It is up to 3x faster than UglifyJS v1 and it is still competitive [http://esprima.org/test/compare.html]
with the new generation of fast parsers.

Applications

Esprima serves as the basis for many popular JavaScript development tools:

		Code coverage analysis: node-cover [https://github.com/itay/node-cover], Istanbul [https://github.com/yahoo/Istanbul]

		Documentation tool: JFDoc [https://github.com/thejohnfreeman/jfdoc], JSDuck [https://github.com/senchalabs/jsduck]

		Language extension: LLJS [http://mbebenita.github.com/LLJS/] (low-level JS),
Sweet.js [http://sweetjs.org/] (macro)

		ES6/Harmony transpiler: Six [https://github.com/matthewrobb/six], Harmonizr [https://github.com/jdiamond/harmonizr]

		Eclipse Orion smart editing (outline view [https://github.com/aclement/esprima-outline], content assist [http://contraptionsforprogramming.blogspot.com/2012/02/better-javascript-content-assist-in.html])

		Source code modification: Esmorph [https://github.com/ariya/esmorph], Code Painter [https://github.com/fawek/codepainter],

		Source transformation: node-falafel [https://github.com/substack/node-falafel], Esmangle [https://github.com/Constellation/esmangle], escodegen [https://github.com/Constellation/escodegen]

Questions?

		Documentation [http://esprima.org/doc]

		Issue tracker [http://issues.esprima.org]: known problems [http://code.google.com/p/esprima/issues/list?q=Defect]
and future plans [http://code.google.com/p/esprima/issues/list?q=Enhancement]

		Mailing list [http://groups.google.com/group/esprima]

		Contribution guide [http://esprima.org/doc/index.html#contribution]

Follow @Esprima [http://twitter.com/Esprima] on Twitter to get the
development updates.
Feedback and contribution are welcomed!

License

Copyright (C) 2012, 2011 Ariya Hidayat [http://ariya.ofilabs.com/about]
and other contributors.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

		Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/js-yaml/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

JS-YAML - YAML 1.2 parser and serializer for JavaScript

[image: Build Status] [http://travis-ci.org/nodeca/js-yaml]

Online Demo [http://nodeca.github.com/js-yaml/]

This is an implementation of YAML [http://yaml.org/], a human friendly data
serialization language. Started as PyYAML [http://pyyaml.org/] port, it was
completely rewritten from scratch. Now it’s very fast, and supports 1.2 spec.

Breaking changes in 1.x.x -> 2.0.x

If your have not used custom tags or loader classes - no changes needed. Just
upgrade library and enjoy high parse speed.

In other case, you should rewrite your tag constructors and custom loader
classes, to conform new schema-based API. See
examples [https://github.com/nodeca/js-yaml/tree/master/examples] and
wiki [https://github.com/nodeca/js-yaml/wiki] for details.
Note, that parser internals were completely rewritten.

Installation

YAML module for node.js

npm install js-yaml

CLI executable

If you want to inspect your YAML files from CLI, install js-yaml globally:

npm install js-yaml -g

Usage

usage: js-yaml [-h] [-v] [-c] [-j] [-t] file

Positional arguments:
 file File with YAML document(s)

Optional arguments:
 -h, --help Show this help message and exit.
 -v, --version Show program's version number and exit.
 -c, --compact Display errors in compact mode
 -j, --to-json Output a non-funky boring JSON
 -t, --trace Show stack trace on error

Bundled YAML library for browsers

<script src="js-yaml.min.js"></script>
<script type="text/javascript">
var doc = jsyaml.load('greeting: hello\nname: world');
</script>

Browser support was done mostly for online demo. If you find any errors - feel
free to send pull requests with fixes. Also note, that IE and other old browsers
needs es5-shims [https://github.com/kriskowal/es5-shim] to operate.

API

Here we cover the most ‘useful’ methods. If you need advanced details (creating
your own tags), see wiki [https://github.com/nodeca/js-yaml/wiki] and
examples [https://github.com/nodeca/js-yaml/tree/master/examples] for more
info.

In node.js JS-YAML automatically registers handlers for .yml and .yaml
files. You can load them just with require. That’s mostly equivalent to
calling load() on fetched content of a file. Just with one string!

require('js-yaml');

// Get document, or throw exception on error
try {
 var doc = require('/home/ixti/example.yml');
 console.log(doc);
} catch (e) {
 console.log(e);
}

load (string [, options])

Parses string as single YAML document. Returns a JavaScript object or throws
YAMLException on error.

NOTE: This function does not understands multi-document sources, it throws
exception on those.

options:

		filename (default: null) - string to be used as a file path in
error/warning messages.

		strict (default - false) makes the loader to throw errors instead of
warnings.

		schema (default: DEFAULT_SCHEMA) - specifies a schema to use.

loadAll (string, iterator [, options])

Same as load(), but understands multi-document sources and apply iterator to
each document.

var yaml = require('js-yaml');

yaml.loadAll(data, function (doc) {
 console.log(doc);
});

safeLoad (string [, options])

Same as load() but uses SAFE_SCHEMA by default - only recommended tags of
YAML specification (no JavaScript-specific tags, e.g. !!js/regexp).

safeLoadAll (string, iterator [, options])

Same as loadAll() but uses SAFE_SCHEMA by default - only recommended tags of
YAML specification (no JavaScript-specific tags, e.g. !!js/regexp).

dump (object [, options])

Serializes object as YAML document.

options:

		indent (default: 2) - indentation width to use (in spaces).

		flowLevel (default: -1) - specifies level of nesting, when to switch from
block to flow style for collections. -1 means block style everwhere

		styles - “tag” => “style” map. Each tag may have own set of styles.

		schema (default: DEFAULT_SCHEMA) specifies a schema to use.

styles:

!!null
 "canonical" => "~"

!!int
 "binary" => "0b1", "0b101010", "0b1110001111010"
 "octal" => "01", "052", "016172"
 "decimal" => "1", "42", "7290"
 "hexadecimal" => "0x1", "0x2A", "0x1C7A"

!!null, !!bool, !!float
 "lowercase" => "null", "true", "false", ".nan", '.inf'
 "uppercase" => "NULL", "TRUE", "FALSE", ".NAN", '.INF'
 "camelcase" => "Null", "True", "False", ".NaN", '.Inf'

By default, !!int uses decimal, and !!null, !!bool, !!float use lowercase.

safeDump (object [, options])

Same as dump() but uses SAFE_SCHEMA by default - only recommended tags of
YAML specification (no JavaScript-specific tags, e.g. !!js/regexp).

Supported YAML types

The list of standard YAML tags and corresponding JavaScipt types. See also
YAML tag discussion [http://pyyaml.org/wiki/YAMLTagDiscussion] and
YAML types repository [http://yaml.org/type/].

!!null '' # null
!!bool 'yes' # bool
!!int '3...' # number
!!float '3.14...' # number
!!binary '...base64...' # buffer
!!timestamp 'YYYY-...' # date
!!omap [...] # array of key-value pairs
!!pairs [...] # array or array pairs
!!set { ... } # array of objects with given keys and null values
!!str '...' # string
!!seq [...] # array
!!map { ... } # object

JavaScript-specific tags

!!js/regexp /pattern/gim # RegExp
!!js/undefined '' # Undefined
!!js/function 'function () {...}' # Function

Caveats

Note, that you use arrays or objects as key in JS-YAML. JS do not allows objects
or array as keys, and stringifies (by calling .toString method) them at the
moment of adding them.

? [foo, bar]
: - baz
? { foo: bar }
: - baz
 - baz

{ "foo,bar": ["baz"], "[object Object]": ["baz", "baz"] }

Also, reading of properties on implicit block mapping keys is not supported yet.
So, the following YAML document cannot be loaded.

&anchor foo:
 foo: bar
 *anchor: duplicate key
 baz: bat
 *anchor: duplicate key

License

View the LICENSE [https://github.com/nodeca/js-yaml/blob/master/LICENSE] file
(MIT).

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-close.png

node_modules/grunt/node_modules/js-yaml/node_modules/argparse/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

argparse

[image: Build Status] [http://travis-ci.org/nodeca/argparse]

CLI arguments parser for node.js. Javascript port of python’s
argparse [http://docs.python.org/dev/library/argparse.html] module
(original version 3.2). That’s a full port, except some very rare options,
recorded in issue tracker.

NB. Method names changed to camelCase. See generated docs [http://nodeca.github.com/argparse/].

Example

test.js file:

#!/usr/bin/env node
'use strict';

var ArgumentParser = require('../lib/argparse').ArgumentParser;
var parser = new ArgumentParser({
 version: '0.0.1',
 addHelp:true,
 description: 'Argparse example'
});
parser.addArgument(
 ['-f', '--foo'],
 {
 help: 'foo bar'
 }
);
parser.addArgument(
 ['-b', '--bar'],
 {
 help: 'bar foo'
 }
);
var args = parser.parseArgs();
console.dir(args);

Display help:

$./test.js -h
usage: example.js [-h] [-v] [-f FOO] [-b BAR]

Argparse example

Optional arguments:
 -h, --help Show this help message and exit.
 -v, --version Show program's version number and exit.
 -f FOO, --foo FOO foo bar
 -b BAR, --bar BAR bar foo

Parse arguments:

$./test.js -f=3 --bar=4
{ foo: '3', bar: '4' }

More examples [https://github.com/nodeca/argparse/tree/master/examples].

ArgumentParser objects

new ArgumentParser({paramters hash});

Creates a new ArgumentParser object.

Supported params:

		description - Text to display before the argument help.

		epilog - Text to display after the argument help.

		addHelp - Add a -h/–help option to the parser. (default: True)

		argumentDefault - Set the global default value for arguments. (default: None)

		parents - A list of ArgumentParser objects whose arguments should also be included.

		prefixChars - The set of characters that prefix optional arguments. (default: ‘-‘)

		formatterClass - A class for customizing the help output.

		prog - The name of the program (default: sys.argv[0])

		usage - The string describing the program usage (default: generated)

		conflictHandler - Usually unnecessary, defines strategy for resolving conflicting optionals.

Not supportied yet

		fromfilePrefixChars - The set of characters that prefix files from which additional arguments should be read.

Details in original ArgumentParser guide [http://docs.python.org/dev/library/argparse.html#argumentparser-objects]

addArgument() method

ArgumentParser.addArgument([names or flags], {options})

Defines how a single command-line argument should be parsed.

		name or flags - Either a name or a list of option strings, e.g. foo or -f, –foo.

Options:

		action - The basic type of action to be taken when this argument is encountered at the command line.

		nargs- The number of command-line arguments that should be consumed.

		constant - A constant value required by some action and nargs selections.

		defaultValue - The value produced if the argument is absent from the command line.

		type - The type to which the command-line argument should be converted.

		choices - A container of the allowable values for the argument.

		required - Whether or not the command-line option may be omitted (optionals only).

		help - A brief description of what the argument does.

		metavar - A name for the argument in usage messages.

		dest - The name of the attribute to be added to the object returned by parseArgs().

Details in original add_argument guide [http://docs.python.org/dev/library/argparse.html#the-add-argument-method]

Action (some details)

ArgumentParser objects associate command-line arguments with actions.
These actions can do just about anything with the command-line arguments associated
with them, though most actions simply add an attribute to the object returned by
parseArgs(). The action keyword argument specifies how the command-line arguments
should be handled. The supported actions are:

		store - Just stores the argument’s value. This is the default action.

		storeConst - Stores value, specified by the const keyword argument.
(Note that the const keyword argument defaults to the rather unhelpful None.)
The ‘storeConst’ action is most commonly used with optional arguments, that
specify some sort of flag.

		storeTrue and storeFalse - Stores values True and False
respectively. These are special cases of ‘storeConst’.

		append - Stores a list, and appends each argument value to the list.
This is useful to allow an option to be specified multiple times.

		appendConst - Stores a list, and appends value, specified by the
const keyword argument to the list. (Note, that the const keyword argument defaults
is None.) The ‘appendConst’ action is typically used when multiple arguments need
to store constants to the same list.

		count - Counts the number of times a keyword argument occurs. For example,
used for increasing verbosity levels.

		help - Prints a complete help message for all the options in the current
parser and then exits. By default a help action is automatically added to the parser.
See ArgumentParser for details of how the output is created.

		version - Prints version information and exit. Expects a version=
keyword argument in the addArgument() call.

Details in original action guide [http://docs.python.org/dev/library/argparse.html#action]

Sub-commands

ArgumentParser.addSubparsers()

Many programs split their functionality into a number of sub-commands, for
example, the svn program can invoke sub-commands like svn checkout, svn update,
and svn commit. Splitting up functionality this way can be a particularly good
idea when a program performs several different functions which require different
kinds of command-line arguments. ArgumentParser supports creation of such
sub-commands with addSubparsers() method. The addSubparsers() method is
normally called with no arguments and returns an special action object.
This object has a single method addParser(), which takes a command name and
any ArgumentParser constructor arguments, and returns an ArgumentParser object
that can be modified as usual.

Example:

sub_commands.js

#!/usr/bin/env node
'use strict';

var ArgumentParser = require('../lib/argparse').ArgumentParser;
var parser = new ArgumentParser({
 version: '0.0.1',
 addHelp:true,
 description: 'Argparse examples: sub-commands',
});

var subparsers = parser.addSubparsers({
 title:'subcommands',
 dest:"subcommand_name"
});

var bar = subparsers.addParser('c1', {addHelp:true});
bar.addArgument(
 ['-f', '--foo'],
 {
 action: 'store',
 help: 'foo3 bar3'
 }
);
var bar = subparsers.addParser(
 'c2',
 {aliases:['co'], addHelp:true}
);
bar.addArgument(
 ['-b', '--bar'],
 {
 action: 'store',
 type: 'int',
 help: 'foo3 bar3'
 }
);

var args = parser.parseArgs();
console.dir(args);

Details in original sub-commands guide [http://docs.python.org/dev/library/argparse.html#sub-commands]

Contributors

		Eugene Shkuropat [https://github.com/shkuropat]

		Paul Jacobson [https://github.com/hpaulj]

others [https://github.com/nodeca/argparse/graphs/contributors]

License

Copyright (c) 2012 Vitaly Puzrin [https://github.com/puzrin].
Released under the MIT license. See
LICENSE [https://github.com/nodeca/argparse/blob/master/LICENSE] for details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/js-yaml/node_modules/argparse/HISTORY.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.1.15 / 2013-05-13

		Fixed #55, @trebor89

0.1.14 / 2013-05-12

		Fixed #62, @maxtaco

0.1.13 / 2013-04-08

		Added .npmignore to reduce package size

0.1.12 / 2013-02-10

		Fixed conflictHandler (#46), @hpaulj

0.1.11 / 2013-02-07

		Multiple bugfixes, @hpaulj

		Added 70+ tests (ported from python), @hpaulj

		Added conflictHandler, @applepicke

		Added fromfilePrefixChar, @hpaulj

0.1.10 / 2012-12-30

		Added mutual exclusion [http://docs.python.org/dev/library/argparse.html#mutual-exclusion]
support, thanks to @hpaulj

		Fixed options check for storeConst & appendConst actions, thanks to @hpaulj

0.1.9 / 2012-12-27

		Fixed option dest interferens with other options (issue #23), thanks to @hpaulj

		Fixed default value behavior with * positionals, thanks to @hpaulj

		Improve getDefault() behavior, thanks to @hpaulj

		Imrove negative argument parsing, thanks to @hpaulj

0.1.8 / 2012-12-01

		Fixed parser parents (issue #19), thanks to @hpaulj

		Fixed negative argument parse (issue #20), thanks to @hpaulj

0.1.7 / 2012-10-14

		Fixed ‘choices’ argument parse (issue #16)

		Fixed stderr output (issue #15)

0.1.6 / 2012-09-09

		Fixed check for conflict of options (thanks to @tomxtobin)

0.1.5 / 2012-09-03

		Fix parser #setDefaults method (thanks to @tomxtobin)

0.1.4 / 2012-07-30

		Fixed pseudo-argument support (thanks to @CGamesPlay)

		Fixed addHelp default (should be true), if not set (thanks to @benblank)

0.1.3 / 2012-06-27

		Fixed formatter api name: Formatter -> HelpFormatter

0.1.2 / 2012-05-29

		Added basic tests

		Removed excess whitespace in help

		Fixed error reporting, when parcer with subcommands
called with empty arguments

0.1.1 / 2012-05-23

		Fixed line wrapping in help formatter

		Added better error reporting on invalid arguments

0.1.0 / 2012-05-16

		First release.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/file.png

node_modules/grunt/node_modules/js-yaml/node_modules/argparse/node_modules/underscore/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

How to contribute to Underscore.js

		Before you open a ticket or send a pull request, search [https://github.com/documentcloud/underscore/issues] for previous discussions about the same feature or issue. Add to the earlier ticket if you find one.

		Before sending a pull request for a feature, be sure to have tests [http://underscorejs.org/test/].

		Use the same coding style as the rest of the codebase [https://github.com/documentcloud/underscore/blob/master/underscore.js].

		In your pull request, do not add documentation or re-build the minified underscore-min.js file. We’ll do those things before cutting a new release.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/batch/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

batch

Simple async batch with concurrency control and progress reporting.

Installation

$ npm install batch

API

var Batch = require('batch')
 , batch = new Batch;

batch.concurrency(4);

ids.forEach(function(id){
 batch.push(function(done){
 User.get(id, done);
 });
});

batch.on('progress', function(e){

});

batch.end(function(err, users){

});

Progress events

Contain the “job” index, response value, duration information, and completion data.

{ index: 1,
 value: 'bar',
 pending: 2,
 total: 3,
 complete: 2,
 percent: 66,
 start: Thu Oct 04 2012 12:25:53 GMT-0700 (PDT),
 end: Thu Oct 04 2012 12:25:53 GMT-0700 (PDT),
 duration: 0 }

License

(The MIT License)

Copyright (c) 2013 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/policyfile/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

LOL, WUT?

It basically allows you to allow or disallow Flash Player sockets from accessing your site.

Installation

npm install policyfile

Usage

The server is based on the regular and know net and http server patterns. So it you can just listen
for all the events that a net based server emits etc. But there is one extra event, the connect_failed
event. This event is triggered when we are unable to listen on the supplied port number.

createServer

Creates a new server instance and accepts 2 optional arguments:

		options Object Options to configure the server instance
		log Boolean Enable logging to STDOUT and STDERR (defaults to true)

		origins Array An Array of origins that are allowed by the server (defaults to :)

var pf = require('policyfile');
pf.createServer();
pf.listen();

server.listen

Start listening on the server and it takes 3 optional arguments

		port Number On which port number should we listen? (defaults to 843, which is the first port number the FlashPlayer checks)

		server Server A http server, if we are unable to accept requests or run the server we can also answer the policy requests inline over the supplied HTTP server.

		callback Function A callback function that is called when listening to the server was successful.

var pf = require('policyfile');
pf.createServer();
pf.listen(1337, function(){
 console.log(':3 yay')
});

Changing port numbers can be handy if you do not want to run your server as root and have port 843 forward to a non root port number (aka a number above 1024).

var pf = require('policyfile')
 , http = require('http');

server = http.createServer(function(q,r){r.writeHead(200);r.end('hello world')});
server.listen(80);

pf.createServer();
pf.listen(1337, server, function(){
 console.log(':3 yay')
});

Support for serving inline requests over a existing HTTP connection as the FlashPlayer will first check port 843, but if it’s unable to get a response there it will send a policy file request over port 80, which is usually your http server.

server.add

Adds more origins to the policy file you can add as many arguments as you like.

var pf = require('policyfile');
pf.createServer(['google.com:80']);
pf.listen();
pf.add('blog.3rd-Eden.com:80', 'blog.3rd-Eden.com:8080'); // now has 3 origins

server.add

Adds more origins to the policy file you can add as many arguments as you like.

var pf = require('policyfile');
pf.createServer(['blog.3rd-Eden.com:80', 'blog.3rd-Eden.com:8080']);
pf.listen();
pf.remove('blog.3rd-Eden.com:8080'); // only contains the :80 version now

server.close

Shuts down the server

var pf = require('policyfile');
pf.createServer();
pf.listen();
pf.close(); // OH NVM.

API

http://3rd-eden.com/FlashPolicyFileServer/

Examples

See https://github.com/3rd-Eden/FlashPolicyFileServer/tree/master/examples for examples

Licence

MIT see LICENSE file in the repository

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

SuperAgent

SuperAgent is a small progressive client-side HTTP request library, and Node.js module with the same API, sporting many high-level HTTP client features. View the docs [http://visionmedia.github.com/superagent/].

[image: super agent]

Installation

node:

$ npm install superagent

component:

$ component install visionmedia/superagent

with script tags use ./superagent.js

Motivation

This library spawned from my frustration with jQuery’s weak & inconsistent Ajax support. jQuery’s API while having recently added some promise-like support, is largely static, forcing you to build up big objects containing all the header fields and options, not to mention most of the options are awkwardly named “type” instead of “method”, etc. Onto examples!

The following is what you might typically do for a simple GET with jQuery:

$.get('/user/1', function(data, textStatus, xhr){

});

great, it’s ok, but it’s kinda lame having 3 arguments just to access something on the xhr. Our equivalent would be:

request.get('/user/1', function(res){

});

the response object is an instanceof request.Response, encapsulating all of this information instead of throwing a bunch of arguments at you. For example we can check res.status, res.header for header fields, res.text, res.body etc.

An example of a JSON POST with jQuery typically might use $.post(), however once you need to start defining header fields you have to then re-write it using $.ajax()... so that might look like:

$.ajax({
 url: '/api/pet',
 type: 'POST',
 data: { name: 'Manny', species: 'cat' },
 headers: { 'X-API-Key': 'foobar' }
}).success(function(res){

}).error(function(){

});

Not only is it ugly it’s pretty opinionated, jQuery likes to special-case {4,5}xx, for example you cannot (easily at least) receive a parsed JSON response for say “400 Bad Request”. This same request would look like this:

request
 .post('/api/pet')
 .send({ name: 'Manny', species: 'cat' })
 .set('X-API-Key', 'foobar')
 .set('Accept', 'application/json')
 .end(function(error, res){

 });

building on the existing API internally we also provide something similar to $.post() for those times in life where your interactions are very basic:

request.post('/api/pet', cat, function(error, res){

});

Running node tests

Install dependencies:

 $ npm install

Run em!

$ make test

Running browser tests

Install the test server deps (nodejs / express):

$ npm install

Start the test server:

$ make test-server

Visit localhost:4000/ in the browser.

Browser build

The browser build of superagent is located in ./superagent.js

Examples:

		agency tests [https://github.com/visionmedia/superagent/blob/master/test/node/agency.js]

		express demo app [https://github.com/hunterloftis/component-test/blob/master/lib/users/test/controller.test.js]

Plugins

Usage:

var request = require('superagent'),
 no_cache = require('no-cache'),
 prefix = require('superagent-prefix')('/static');

prefix(request); // Prefixes *all* requests

request.get('/some-url')
 .use(no_cache) // Prevents caching of *only* this request
 .end(function(res) {
 // Do something
 };

Existing plugins:

		superagent-no-cache [https://github.com/johntron/superagent-no-cache] - prevents caching by including Cache-Control header

		superagent-prefix [https://github.com/johntron/superagent-prefix] - prefixes absolute URLs (useful in test environment)

Please prefix your plugin component with superagent-*

For superagent extensions such as couchdb and oauth visit the wiki [https://github.com/visionmedia/superagent/wiki].

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/batch/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.5.1 / 2014-06-19

		add repository field to readme (exciting)

0.5.0 / 2013-07-29

		add .throws(true) to opt-in to responding with an array of error objects

		make new optional

0.4.0 / 2013-06-05

		add catching of immediate callback errors

0.3.2 / 2013-03-15

		remove Emitter call in constructor

0.3.1 / 2013-03-13

		add Emitter() mixin for client. Closes #8

0.3.0 / 2013-03-13

		add component.json

		add result example

		add .concurrency support

		add concurrency example

		add parallel example

0.2.1 / 2012-11-08

		add .start, .end, and .duration properties

		change dependencies to devDependencies

0.2.0 / 2012-10-04

		add progress events. Closes #5 (BREAKING CHANGE)

0.1.1 / 2012-07-03

		change “complete” event to “progress”

0.1.0 / 2012-07-03

		add Emitter inheritance and emit “complete” [burcu]

0.0.3 / 2012-06-02

		Callback results should be in the order of the queued functions.

0.0.2 / 2012-02-12

		any node

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/redis/changelog.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Changelog

v0.7.2 - April 29, 2012

Many contributed fixes. Thank you, contributors.

		[GH-190] - pub/sub mode fix (Brian Noguchi)

		[GH-165] - parser selection fix (TEHEK)

		numerous documentation and examples updates

		auth errors emit Errors instead of Strings (David Trejo)

v0.7.1 - November 15, 2011

Fix regression in reconnect logic.

Very much need automated tests for reconnection and queue logic.

v0.7.0 - November 14, 2011

Many contributed fixes. Thanks everybody.

		[GH-127] - properly re-initialize parser on reconnect

		[GH-136] - handle passing undefined as callback (Ian Babrou)

		[GH-139] - properly handle exceptions thrown in pub/sub event handlers (Felix Geisendörfer)

		[GH-141] - detect closing state on stream error (Felix Geisendörfer)

		[GH-142] - re-select database on reconnection (Jean-Hugues Pinson)

		[GH-146] - add sort example (Maksim Lin)

Some more goodies:

		Fix bugs with node 0.6

		Performance improvements

		New version of multi_bench.js that tests more realistic scenarios

		[GH-140] - support optional callback for subscribe commands

		Properly flush and error out command queue when connection fails

		Initial work on reconnection thresholds

v0.6.7 - July 30, 2011

(accidentally skipped v0.6.6)

Fix and test for [GH-123]

Passing an Array as as the last argument should expand as users
expect. The old behavior was to coerce the arguments into Strings,
which did surprising things with Arrays.

v0.6.5 - July 6, 2011

Contributed changes:

		Support SlowBuffers (Umair Siddique)

		Add Multi to exports (Louis-Philippe Perron)

		Fix for drain event calculation (Vladimir Dronnikov)

Thanks!

v0.6.4 - June 30, 2011

Fix bug with optional callbacks for hmset.

v0.6.2 - June 30, 2011

Bugs fixed:

		authentication retry while server is loading db (danmaz74) [GH-101]

		command arguments processing issue with arrays

New features:

		Auto update of new commands from redis.io (Dave Hoover)

		Performance improvements and backpressure controls.

		Commands now return the true/false value from the underlying socket write(s).

		Implement command_queue high water and low water for more better control of queueing.

See examples/backpressure_drain.js for more information.

v0.6.1 - June 29, 2011

Add support and tests for Redis scripting through EXEC command.

Bug fix for monitor mode. (forddg)

Auto update of new commands from redis.io (Dave Hoover)

v0.6.0 - April 21, 2011

Lots of bugs fixed.

		connection error did not properly trigger reconnection logic [GH-85]

		client.hmget(key, [val1, val2]) was not expanding properly [GH-66]

		client.quit() while in pub/sub mode would throw an error [GH-87]

		client.multi([‘hmset’, ‘key’, {foo: ‘bar’}]) fails [GH-92]

		unsubscribe before subscribe would make things very confused [GH-88]

		Add BRPOPLPUSH [GH-79]

v0.5.11 - April 7, 2011

Added DISCARD

I originally didn’t think DISCARD would do anything here because of the clever MULTI interface, but somebody
pointed out to me that DISCARD can be used to flush the WATCH set.

v0.5.10 - April 6, 2011

Added HVALS

v0.5.9 - March 14, 2011

Fix bug with empty Array arguments - Andy Ray

v0.5.8 - March 14, 2011

Add MONITOR command and special monitor command reply parsing.

v0.5.7 - February 27, 2011

Add magical auth command.

Authentication is now remembered by the client and will be automatically sent to the server
on every connection, including any reconnections.

v0.5.6 - February 22, 2011

Fix bug in ready check with return_buffers set to true.

Thanks to Dean Mao and Austin Chau.

v0.5.5 - February 16, 2011

Add probe for server readiness.

When a Redis server starts up, it might take a while to load the dataset into memory.
During this time, the server will accept connections, but will return errors for all non-INFO
commands. Now node_redis will send an INFO command whenever it connects to a server.
If the info command indicates that the server is not ready, the client will keep trying until
the server is ready. Once it is ready, the client will emit a “ready” event as well as the
“connect” event. The client will queue up all commands sent before the server is ready, just
like it did before. When the server is ready, all offline/non-ready commands will be replayed.
This should be backward compatible with previous versions.

To disable this ready check behavior, set options.no_ready_check when creating the client.

As a side effect of this change, the key/val params from the info command are available as
client.server_options. Further, the version string is decomposed into individual elements
in client.server_options.versions.

v0.5.4 - February 11, 2011

Fix excess memory consumption from Queue backing store.

Thanks to Gustaf Sjöberg.

v0.5.3 - February 5, 2011

Fix multi/exec error reply callback logic.

Thanks to Stella Laurenzo.

v0.5.2 - January 18, 2011

Fix bug where unhandled error replies confuse the parser.

v0.5.1 - January 18, 2011

Fix bug where subscribe commands would not handle redis-server startup error properly.

v0.5.0 - December 29, 2010

Some bug fixes:

		An important bug fix in reconnection logic. Previously, reply callbacks would be invoked twice after
a reconnect.

		Changed error callback argument to be an actual Error object.

New feature:

		Add friendly syntax for HMSET using an object.

v0.4.1 - December 8, 2010

Remove warning about missing hiredis. You probably do want it though.

v0.4.0 - December 5, 2010

Support for multiple response parsers and hiredis C library from Pieter Noordhuis.
Return Strings instead of Buffers by default.
Empty nested mb reply bug fix.

v0.3.9 - November 30, 2010

Fix parser bug on failed EXECs.

v0.3.8 - November 10, 2010

Fix for null MULTI response when WATCH condition fails.

v0.3.7 - November 9, 2010

Add “drain” and “idle” events.

v0.3.6 - November 3, 2010

Add all known Redis commands from Redis master, even ones that are coming in 2.2 and beyond.

Send a friendlier “error” event message on stream errors like connection refused / reset.

v0.3.5 - October 21, 2010

A few bug fixes.

		Fixed bug with nil multi-bulk reply lengths that showed up with BLPOP timeouts.

		Only emit end once when connection goes away.

		Fixed bug in test.js where driver finished before all tests completed.

unversioned wasteland

See the git history for what happened before.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/emitter-component/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Emitter

Event emitter component.

Installation

$ component install component/emitter

API

Emitter(obj)

The Emitter may also be used as a mixin. For example
a “plain” object may become an emitter, or you may
extend an existing prototype.

As an Emitter instance:

var Emitter = require('emitter');
var emitter = new Emitter;
emitter.emit('something');

As a mixin:

var Emitter = require('emitter');
var user = { name: 'tobi' };
Emitter(user);

user.emit('im a user');

As a prototype mixin:

var Emitter = require('emitter');
Emitter(User.prototype);

Emitter#on(event, fn)

Register an event handler fn.

Emitter#once(event, fn)

Register a single-shot event handler fn,
removed immediately after it is invoked the
first time.

Emitter#off(event, fn)

Remove event handler fn, or pass only the event
name to remove all handlers for event.

Emitter#emit(event, ...)

Emit an event with variable option args.

Emitter#listeners(event)

Return an array of callbacks, or an empty array.

Emitter#hasListeners(event)

Check if this emitter has event handlers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/redis/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

redis - a node.js redis client

This is a complete Redis client for node.js. It supports all Redis commands, including many recently added commands like EVAL from
experimental Redis server branches.

Install with:

npm install redis

Pieter Noordhuis has provided a binding to the official hiredis C library, which is non-blocking and fast. To use hiredis, do:

npm install hiredis redis

If hiredis is installed, node_redis will use it by default. Otherwise, a pure JavaScript parser will be used.

If you use hiredis, be sure to rebuild it whenever you upgrade your version of node. There are mysterious failures that can
happen between node and native code modules after a node upgrade.

Usage

Simple example, included as examples/simple.js:

 var redis = require("redis"),
 client = redis.createClient();

 // if you'd like to select database 3, instead of 0 (default), call
 // client.select(3, function() { /* ... */ });

 client.on("error", function (err) {
 console.log("Error " + err);
 });

 client.set("string key", "string val", redis.print);
 client.hset("hash key", "hashtest 1", "some value", redis.print);
 client.hset(["hash key", "hashtest 2", "some other value"], redis.print);
 client.hkeys("hash key", function (err, replies) {
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 client.quit();
 });

This will display:

mjr:~/work/node_redis (master)$ node example.js
Reply: OK
Reply: 0
Reply: 0
2 replies:
 0: hashtest 1
 1: hashtest 2
mjr:~/work/node_redis (master)$

Performance

Here are typical results of multi_bench.js which is similar to redis-benchmark from the Redis distribution.
It uses 50 concurrent connections with no pipelining.

JavaScript parser:

PING: 20000 ops 42283.30 ops/sec 0/5/1.182
SET: 20000 ops 32948.93 ops/sec 1/7/1.515
GET: 20000 ops 28694.40 ops/sec 0/9/1.740
INCR: 20000 ops 39370.08 ops/sec 0/8/1.269
LPUSH: 20000 ops 36429.87 ops/sec 0/8/1.370
LRANGE (10 elements): 20000 ops 9891.20 ops/sec 1/9/5.048
LRANGE (100 elements): 20000 ops 1384.56 ops/sec 10/91/36.072

hiredis parser:

PING: 20000 ops 46189.38 ops/sec 1/4/1.082
SET: 20000 ops 41237.11 ops/sec 0/6/1.210
GET: 20000 ops 39682.54 ops/sec 1/7/1.257
INCR: 20000 ops 40080.16 ops/sec 0/8/1.242
LPUSH: 20000 ops 41152.26 ops/sec 0/3/1.212
LRANGE (10 elements): 20000 ops 36563.07 ops/sec 1/8/1.363
LRANGE (100 elements): 20000 ops 21834.06 ops/sec 0/9/2.287

The performance of node_redis improves dramatically with pipelining, which happens automatically in most normal programs.

Sending Commands

Each Redis command is exposed as a function on the client object.
All functions take either an args Array plus optional callback Function or
a variable number of individual arguments followed by an optional callback.
Here is an example of passing an array of arguments and a callback:

client.mset(["test keys 1", "test val 1", "test keys 2", "test val 2"], function (err, res) {});

Here is that same call in the second style:

client.mset("test keys 1", "test val 1", "test keys 2", "test val 2", function (err, res) {});

Note that in either form the callback is optional:

client.set("some key", "some val");
client.set(["some other key", "some val"]);

If the key is missing, reply will be null (probably):

client.get("missingkey", function(err, reply) {
 // reply is null when the key is missing
 console.log(reply);
});

For a list of Redis commands, see Redis Command Reference [http://redis.io/commands]

The commands can be specified in uppercase or lowercase for convenience. client.get() is the same as client.GET().

Minimal parsing is done on the replies. Commands that return a single line reply return JavaScript Strings,
integer replies return JavaScript Numbers, “bulk” replies return node Buffers, and “multi bulk” replies return a
JavaScript Array of node Buffers. HGETALL returns an Object with Buffers keyed by the hash keys.

API

Connection Events

client will emit some events about the state of the connection to the Redis server.

“ready”

client will emit ready a connection is established to the Redis server and the server reports
that it is ready to receive commands. Commands issued before the ready event are queued,
then replayed just before this event is emitted.

“connect”

client will emit connect at the same time as it emits ready unless client.options.no_ready_check
is set. If this options is set, connect will be emitted when the stream is connected, and then
you are free to try to send commands.

“error”

client will emit error when encountering an error connecting to the Redis server.

Note that “error” is a special event type in node. If there are no listeners for an
“error” event, node will exit. This is usually what you want, but it can lead to some
cryptic error messages like this:

mjr:~/work/node_redis (master)$ node example.js

node.js:50
 throw e;
 ^
Error: ECONNREFUSED, Connection refused
 at IOWatcher.callback (net:870:22)
 at node.js:607:9

Not very useful in diagnosing the problem, but if your program isn’t ready to handle this,
it is probably the right thing to just exit.

client will also emit error if an exception is thrown inside of node_redis for whatever reason.
It would be nice to distinguish these two cases.

“end”

client will emit end when an established Redis server connection has closed.

“drain”

client will emit drain when the TCP connection to the Redis server has been buffering, but is now
writable. This event can be used to stream commands in to Redis and adapt to backpressure. Right now,
you need to check client.command_queue.length to decide when to reduce your send rate. Then you can
resume sending when you get drain.

“idle”

client will emit idle when there are no outstanding commands that are awaiting a response.

redis.createClient(port, host, options)

Create a new client connection. port defaults to 6379 and host defaults
to 127.0.0.1. If you have redis-server running on the same computer as node, then the defaults for
port and host are probably fine. options in an object with the following possible properties:

		parser: which Redis protocol reply parser to use. Defaults to hiredis if that module is installed.
This may also be set to javascript.

		return_buffers: defaults to false. If set to true, then all replies will be sent to callbacks as node Buffer
objects instead of JavaScript Strings.

		detect_buffers: default to false. If set to true, then replies will be sent to callbacks as node Buffer objects
if any of the input arguments to the original command were Buffer objects.
This option lets you switch between Buffers and Strings on a per-command basis, whereas return_buffers applies to
every command on a client.

		socket_nodelay: defaults to true. Whether to call setNoDelay() on the TCP stream, which disables the
Nagle algorithm on the underlying socket. Setting this option to false can result in additional throughput at the
cost of more latency. Most applications will want this set to true.

		no_ready_check: defaults to false. When a connection is established to the Redis server, the server might still
be loading the database from disk. While loading, the server not respond to any commands. To work around this,
node_redis has a “ready check” which sends the INFO command to the server. The response from the INFO command
indicates whether the server is ready for more commands. When ready, node_redis emits a ready event.
Setting no_ready_check to true will inhibit this check.

		enable_offline_queue: defaults to true. By default, if there is no active
connection to the redis server, commands are added to a queue and are executed
once the connection has been established. Setting enable_offline_queue to
false will disable this feature and the callback will be execute immediately
with an error, or an error will be thrown if no callback is specified.

 var redis = require("redis"),
 client = redis.createClient(null, null, {detect_buffers: true});

 client.set("foo_rand000000000000", "OK");

 // This will return a JavaScript String
 client.get("foo_rand000000000000", function (err, reply) {
 console.log(reply.toString()); // Will print `OK`
 });

 // This will return a Buffer since original key is specified as a Buffer
 client.get(new Buffer("foo_rand000000000000"), function (err, reply) {
 console.log(reply.toString()); // Will print `<Buffer 4f 4b>`
 });
 client.end();

createClient() returns a RedisClient object that is named client in all of the examples here.

client.auth(password, callback)

When connecting to Redis servers that require authentication, the AUTH command must be sent as the
first command after connecting. This can be tricky to coordinate with reconnections, the ready check,
etc. To make this easier, client.auth() stashes password and will send it after each connection,
including reconnections. callback is invoked only once, after the response to the very first
AUTH command sent.
NOTE: Your call to client.auth() should not be inside the ready handler. If
you are doing this wrong, client will emit an error that looks
something like this Error: Ready check failed: ERR operation not permitted.

client.end()

Forcibly close the connection to the Redis server. Note that this does not wait until all replies have been parsed.
If you want to exit cleanly, call client.quit() to send the QUIT command after you have handled all replies.

This example closes the connection to the Redis server before the replies have been read. You probably don’t
want to do this:

 var redis = require("redis"),
 client = redis.createClient();

 client.set("foo_rand000000000000", "some fantastic value");
 client.get("foo_rand000000000000", function (err, reply) {
 console.log(reply.toString());
 });
 client.end();

client.end() is useful for timeout cases where something is stuck or taking too long and you want
to start over.

Friendlier hash commands

Most Redis commands take a single String or an Array of Strings as arguments, and replies are sent back as a single String or an Array of Strings.
When dealing with hash values, there are a couple of useful exceptions to this.

client.hgetall(hash)

The reply from an HGETALL command will be converted into a JavaScript Object by node_redis. That way you can interact
with the responses using JavaScript syntax.

Example:

client.hmset("hosts", "mjr", "1", "another", "23", "home", "1234");
client.hgetall("hosts", function (err, obj) {
 console.dir(obj);
});

Output:

{ mjr: '1', another: '23', home: '1234' }

client.hmset(hash, obj, [callback])

Multiple values in a hash can be set by supplying an object:

client.HMSET(key2, {
 "0123456789": "abcdefghij", // NOTE: the key and value must both be strings
 "some manner of key": "a type of value"
});

The properties and values of this Object will be set as keys and values in the Redis hash.

client.hmset(hash, key1, val1, ... keyn, valn, [callback])

Multiple values may also be set by supplying a list:

client.HMSET(key1, "0123456789", "abcdefghij", "some manner of key", "a type of value");

Publish / Subscribe

Here is a simple example of the API for publish / subscribe. This program opens two
client connections, subscribes to a channel on one of them, and publishes to that
channel on the other:

 var redis = require("redis"),
 client1 = redis.createClient(), client2 = redis.createClient(),
 msg_count = 0;

 client1.on("subscribe", function (channel, count) {
 client2.publish("a nice channel", "I am sending a message.");
 client2.publish("a nice channel", "I am sending a second message.");
 client2.publish("a nice channel", "I am sending my last message.");
 });

 client1.on("message", function (channel, message) {
 console.log("client1 channel " + channel + ": " + message);
 msg_count += 1;
 if (msg_count === 3) {
 client1.unsubscribe();
 client1.end();
 client2.end();
 }
 });

 client1.incr("did a thing");
 client1.subscribe("a nice channel");

When a client issues a SUBSCRIBE or PSUBSCRIBE, that connection is put into “pub/sub” mode.
At that point, only commands that modify the subscription set are valid. When the subscription
set is empty, the connection is put back into regular mode.

If you need to send regular commands to Redis while in pub/sub mode, just open another connection.

Pub / Sub Events

If a client has subscriptions active, it may emit these events:

“message” (channel, message)

Client will emit message for every message received that matches an active subscription.
Listeners are passed the channel name as channel and the message Buffer as message.

“pmessage” (pattern, channel, message)

Client will emit pmessage for every message received that matches an active subscription pattern.
Listeners are passed the original pattern used with PSUBSCRIBE as pattern, the sending channel
name as channel, and the message Buffer as message.

“subscribe” (channel, count)

Client will emit subscribe in response to a SUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count.

“psubscribe” (pattern, count)

Client will emit psubscribe in response to a PSUBSCRIBE command. Listeners are passed the
original pattern as pattern, and the new count of subscriptions for this client as count.

“unsubscribe” (channel, count)

Client will emit unsubscribe in response to a UNSUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count. When
count is 0, this client has left pub/sub mode and no more pub/sub events will be emitted.

“punsubscribe” (pattern, count)

Client will emit punsubscribe in response to a PUNSUBSCRIBE command. Listeners are passed the
channel name as channel and the new count of subscriptions for this client as count. When
count is 0, this client has left pub/sub mode and no more pub/sub events will be emitted.

client.multi([commands])

MULTI commands are queued up until an EXEC is issued, and then all commands are run atomically by
Redis. The interface in node_redis is to return an individual Multi object by calling client.multi().

 var redis = require("./index"),
 client = redis.createClient(), set_size = 20;

 client.sadd("bigset", "a member");
 client.sadd("bigset", "another member");

 while (set_size > 0) {
 client.sadd("bigset", "member " + set_size);
 set_size -= 1;
 }

 // multi chain with an individual callback
 client.multi()
 .scard("bigset")
 .smembers("bigset")
 .keys("*", function (err, replies) {
 // NOTE: code in this callback is NOT atomic
 // this only happens after the the .exec call finishes.
 client.mget(replies, redis.print);
 })
 .dbsize()
 .exec(function (err, replies) {
 console.log("MULTI got " + replies.length + " replies");
 replies.forEach(function (reply, index) {
 console.log("Reply " + index + ": " + reply.toString());
 });
 });

client.multi() is a constructor that returns a Multi object. Multi objects share all of the
same command methods as client objects do. Commands are queued up inside the Multi object
until Multi.exec() is invoked.

You can either chain together MULTI commands as in the above example, or you can queue individual
commands while still sending regular client command as in this example:

 var redis = require("redis"),
 client = redis.createClient(), multi;

 // start a separate multi command queue
 multi = client.multi();
 multi.incr("incr thing", redis.print);
 multi.incr("incr other thing", redis.print);

 // runs immediately
 client.mset("incr thing", 100, "incr other thing", 1, redis.print);

 // drains multi queue and runs atomically
 multi.exec(function (err, replies) {
 console.log(replies); // 101, 2
 });

 // you can re-run the same transaction if you like
 multi.exec(function (err, replies) {
 console.log(replies); // 102, 3
 client.quit();
 });

In addition to adding commands to the MULTI queue individually, you can also pass an array
of commands and arguments to the constructor:

 var redis = require("redis"),
 client = redis.createClient(), multi;

 client.multi([
 ["mget", "multifoo", "multibar", redis.print],
 ["incr", "multifoo"],
 ["incr", "multibar"]
]).exec(function (err, replies) {
 console.log(replies);
 });

Monitor mode

Redis supports the MONITOR command, which lets you see all commands received by the Redis server
across all client connections, including from other client libraries and other computers.

After you send the MONITOR command, no other commands are valid on that connection. node_redis
will emit a monitor event for every new monitor message that comes across. The callback for the
monitor event takes a timestamp from the Redis server and an array of command arguments.

Here is a simple example:

 var client = require("redis").createClient(),
 util = require("util");

 client.monitor(function (err, res) {
 console.log("Entering monitoring mode.");
 });

 client.on("monitor", function (time, args) {
 console.log(time + ": " + util.inspect(args));
 });

Extras

Some other things you might like to know about.

client.server_info

After the ready probe completes, the results from the INFO command are saved in the client.server_info
object.

The versions key contains an array of the elements of the version string for easy comparison.

> client.server_info.redis_version
'2.3.0'
> client.server_info.versions
[2, 3, 0]

redis.print()

A handy callback function for displaying return values when testing. Example:

 var redis = require("redis"),
 client = redis.createClient();

 client.on("connect", function () {
 client.set("foo_rand000000000000", "some fantastic value", redis.print);
 client.get("foo_rand000000000000", redis.print);
 });

This will print:

Reply: OK
Reply: some fantastic value

Note that this program will not exit cleanly because the client is still connected.

redis.debug_mode

Boolean to enable debug mode and protocol tracing.

 var redis = require("redis"),
 client = redis.createClient();

 redis.debug_mode = true;

 client.on("connect", function () {
 client.set("foo_rand000000000000", "some fantastic value");
 });

This will display:

mjr:~/work/node_redis (master)$ node ~/example.js
send command: *3
$3
SET
$20
foo_rand000000000000
$20
some fantastic value

on_data: +OK

send command is data sent into Redis and on_data is data received from Redis.

client.send_command(command_name, args, callback)

Used internally to send commands to Redis. For convenience, nearly all commands that are published on the Redis
Wiki have been added to the client object. However, if I missed any, or if new commands are introduced before
this library is updated, you can use send_command() to send arbitrary commands to Redis.

All commands are sent as multi-bulk commands. args can either be an Array of arguments, or omitted.

client.connected

Boolean tracking the state of the connection to the Redis server.

client.command_queue.length

The number of commands that have been sent to the Redis server but not yet replied to. You can use this to
enforce some kind of maximum queue depth for commands while connected.

Don’t mess with client.command_queue though unless you really know what you are doing.

client.offline_queue.length

The number of commands that have been queued up for a future connection. You can use this to enforce
some kind of maximum queue depth for pre-connection commands.

client.retry_delay

Current delay in milliseconds before a connection retry will be attempted. This starts at 250.

client.retry_backoff

Multiplier for future retry timeouts. This should be larger than 1 to add more time between retries.
Defaults to 1.7. The default initial connection retry is 250, so the second retry will be 425, followed by 723.5, etc.

Commands with Optional and Keyword arguments

This applies to anything that uses an optional [WITHSCORES] or [LIMIT offset count] in the redis.io/commands [http://redis.io/commands] documentation.

Example:

var args = ['myzset', 1, 'one', 2, 'two', 3, 'three', 99, 'ninety-nine'];
client.zadd(args, function (err, response) {
 if (err) throw err;
 console.log('added '+response+' items.');

 // -Infinity and +Infinity also work
 var args1 = ['myzset', '+inf', '-inf'];
 client.zrevrangebyscore(args1, function (err, response) {
 if (err) throw err;
 console.log('example1', response);
 // write your code here
 });

 var max = 3, min = 1, offset = 1, count = 2;
 var args2 = ['myzset', max, min, 'WITHSCORES', 'LIMIT', offset, count];
 client.zrevrangebyscore(args2, function (err, response) {
 if (err) throw err;
 console.log('example2', response);
 // write your code here
 });
});

TODO

Better tests for auth, disconnect/reconnect, and all combinations thereof.

Stream large set/get values into and out of Redis. Otherwise the entire value must be in node’s memory.

Performance can be better for very large values.

I think there are more performance improvements left in there for smaller values, especially for large lists of small values.

How to Contribute

		open a pull request and then wait for feedback (if
DTrejo [http://github.com/dtrejo] does not get back to you within 2 days,
comment again with indignation!)

Contributors

Some people have have added features and fixed bugs in node_redis other than me.

Ordered by date of first contribution.
Auto-generated [http://github.com/dtrejo/node-authors] on Wed Jul 25 2012 19:14:59 GMT-0700 (PDT).

		Matt Ranney aka mranney [https://github.com/mranney]

		Tim-Smart aka tim-smart [https://github.com/tim-smart]

		Tj Holowaychuk aka visionmedia [https://github.com/visionmedia]

		rick aka technoweenie [https://github.com/technoweenie]

		Orion Henry aka orionz [https://github.com/orionz]

		Aivo Paas aka aivopaas [https://github.com/aivopaas]

		Hank Sims aka hanksims [https://github.com/hanksims]

		Paul Carey aka paulcarey [https://github.com/paulcarey]

		Pieter Noordhuis aka pietern [https://github.com/pietern]

		nithesh aka nithesh [https://github.com/nithesh]

		Andy Ray aka andy2ray [https://github.com/andy2ray]

		unknown aka unknowdna [https://github.com/unknowdna]

		Dave Hoover aka redsquirrel [https://github.com/redsquirrel]

		Vladimir Dronnikov aka dvv [https://github.com/dvv]

		Umair Siddique aka umairsiddique [https://github.com/umairsiddique]

		Louis-Philippe Perron aka lp [https://github.com/lp]

		Mark Dawson aka markdaws [https://github.com/markdaws]

		Ian Babrou aka bobrik [https://github.com/bobrik]

		Felix Geisendörfer aka felixge [https://github.com/felixge]

		Jean-Hugues Pinson aka undefined [https://github.com/undefined]

		Maksim Lin aka maks [https://github.com/maks]

		Owen Smith aka orls [https://github.com/orls]

		Zachary Scott aka zzak [https://github.com/zzak]

		TEHEK Firefox aka TEHEK [https://github.com/TEHEK]

		Isaac Z. Schlueter aka isaacs [https://github.com/isaacs]

		David Trejo aka DTrejo [https://github.com/DTrejo]

		Brian Noguchi aka bnoguchi [https://github.com/bnoguchi]

		Philip Tellis aka bluesmoon [https://github.com/bluesmoon]

		Marcus Westin aka marcuswestin2 [https://github.com/marcuswestin2]

		Jed Schmidt aka jed [https://github.com/jed]

		Dave Peticolas aka jdavisp3 [https://github.com/jdavisp3]

		Trae Robrock aka trobrock [https://github.com/trobrock]

		Shankar Karuppiah aka shankar0306 [https://github.com/shankar0306]

		Ignacio Burgueño aka ignacio [https://github.com/ignacio]

Thanks.

LICENSE - “MIT License”

Copyright (c) 2010 Matthew Ranney, http://ranney.com/

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

[image: spacer]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.17.0 / 2014-03-06

		supply uri malformed error to the callback (yields)

		add request event (yields)

		allow simple auth (yields)

		add request event (yields)

		switch to component/reduce (visionmedia)

		fix part content-disposition (mscdex)

		add browser testing via zuul (defunctzombie)

		adds request.use() (johntron)

0.16.0 / 2014-01-07

		remove support for 0.6 (superjoe30)

		fix CORS withCredentials (wejendorp)

		add “test” script (superjoe30)

		add request .accept() method (nickl-)

		add xml to mime types mappings (nickl-)

		fix parse body error on HEAD requests (gjohnson)

		fix documentation typos (matteofigus)

		fix content-type + charset (bengourley)

		fix null values on query parameters (cristiandouce)

0.15.7 / 2013-10-19

		pin should.js to 1.3.0 due to breaking change in 2.0.x

		fix browserify regression

0.15.5 / 2013-10-09

		add browser field to support browserify

		fix .field() value number support

0.15.4 / 2013-07-09

		node: add a Request#agent() function to set the http Agent to use

0.15.3 / 2013-07-05

		fix .pipe() unzipping on more recent nodes. Closes #240

		fix passing an empty object to .query() no longer appends ”?”

		fix formidable error handling

		update formidable

0.15.2 / 2013-07-02

		fix: emit ‘end’ when piping.

0.15.1 / 2013-06-26

		add try/catch around parseLinks

0.15.0 / 2013-06-25

		make Response#toError() have a more meaningful message

0.14.9 / 2013-06-15

		add debug()s to the node client

		add .abort() method to node client

0.14.8 / 2013-06-13

		set .agent = false always

		remove X-Requested-With. Closes #189

0.14.7 / 2013-06-06

		fix unzip error handling

0.14.6 / 2013-05-23

		fix HEAD unzip bug

0.14.5 / 2013-05-23

		add flag to ensure the callback is never invoked twice

0.14.4 / 2013-05-22

		add superagent.js build output

		update qs

		update emitter-component

		revert “add browser field to support browserify” see GH-221

0.14.3 / 2013-05-18

		add browser field to support browserify

0.14.2/ 2013-05-07

		add host object check to fix serialization of File/Blobs etc as json

0.14.1 / 2013-04-09

		update qs

0.14.0 / 2013-04-02

		add client-side basic auth

		fix retaining of .set() header field case

0.13.0 / 2013-03-13

		add progress events to client

		add simple example

		add res.headers as alias of res.header for browser client

		add res.get(field) to node/client

0.12.4 / 2013-02-11

		fix get content-type even if can’t get other headers in firefox. fixes #181

0.12.3 / 2013-02-11

		add quick “progress” event support

0.12.2 / 2013-02-04

		add test to check if response acts as a readable stream

		add ReadableStream in the Response prototype.

		add test to assert correct redirection when the host changes in the location header.

		add default Accept-Encoding. Closes #155

		fix req.pipe() return value of original stream for node parity. Closes #171

		remove the host header when cleaning headers to properly follow the redirection.

0.12.1 / 2013-01-10

		add x-domain error handling

0.12.0 / 2013-01-04

		add header persistence on redirects

0.11.0 / 2013-01-02

		add .error Error object. Closes #156

		add forcing of res.text removal for FF HEAD responses. Closes #162

		add reduce component usage. Closes #90

		move better-assert dep to development deps

0.10.0 / 2012-11-14

		add req.timeout(ms) support for the client

0.9.10 / 2012-11-14

		fix client-side .query(str) support

0.9.9 / 2012-11-14

		add .parse(fn) support

		fix socket hangup with dates in querystring. Closes #146

		fix socket hangup “error” event when a callback of arity 2 is provided

0.9.8 / 2012-11-03

		add emission of error from Request#callback()

		add a better fix for nodes weird socket hang up error

		add PUT/POST/PATCH data support to client short-hand functions

		add .license property to component.json

		change client portion to build using component(1)

		fix GET body support [guille]

0.9.7 / 2012-10-19

		fix .buffer() res.text when no parser matches

0.9.6 / 2012-10-17

		change: use this when window is undefined

		update to new component spec [juliangruber]

		fix emission of “data” events for compressed responses without encoding. Closes #125

0.9.5 / 2012-10-01

		add field name to .attach()

		add text “parser”

		refactor isObject()

		remove wtf isFunction() helper

0.9.4 / 2012-09-20

		fix Buffer responses [TooTallNate]

		fix res.type when a “type” param is present [TooTallNate]

0.9.3 / 2012-09-18

		remove GET .send() == .query() special-case (API change !!!)

0.9.2 / 2012-09-17

		add .aborted prop

		add .abort(). Closes #115

0.9.1 / 2012-09-07

		add .forbidden response property

		add component.json

		change emitter-component to 0.0.5

		fix client-side tests

0.9.0 / 2012-08-28

		add .timeout(ms). Closes #17

0.8.2 / 2012-08-28

		fix pathname relative redirects. Closes #112

0.8.1 / 2012-08-21

		fix redirects when schema is specified

0.8.0 / 2012-08-19

		add res.buffered flag

		add buffering of text/*, json and forms only by default. Closes #61

		add .buffer(false) cancellation

		add cookie jar support [hunterloftis]

		add agent functionality [hunterloftis]

0.7.0 / 2012-08-03

		allow query() to be called after the internal req has been created [tootallnate]

0.6.0 / 2012-07-17

		add res.send('foo=bar') default of “application/x-www-form-urlencoded”

0.5.1 / 2012-07-16

		add “methods” dep

		add .end() arity check to node callbacks

		fix unzip support due to weird node internals

0.5.0 / 2012-06-16

		Added “Link” response header field parsing, exposing res.links

0.4.3 / 2012-06-15

		Added 303, 305 and 307 as redirect status codes [slaskis]

		Fixed passing an object as the url

0.4.2 / 2012-06-02

		Added component support

		Fixed redirect data

0.4.1 / 2012-04-13

		Added HTTP PATCH support

		Fixed: GET / HEAD when following redirects. Closes #86

		Fixed Content-Length detection for multibyte chars

0.4.0 / 2012-03-04

		Added .head() method [browser]. Closes #78

		Added make test-cov support

		Added multipart request support. Closes #11

		Added all methods that node supports. Closes #71

		Added “response” event providing a Response object. Closes #28

		Added .query(obj). Closes #59

		Added res.type (browser). Closes #54

		Changed: default res.body and res.files to {}

		Fixed: port existing query-string fix (browser). Closes #57

0.3.0 / 2012-01-24

		Added deflate/gzip support [guillermo]

		Added res.type (Content-Type void of params)

		Added res.statusCode to mirror node

		Added res.headers to mirror node

		Changed: parsers take callbacks

		Fixed optional schema support. Closes #49

0.2.0 / 2012-01-05

		Added url auth support

		Added .auth(username, password)

		Added basic auth support [node]. Closes #41

		Added make test-docs

		Added guillermo’s EventEmitter. Closes #16

		Removed Request#data() for SS, renamed to send()

		Removed Request#data() from client, renamed to send()

		Fixed array support. [browser]

		Fixed array support. Closes #35 [node]

		Fixed EventEmitter#emit()

0.1.3 / 2011-10-25

		Added error to callback

		Bumped node dep for 0.5.x

0.1.2 / 2011-09-24

		Added markdown documentation

		Added request(url[, fn]) support to the client

		Added qs dependency to package.json

		Added options for Request#pipe()

		Added support for request(url, callback)

		Added request(url) as shortcut for request.get(url)

		Added Request#pipe(stream)

		Added inherit from Stream

		Added multipart support

		Added ssl support (node)

		Removed Content-Length field from client

		Fixed buffering, setEncoding() to utf8 [reported by stagas]

		Fixed “end” event when piping

0.1.1 / 2011-08-20

		Added res.redirect flag (node)

		Added redirect support (node)

		Added Request#redirects(n) (node)

		Added .set(object) header field support

		Fixed Content-Length support

0.1.0 / 2011-08-09

		Added support for multiple calls to .data()

		Added support for .get(uri, obj)

		Added GET .data() querystring support

		Added IE{6,7,8} support [alexyoung]

0.0.1 / 2011-08-05

		Initial commit

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/q/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 For pull requests:

		Be consistent with prevalent style and design decisions.

		Add a Jasmine spec to specs/q-spec.js.

		Use npm test to avoid regressions.

		Run tests in q-spec/run.html in as many supported browsers as you
can find the will to deal with.

		Do not build minified versions; we do this each release.

		If you would be so kind, add a note to CHANGES.md in an
appropriate section:
		Next Major Version if it introduces backward incompatibilities
to code in the wild using documented features.

		Next Minor Version if it adds a new feature.

		Next Patch Version if it fixes a bug.

For releases:

		Run npm test.

		Run tests in q-spec/run.html in a representative sample of every
browser under the sun.

		Run npm run cover and make sure you’re happy with the results.

		Run npm run minify and be sure to commit the resulting q.min.js.

		Note the Gzipped size output by the previous command, and update
README.md if it has changed to 1 significant digit.

		Stash any local changes.

		Update CHANGES.md to reflect all changes in the differences
between HEAD and the previous tagged version. Give credit where
credit is due.

		Update README.md to address all new, non-experimental features.

		Update the API reference on the Wiki to reflect all non-experimental
features.

		Use npm version major|minor|patch to update package.json,
commit, and tag the new version.

		Use npm publish to send up a new release.

		Send an email to the q-continuum mailing list announcing the new
release and the notes from the change log. This helps folks
maintaining other package ecosystems.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/cookiejar/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #CookieJar

Simple robust cookie library

##Exports

###CookieAccessInfo(domain,path,secure,script)
class to determine matching qualities of a cookie

#####Properties

		String domain - domain to match

		String path - path to match

		Boolean secure - access is secure (ssl generally)

		Boolean script - access is from a script

###Cookie(cookiestr_or_cookie)
turns input into a Cookie (singleton if given a Cookie)

#####Properties

		String name - name of the cookie

		String value - string associated with the cookie

		String domain - domain to match (on a cookie a ‘.’ at the start means a wildcard matching anything ending in the rest)

		String path - base path to match (matches any path starting with this ‘/’ is root)

		Boolean noscript - if it should be kept from scripts

		Boolean secure - should it only be transmitted over secure means

		Number expiration_date - number of millis since 1970 at which this should be removed

#####Methods

		String toString() - the set-cookie: string for this cookie

		String toValueString() - the cookie: string for this cookie

		Cookie parse(cookiestr) - parses the string onto this cookie or a new one if called directly

		Boolean matches(access_info) - returns true if the access_info allows retrieval of this cookie

		Boolean collidesWith(cookie) - returns true if the cookies cannot exist in the same space (domain and path match)

###CookieJar()
class to hold numerous cookies from multiple domains correctly

#####Methods

		Cookie setCookie(cookie) - add a cookie to the jar

		Cookie[] setCookies(cookiestr_or_list) - add a large number of cookies to the jar

		Cookie getCookie(cookie_name,access_info) - get a cookie with the name and access_info matching

		Cookie[] getCookies(access_info) - grab all cookies matching this access_info

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/lodash/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Lo-Dash v2.4.1

A utility library delivering consistency, customization [http://lodash.com/custom-builds], performance [http://lodash.com/benchmarks], & extras [http://lodash.com/#features].

Download

Check out our wiki for details over the differences between builds.

		Modern builds perfect for newer browsers/environments:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.min.js]

		Compatibility builds for older environment support too:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.compat.min.js]

		Underscore builds to use as a drop-in replacement:

Development [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.js] &
Production [https://raw.github.com/lodash/lodash/2.4.1/dist/lodash.underscore.min.js]

CDN copies are available on cdnjs [http://cdnjs.com/libraries/lodash.js/] & jsDelivr [http://www.jsdelivr.com/#!lodash]. For smaller file sizes, create custom builds [http://lodash.com/custom-builds] with only the features needed.

Love modules? We’ve got you covered with lodash-amd [https://npmjs.org/package/lodash-amd], lodash-es6 [https://github.com/lodash/lodash-es6], lodash-node [https://npmjs.org/package/lodash-node], & npm packages [https://npmjs.org/browse/keyword/lodash-modularized] per method.

Dive in

There’s plenty of documentation [http://lodash.com/docs], unit tests [http://lodash.com/tests], & benchmarks [http://lodash.com/benchmarks].

Check out DevDocs as a fast, organized, & searchable interface for our documentation.

The full changelog for this release is available on our wiki [https://github.com/lodash/lodash/wiki/Changelog].

A list of upcoming features is available on our roadmap [https://github.com/lodash/lodash/wiki/Roadmap].

Features not in Underscore

		AMD loader support (curl [https://github.com/cujojs/curl], dojo [http://dojotoolkit.org/], requirejs [http://requirejs.org/], etc.)

		(…) [http://lodash.com/docs#] supports intuitive chaining

		_.at [http://lodash.com/docs#at] for cherry-picking collection values

		_.bindKey [http://lodash.com/docs#bindKey] for binding “lazy” [http://michaux.ca/articles/lazy-function-definition-pattern] defined methods

		_.clone [http://lodash.com/docs#clone] supports shallow cloning of Date & RegExp objects

		_.cloneDeep [http://lodash.com/docs#cloneDeep] for deep cloning arrays & objects

		_.constant [http://lodash.com/docs#constant] & _.property [http://lodash.com/docs#property] function generators for composing functions

		_.contains [http://lodash.com/docs#contains] accepts a fromIndex

		_.create [http://lodash.com/docs#create] for easier object inheritance

		_.createCallback [http://lodash.com/docs#createCallback] for extending callbacks in methods & mixins

		_.curry [http://lodash.com/docs#curry] for creating curried [http://hughfdjackson.com/javascript/2013/07/06/why-curry-helps/] functions

		_.debounce [http://lodash.com/docs#debounce] & _.throttle [http://lodash.com/docs#throttle] accept additional options for more control

		_.findIndex [http://lodash.com/docs#findIndex] & _.findKey [http://lodash.com/docs#findKey] for finding indexes & keys

		_.forEach [http://lodash.com/docs#forEach] is chainable & supports exiting early

		_.forIn [http://lodash.com/docs#forIn] for iterating own & inherited properties

		_.forOwn [http://lodash.com/docs#forOwn] for iterating own properties

		_.isPlainObject [http://lodash.com/docs#isPlainObject] for checking if values are created by Object

		_.mapValues [http://lodash.com/docs#mapValues] for mapping [http://lodash.com/docs#map] values to an object

		_.memoize [http://lodash.com/docs#memoize] exposes the cache of memoized functions

		_.merge [http://lodash.com/docs#merge] for a deep _.extend [http://lodash.com/docs#extend]

		_.noop [http://lodash.com/docs#noop] for function placeholders

		_.now [http://lodash.com/docs#now] as a cross-browser Date.now alternative

		_.parseInt [http://lodash.com/docs#parseInt] for consistent behavior

		_.pull [http://lodash.com/docs#pull] & _.remove [http://lodash.com/docs#remove] for mutating arrays

		_.random [http://lodash.com/docs#random] supports returning floating-point numbers

		_.runInContext [http://lodash.com/docs#runInContext] for easier mocking

		_.sortBy [http://lodash.com/docs#sortBy] supports sorting by multiple properties

		_.support [http://lodash.com/docs#support] for flagging environment features

		_.template [http://lodash.com/docs#template] supports “imports” [http://lodash.com/docs#templateSettings_imports] options & ES6 template delimiters [http://people.mozilla.org/~jorendorff/es6-draft.html#sec-literals-string-literals]

		_.transform [http://lodash.com/docs#transform] as a powerful alternative to _.reduce [http://lodash.com/docs#reduce] for transforming objects

		_.where [http://lodash.com/docs#where] supports deep object comparisons

		_.xor [http://lodash.com/docs#xor] as a companion to _.difference [http://lodash.com/docs#difference], _.intersection [http://lodash.com/docs#intersection], & _.union [http://lodash.com/docs#union]

		_.zip [http://lodash.com/docs#zip] is capable of unzipping values

		_.omit [http://lodash.com/docs#omit], _.pick [http://lodash.com/docs#pick], &
more [http://lodash.com/docs] accept callbacks

		_.contains [http://lodash.com/docs#contains], _.toArray [http://lodash.com/docs#toArray], &
more [http://lodash.com/docs] accept strings

		_.filter [http://lodash.com/docs#filter], _.map [http://lodash.com/docs#map], &
more [http://lodash.com/docs] support *“_.pluck”* & *“_.where”* shorthands

		_.findLast [http://lodash.com/docs#findLast], _.findLastIndex [http://lodash.com/docs#findLastIndex], &
more [http://lodash.com/docs] right-associative methods

Resources

		Podcasts

		JavaScript Jabber [http://javascriptjabber.com/079-jsj-lo-dash-with-john-david-dalton/]

		Posts

		Say “Hello” to Lo-Dash [http://kitcambridge.be/blog/say-hello-to-lo-dash/]

		Custom builds in Lo-Dash 2.0 [http://kitcambridge.be/blog/custom-builds-in-lo-dash-2-dot-0/]

		Videos

		Introduction [https://vimeo.com/44154599]

		Origins [https://vimeo.com/44154600]

		Optimizations & builds [https://vimeo.com/44154601]

		Native method use [https://vimeo.com/48576012]

		Testing [https://vimeo.com/45865290]

		CascadiaJS ’12 [http://www.youtube.com/watch?v=dpPy4f_SeEk]

A list of other community created podcasts, posts, & videos is available on our wiki [https://github.com/lodash/lodash/wiki/Resources].

Support

Tested in Chrome 5~31, Firefox 2~25, IE 6-11, Opera 9.25~17, Safari 3-7, Node.js 0.6.21~0.10.22, Narwhal 0.3.2, PhantomJS 1.9.2, RingoJS 0.9, & Rhino 1.7RC5.

Automated browser test results are available [https://saucelabs.com/u/lodash] as well as Travis CI [https://travis-ci.org/] builds for lodash [https://travis-ci.org/lodash/lodash/], lodash-cli [https://travis-ci.org/lodash/lodash-cli/], lodash-amd [https://travis-ci.org/lodash/lodash-amd/], lodash-node [https://travis-ci.org/lodash/lodash-node/], & grunt-lodash [https://travis-ci.org/lodash/grunt-lodash].

Special thanks to Sauce Labs [https://saucelabs.com/] for providing automated browser testing.

[image: Sauce Labs] [https://saucelabs.com/]

Installation & usage

In browsers:

<script src="lodash.js"></script>

Using npm [http://npmjs.org/]:

npm i --save lodash

{sudo} npm i -g lodash
npm ln lodash

In Node.js [http://nodejs.org/] & Ringo [http://ringojs.org/]:

var _ = require('lodash');
// or as Underscore
var _ = require('lodash/dist/lodash.underscore');

Notes:

		Don’t assign values to special variable [http://nodejs.org/api/repl.html#repl_repl_features] _ when in the REPL

		If Lo-Dash is installed globally, run npm ln lodash [http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/] in your project’s root directory before requiring it

In Rhino [http://www.mozilla.org/rhino/]:

load('lodash.js');

In an AMD loader:

require({
 'packages': [
 { 'name': 'lodash', 'location': 'path/to/lodash', 'main': 'lodash' }
]
},
['lodash'], function(_) {
 console.log(_.VERSION);
});

Author

| [image: twitter/jdalton] [https://twitter.com/jdalton] |
|—|
| John-David Dalton [http://allyoucanleet.com/] |

Contributors

[image: twitter/blainebublitz] [https://twitter.com/blainebublitz]	[image: twitter/kitcambridge] [https://twitter.com/kitcambridge]	[image: twitter/mathias] [https://twitter.com/mathias]
—	—	—
Blaine Bublitz [http://www.iceddev.com/]	Kit Cambridge [http://kitcambridge.be/]	Mathias Bynens [http://mathiasbynens.be/]

[image: Bitdeli Badge] [https://bitdeli.com/free]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/superagent/node_modules/emitter-component/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.0.6 / 2012-10-08

		add this._callbacks initialization to prevent funky gotcha

0.0.5 / 2012-09-07

		fix Emitter.call(this) usage

0.0.3 / 2012-07-11

		add .listeners()

		rename .has() to .hasListeners()

0.0.2 / 2012-06-28

		fix .off() with .once()-registered callbacks

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/node_modules/ws/node_modules/tinycolor/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

tinycolor

This is a no-fuzz, barebone, zero muppetry color module for node.js.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [https://travis-ci.org/andrewrk/juice]

Juice [image:]

Given HTML, juice will inline your CSS properties into the style
attribute.

How to use

var juice = require('juice2');
juice("/path/to/file.html", function(err, html) {
 console.log(html);
});

/path/to/file.html:

<html>
<head>
 <style>
 p { color: red; }
 </style>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <p>Test</p>
</body>
</html>

style.css

p {
 text-decoration: underline;
}

Output:

<html>
<head>
</head>
<body>
 <p style="color: red; text-decoration: underline;">Test</p>
</body>
</html>

What is this useful for ?

		HTML emails. For a comprehensive list of supported selectors see
here [http://www.campaignmonitor.com/css/]

		Embedding HTML in 3rd-party websites.

Projects using juice

		node-email-templates [https://github.com/niftylettuce/node-email-templates] - Node.js module for rendering beautiful emails with ejs [https://github.com/visionmedia/ejs] templates and email-friendly inline CSS using juice [https://github.com/LearnBoost/juice].

		swig-email-templates [https://github.com/andrewrk/swig-email-templates] - Uses swig [https://github.com/paularmstrong/swig], which gives you template inheritance [https://docs.djangoproject.com/en/dev/topics/templates/#template-inheritance], and
can generate a dummy context [https://github.com/andrewrk/swig-dummy-context] from a template.

Documentation

juice(filePath, [options], callback)

		filePath - html file

		options - (optional) object containing these properties:
		extraCss - extra css to apply to the file. Defaults to "".

		applyStyleTags - whether to inline styles in <style></style>
Defaults to true.

		applyLinkTags - whether to resolve <link rel="stylesheet"> tags
and inline the resulting styles. Defaults to true.

		removeStyleTags - whether to remove the original <style></style>
tags after (possibly) inlining the css from them. Defaults to true.

		removeLinkTags - whether to remove the original <link rel="stylesheet">
tags after (possibly) inlining the css from them. Defaults to true.

		url - how to resolve hrefs. Defaults to using filePath. If you want
to override, be sure your url has the protocol at the beginning, e.g.
http:// or file://.

		callback(err, html)
		err - Error object or null.

		html - contains the html from filePath, with potentially <style> and
<link rel="stylesheet"> tags removed, and css inlined.

juice.juiceContent(html, options, callback)

		html - raw html content

		options - same options as calling juice, except now url is required.

		callback(err, html) - same as calling juice

juice.juiceDocument(document, options, callback)

Operates on a jsdom instance. Be sure to use the same jsdom version that juice
uses. Also be sure to clean up after you are done. You may have to
call document.parentWindow.close() to free up memory.

		document - a jsdom instance

		options - see juice.juiceContent

		callback(err)

juice.inlineContent(html, css)

This takes html and css and returns new html with the provided css inlined.
It does not look at <style> or <link rel="stylesheet"> elements at all.

juice.inlineDocument(document, css)

Given a jsdom instance and css, this modifies the jsdom instance so that the
provided css is inlined. It does not look at <style> or
<link rel="stylesheet"> elements at all.

juice.ignoredPseudos

Array of ignored pseudo-selectors such as ‘hover’ and ‘active’.

Credits

(The MIT License)

Copyright (c) 2011 Guillermo Rauch

<

guillermo@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3rd-party

		Uses the excellent JSDom [http://github.com/tmpvar/jsdom] for the underlying DOM
representation.

		Uses cssom [https://github.com/NV/CSSOM] to parse out CSS selectors and
Slick [http://github.com/subtleGradient/slick] to tokenize them.

		Icon by UnheardSounds [http://unheardsounds.deviantart.com/gallery/26536908#/d2ngozi]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/node_modules/ws/node_modules/options/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

options.js

A very light-weight in-code option parsers for node.js.

Usage

var Options = require("options");

// Create an Options object
function foo(options) {
 var default_options = {
 foo : "bar"
 };

 // Create an option object with default value
 var opts = new Options(default_options);

 // Merge options
 opts = opts.merge(options);

 // Reset to default value
 opts.reset();

 // Copy selected attributes out
 var seled_att = opts.copy("foo");

 // Read json options from a file.
 opts.read("options.file"); // Sync
 opts.read("options.file", function(err){ // Async
 if(err){ // If error occurs
 console.log("File error.");
 }else{
 // No error
 }
 });

 // Attributes defined or not
 opts.isDefinedAndNonNull("foobar");
 opts.isDefined("foobar");
}

License

(The MIT License)

Copyright (c) 2012 Einar Otto Stangvik

<

einaros@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.1.0 (2014-07-05)

		enhancement: @DesignByOnyx [https://github.com/DesignByOnyx]: Add support for filename prefix

		enhancement: @skimmmer [https://github.com/skimmmer]: Add dust-linkedin template engine

		enhancement: @anotherjazz [https://github.com/anotherjazz]: Add emblem template engine

		development: @jksdua [https://github.com/jksdua]: Update node-sass version

1.0.0 (2014-05-27)

		bugfix: @jscharlach [https://github.com/jscharlach]: Fix template scope issues

		development: @jasonsims [https://github.com/jasonsims]: Update all project dependencies

		development: @jasonsims [https://github.com/jasonsims]: Drop support for node v0.8.x

		development: @jonkemp [https://github.com/jonkemp]: Switch to Juice2

0.1.8 (2014-04-03)

		enhancement: @nikuph [https://github.com/nikuph]: Add support for LESS @import statement

		development: @jasonsims [https://github.com/jasonsims]: Add test coverage for LESS @import

0.1.7 (2014-03-24)

		enhancement: @antoinepairet [https://github.com/antoinepairet]: Add support for .scss file extension

		development: Moved changelog to CHANGELOG.md

		development: @jasonsims [https://github.com/jasonsims]: Added [TravisCI][travisci] integration
[travisci]: https://travis-ci.org/niftylettuce/node-email-templates

0.1.6 (2014-03-14)

		development: @jasonsims [https://github.com/jasonsims]: Deprecated windows branch and module

0.1.5 (2014-03-13)

		bugfix: @miguelmota [https://github.com/miguelmota]: Batch templateName issue

0.1.4 (2014-03-10)

		bugfix: Misc bugfixes to main

		development: @jasonsims [https://github.com/jasonsims]: Abstracted templateManager

		development: @jasonsims [https://github.com/jasonsims]: Added integration tests

		development: @jasonsims [https://github.com/jasonsims]: Added unit tests

0.1.3 (2014-03-03)

		enhancement: @jasonsims [https://github.com/jasonsims]: Added support for various CSS pre-processors

0.1.2 (2014-02-22)

		enhancement: @jasonsims [https://github.com/jasonsims]: Added support for multiple HTML template engines

0.1.1 (2013-12-14)

		bugfix: Long path issue for Windows

0.1.0 (2013-04-16)

		bugfix: Batch documentation issue

0.0.9

		bugfix: Juice dependency issue

0.0.8 (2013-03-03)

		enhancement: Minor updates

0.0.7

		enhancement: @nicjansma [https://github.com/nicjansma]: Added support for ejs’s include directive

0.0.6 (2012-11-01)

		bugfix: @vekexasia [https://github.com/vekexasia]: Fixed batch problem (...has no method slice)

0.0.5 (2012-09-12)

		enhancement: Added support for an optional zlib compression type. You can
now return compressed html/text buffer for db storage

template('newsletter', locals, 'deflateRaw', function(err, html, text) {
 // The `html` and `text` are buffers compressed using zlib.deflateRaw
 // <http://nodejs.org/docs/latest/api/zlib.html#zlib_zlib_deflateraw_buf_callback>
 // **NOTE**: You could also pass 'deflate' or 'gzip' if necessary, and it works with batch rendering as well
})

0.0.4

		enhancement: Removed requirement for style.css and text.ejs files with
compatibility in node v0.6.x to v0.8.x. It now utilizes path.exists instead
of fs.exists respectively.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/node_modules/active-x-obfuscator/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

active-x-obfuscator

A module to (safely) obfuscate all occurrences of the string ‘ActiveX’ inside
any JavaScript code.

Why?

Some corporate firewalls /proxies such as Blue Coat block JavaScript files to be
downloaded if they contain the word 'ActiveX'. That of course is very annoying
for libraries such as socket.io [http://socket.io/] that need to use ActiveXObject for
supporting IE8 and older.

Install

npm install active-x-obfuscator

Usage

var activeXObfuscator = require('active-x-obfuscator');
var code = 'foo(new ActiveXObject());';

var obfuscated = activeXObfuscator(code);
// -> foo(new window[(['Active'].concat('Object').join('X'))])

License

Licensed under the MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/node_modules/slick/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Slick

Slick is a standalone selector engine that is totally slick.
Slick is split in 2 components: the Finder and the Parser. The Finder’s job is to find nodes on a webpage, the Parser’s job is to create a javascript object representation of any css selector.

Slick allows you to:

		Create your own custom pseudo-classes

		Use the Parser by itself.

		Find nodes in XML documents.

The Finder

Find nodes in the DOM

search context for selector

Search this context for any nodes that match this selector.

Expects:

		selector: String or SelectorObject

		(optional) context: document or node or array of documents or nodes

		(optional) append: Array or Object with a push method

Returns: append argument or Array of 0 or more nodes

slick.search("#foo > bar.baz") → [<bar>, <bar>, <bar>]
slick.search("li > a", [,]) → [<a>, <a>, <a>]
slick.search("#foo > bar.baz", document, []) → [<bar>, <bar>, <bar>]

find first in context with selector or null

Find the first node in document that matches selector or null if none are found.

Expects:

		selector: String or SelectorObject

		(optional) context: document or node or array of documents or nodes

Returns: Element or null

slick.find("#foo > bar.baz") → <bar>
slick.find("#does-not-exist", node) → null

node matches selector?

Does this node match this selector?

Expects:

		node

		node, String or SelectorObject

Returns: true or false

slick.matches(<div class=rocks>, "div.rocks") → true
slick.matches(<div class=lame>, "div.rocks") → false
slick.matches(<div class=lame>, <div class=rocks>) → false

context contains node?

Does this context contain this node? Is the context a parent of this node?

Expects:

		context: document or node

		node: node

Returns: true or false

slick.contains(,) → true
slick.contains(<body>, <html>) → false

The Parser

Parse a CSS selector string into a JavaScript object

parse selector into object

Parse a CSS Selector String into a Selector Object.

Expects: String

Returns: SelectorObject

slick.parse("#foo > bar.baz") → SelectorObject

format

#foo > bar.baz

[[
 { "combinator":" ", "tag":"*", "id":"foo" },
 { "combinator":">", "tag":"bar", "classList": ["baz"], "classes": [{"value":"baz", "match": RegExp }]}
]]

h1, h2, ul > li, .things

[
 [{ "combinator":" ", "tag": "h1" }],
 [{ "combinator":" ", "tag": "h2" }],
 [{ "combinator":" ", "tag": "ul" }, { "combinator": ">", "tag": "li" }],
 [{ "combinator":" ", "tag": "*", "classList": ["things"], "classes": [{"value": "things", "match": RegExp }] }]
]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/node_modules/ws/node_modules/commander/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Commander.js

The complete solution for node.js [http://nodejs.org] command-line interfaces, inspired by Ruby’s commander [https://github.com/visionmedia/commander].

[image: Build Status] [http://travis-ci.org/visionmedia/commander.js]

Installation

$ npm install commander

Option parsing

Options with commander are defined with the .option() method, also serving as documentation for the options. The example below parses args and options from process.argv, leaving remaining args as the program.args array which were not consumed by options.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
 .version('0.0.1')
 .option('-p, --peppers', 'Add peppers')
 .option('-P, --pineapple', 'Add pineapple')
 .option('-b, --bbq', 'Add bbq sauce')
 .option('-c, --cheese [type]', 'Add the specified type of cheese [marble]', 'marble')
 .parse(process.argv);

console.log('you ordered a pizza with:');
if (program.peppers) console.log(' - peppers');
if (program.pineapple) console.log(' - pineapple');
if (program.bbq) console.log(' - bbq');
console.log(' - %s cheese', program.cheese);

Short flags may be passed as a single arg, for example -abc is equivalent to -a -b -c. Multi-word options such as “–template-engine” are camel-cased, becoming program.templateEngine etc.

Automated –help

The help information is auto-generated based on the information commander already knows about your program, so the following --help info is for free:

 $./examples/pizza --help

 Usage: pizza [options]

 Options:

 -V, --version output the version number
 -p, --peppers Add peppers
 -P, --pineapple Add pineapple
 -b, --bbq Add bbq sauce
 -c, --cheese <type> Add the specified type of cheese [marble]
 -h, --help output usage information

Coercion

function range(val) {
 return val.split('..').map(Number);
}

function list(val) {
 return val.split(',');
}

program
 .version('0.0.1')
 .usage('[options] <file ...>')
 .option('-i, --integer <n>', 'An integer argument', parseInt)
 .option('-f, --float <n>', 'A float argument', parseFloat)
 .option('-r, --range <a>..', 'A range', range)
 .option('-l, --list <items>', 'A list', list)
 .option('-o, --optional [value]', 'An optional value')
 .parse(process.argv);

console.log(' int: %j', program.integer);
console.log(' float: %j', program.float);
console.log(' optional: %j', program.optional);
program.range = program.range || [];
console.log(' range: %j..%j', program.range[0], program.range[1]);
console.log(' list: %j', program.list);
console.log(' args: %j', program.args);

Custom help

You can display arbitrary -h, --help information
by listening for “–help”. Commander will automatically
exit once you are done so that the remainder of your program
does not execute causing undesired behaviours, for example
in the following executable “stuff” will not output when
--help is used.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('../');

function list(val) {
 return val.split(',').map(Number);
}

program
 .version('0.0.1')
 .option('-f, --foo', 'enable some foo')
 .option('-b, --bar', 'enable some bar')
 .option('-B, --baz', 'enable some baz');

// must be before .parse() since
// node's emit() is immediate

program.on('--help', function(){
 console.log(' Examples:');
 console.log('');
 console.log(' $ custom-help --help');
 console.log(' $ custom-help -h');
 console.log('');
});

program.parse(process.argv);

console.log('stuff');

yielding the following help output:

Usage: custom-help [options]

Options:

 -h, --help output usage information
 -V, --version output the version number
 -f, --foo enable some foo
 -b, --bar enable some bar
 -B, --baz enable some baz

Examples:

 $ custom-help --help
 $ custom-help -h

.outputHelp()

Output help information without exiting.

.help()

Output help information and exit immediately.

Links

		API documentation [http://visionmedia.github.com/commander.js/]

		ascii tables [https://github.com/LearnBoost/cli-table]

		progress bars [https://github.com/visionmedia/node-progress]

		more progress bars [https://github.com/substack/node-multimeter]

		examples [https://github.com/visionmedia/commander.js/tree/master/examples]

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/node_modules/juice2/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.6.0 / 2014-04-25

		update dependencies [jonkemp]

0.5.1 / 2014-03-12

		fix not including all stylesheets [andxyz]

0.5.0 / 2013-04-15

		update dependencies to latest

		fix not preserving DOCTYPE [jgannonjr]

		fix decoding local file paths [alexluke]

0.4.0 / 2013-04-15

		update jsdom dependency to 0.6.0

0.3.3 / 2013-04-08

		fix resolving file:// paths on windows (thanks Mirco Zeiss)

		fix crash during cleanup. (thanks Ger Hobbelt)

		update superagent to 0.14.0

0.3.2 / 2013-03-26

		fix regression: not ignoring pseudos

0.3.1 / 2013-03-26

		do not crash on ::selectors (covered by normalize.css test case)

0.3.0 / 2013-03-26

		update jsdom dependency to 0.5.4

		support node v0.10

		switch dependency to slick instead of mootools which was rudely unpublished

0.2.0 / 2013-02-13

		update jsdom dependency to 0.5.0

0.1.3 / 2013-02-12

		fix specificity test. all test cases passed now.

		add a command line juice program

0.1.2 / 2013-02-11

		fix incorrectly lowercasing
 href

0.1.1 / 2013-02-11

		explicitly document which node versions are supported
with engines and travis-ci.

		expose juice.inlineDocument and juice.inlineContent

0.1.0 / 2013-02-07

		fix / test case for @media queries

		merge boost [https://github.com/andrewrk/boost] into juice

		legacy juice function still works as is

		add juice(filePath, [options], callback)

		add juice.juiceDocument(document, options, callback)

		add juice.juiceContent(html, options, callback)

		remove juice.juiceDom

0.0.9 / 2013-02-07

		update jsdom dependency to 0.4.0

		update cssom dependency to 0.2.5

0.0.8 / 2013-02-06

		expose a lower level export so you can operate on a jsdom document [andrewrk]

		fix exports not working [andrewrk]

		fix jshint problems [andrewrk]

0.0.7 / 2013-02-06

		fixed test case expected outputs to have starting and ending and tags as jsdom appends them in its html() function if they do not exist

		regression test for previous fix for media queries. note i had to wrap my test .out content in tags in order to pass tests, it looks like they are appended at some point for partial html content which just guessing is new behavior from when these tests were written

		make sure the css rule has selectorText to prevent parsing exception. hit this on @media rules which do not have selector text. afaik this means media queries will not be inlined. however everything else is.

		bump jsdom

		Added note regarding node-email-templates to README

0.0.6 / 2011-12-20

		Corrected juice unit tests for latest cssom.

		Fixed presence of \n in selectors.

		Fixed unneeded removal of inline event handlers in html.

		Bumped jsdom.

0.0.5 / 2011-10-10

		Added whitelist of pseudos to ignore (fixes :first-child etc)

		Fine-tuned jsdom for speed (disabled unneded features).

		Added caching of parsed selectors.

0.0.4 / 2011-10-10

		Fixed :hover.

0.0.3 / 2011-10-09

		Fixed specificity :not recursion.

0.0.2 / 2011-10-09

		Fixed specificity calculation for not() and pseudos. [arian]

0.0.1 / 2011-10-09

		Initial release.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/base64id/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

base64id

Node.js module that generates a base64 id.

Uses crypto.randomBytes when available, falls back to unsafe methods for node.js <= 0.4.

To increase performance, random bytes are buffered to minimize the number of synchronous calls to crypto.randomBytes.

Installation

$ npm install mongoose

Usage

var base64id = require(‘base64id’);

var id = base64id.generateId();

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/lib/vendor/web-socket-js/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

How to try the sample

Assuming you have Web server (e.g. Apache) running at http://example.com/ .

		Download web-socket-ruby [http://github.com/gimite/web-socket-ruby/tree/master].

		Run sample Web Socket server (echo server) in example.com with: (#1)

$ ruby web-socket-ruby/samples/echo_server.rb example.com 10081

		If your server already provides socket policy file at port 843, modify the file to allow access to port 10081. Otherwise you can skip this step. See below for details.

		Publish the web-socket-js directory with your Web server (e.g. put it in ~/public_html).

		Change ws://localhost:10081 to ws://example.com:10081 in sample.html.

		Open sample.html in your browser.

		After “onopen” is shown, input something, click [Send] and confirm echo back.

#1: First argument of echo_server.rb means that it accepts Web Socket connection from HTML pages in example.com.

How to use it in your application

		Copy swfobject.js, web_socket.js, WebSocketMain.swf to your application directory.

		Write JavaScript code:

<!-- Import JavaScript Libraries. -->
<script type="text/javascript" src="swfobject.js"></script>
<script type="text/javascript" src="web_socket.js"></script>

<script type="text/javascript">

 // Let the library know where WebSocketMain.swf is:
 WEB_SOCKET_SWF_LOCATION = "WebSocketMain.swf";

 // Write your code in the same way as for native WebSocket:
 var ws = new WebSocket("ws://example.com:10081/");
 ws.onopen = function() {
 ws.send("Hello"); // Sends a message.
 };
 ws.onmessage = function(e) {
 // Receives a message.
 alert(e.data);
 };
 ws.onclose = function() {
 alert("closed");
 };

</script>

		Put Flash socket policy file to your server unless you use web-socket-ruby or em-websocket as your WebSocket server. See “Flash socket policy file” section below for details.

Troubleshooting

If it doesn’t work, try these:

		Try Chrome and Firefox 3.x.
		It doesn’t work on Chrome:

It’s likely an issue of your code or the server. Debug your code as usual e.g. using console.log.

		It works on Chrome but it doesn’t work on Firefox:

It’s likely an issue of web-socket-js specific configuration (e.g. 3 and 4 below).

		It works on both Chrome and Firefox, but it doesn’t work on your browser:

Check “Supported environment” section below. Your browser may not be supported by web-socket-js.

		Add this line before your code:
WEB_SOCKET_DEBUG = true;
and use Developer Tools (Chrome/Safari) or Firebug (Firefox) to see if console.log outputs any errors.

		Make sure you do NOT open your HTML page as local file e.g. file:///.../sample.html. web-socket-js doesn’t work on local file. Open it via Web server e.g. http:///.../sample.html.

		If you are NOT using web-socket-ruby or em-websocket as your WebSocket server, you need to place Flash socket policy file on your server. See “Flash socket policy file” section below for details.

		Check if sample.html bundled with web-socket-js works.

		Make sure the port used for WebSocket (10081 in example above) is not blocked by your server/client’s firewall.

		Install debugger version of Flash Player [http://www.adobe.com/support/flashplayer/downloads.html] to see Flash errors.

Supported environments

It should work on:

		Google Chrome 4 or later (just uses native implementation)

		Firefox 3.x, 4.x, Internet Explorer 8, 9 + Flash Player 10 or later

It may or may not work on other browsers such as Safari, Opera or IE 6. Patch for these browsers are appreciated, but I will not work on fixing issues specific to these browsers by myself.

Limitations/differences compared to native WebSocket

		You need some more lines in your JavaScript code. See “How to use it in your application” section above for details.

		It requires Flash Player 10 or later unless the browser supports native WebSocket.

		Your server must provide Flash socket policy file, unless you use web-socket-ruby or em-websocket. See “Flash socket policy file” section below for details.

		It has limited support for Cookies on WebSocket. See “Cookie support” section below for details.

		It doesn’t use proxies specified in browser config. See “Proxy support” section below for details.

Flash socket policy file

This implementation uses Flash’s socket, which means that your server must provide Flash socket policy file to declare the server accepts connections from Flash.

If you use web-socket-ruby [http://github.com/gimite/web-socket-ruby/tree/master] or em-websocket [https://github.com/igrigorik/em-websocket], you don’t need anything special, because they handle Flash socket policy file request. But if you already provide socket policy file at port 843, you need to modify the file to allow access to Web Socket port, because it precedes what the libraries provide.

If you use other Web Socket server implementation, you need to provide socket policy file yourself. See Setting up A Flash Socket Policy File [http://www.lightsphere.com/dev/articles/flash_socket_policy.html] for details and sample script to run socket policy file server. node.js implementation is available here [http://github.com/LearnBoost/Socket.IO-node/blob/master/lib/socket.io/transports/flashsocket.js].

Actually, it’s still better to provide socket policy file at port 843 even if you use web-socket-ruby or em-websocket. Flash always try to connect to port 843 first, so providing the file at port 843 makes startup faster.

Cookie support

web-socket-js has limited supported for Cookies on WebSocket.

Cookie is sent if Web Socket host is exactly the same as the origin of JavaScript (The port can be different). Otherwise it is not sent, because I don’t know way to send right Cookie (which is Cookie of the host of Web Socket, I heard). Also, HttpOnly Cookies are not sent.

Note that it’s technically possible that client sends arbitrary string as Cookie and any other headers (by modifying this library for example) once you place Flash socket policy file in your server. So don’t trust Cookie and other headers if you allow connection from untrusted origin.

Proxy support

The WebSocket spec [http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol] specifies instructions for User Agents to support proxied connections by implementing the HTTP CONNECT method.

The AS3 Socket class doesn’t implement this mechanism, which renders it useless for the scenarios where the user trying to open a socket is behind a proxy.

The class RFC2817Socket (by Christian Cantrell) effectively lets us implement this, as long as the proxy settings are known and provided by the interface that instantiates the WebSocket. As such, if you want to support proxied conncetions, you’ll have to supply this information to the WebSocket constructor when Flash is being used. One way to go about it would be to ask the user for proxy settings information if the initial connection fails.

How to host HTML file and SWF file in different domains

By default, HTML file and SWF file must be in the same domain. You can follow steps below to allow hosting them in different domain.

WARNING: If you use the method below, HTML files in ANY domains can send arbitrary TCP data to your WebSocket server, regardless of configuration in Flash socket policy file. Arbitrary TCP data means that they can even fake request headers including Origin and Cookie.

		Unzip WebSocketMainInsecure.zip to extract WebSocketMainInsecure.swf.

		Put WebSocketMainInsecure.swf on your server, instead of WebSocketMain.swf.

		In JavaScript, set WEB_SOCKET_SWF_LOCATION to URL of your WebSocketMainInsecure.swf.

How to build WebSocketMain.swf

Install Flex 4 SDK [http://opensource.adobe.com/wiki/display/flexsdk/Download+Flex+4].

$ cd flash-src
$./build.sh

WebSocket protocol versions

		web-socket-js supports Hixie 76 version [http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76] of WebSocket protocol by default i.e. in master branch [https://github.com/gimite/web-socket-js].

		If you want to try newer Hybi 07 version [http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-07], check out from hybi-07 branch [https://github.com/gimite/web-socket-js/tree/hybi-07]. This will become the master branch in the future, probably when Chrome switches to Hybi 07.

		Hixie 75 or before is no longer supported.

License

New BSD License.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/nopt/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 If you want to write an option parser, and have it be good, there are
two ways to do it. The Right Way, and the Wrong Way.

The Wrong Way is to sit down and write an option parser. We’ve all done
that.

The Right Way is to write some complex configurable program with so many
options that you go half-insane just trying to manage them all, and put
it off with duct-tape solutions until you see exactly to the core of the
problem, and finally snap and write an awesome option parser.

If you want to write an option parser, don’t write an option parser.
Write a package manager, or a source control system, or a service
restarter, or an operating system. You probably won’t end up with a
good one of those, but if you don’t give up, and you are relentless and
diligent enough in your procrastination, you may just end up with a very
nice option parser.

USAGE

// my-program.js
var nopt = require("nopt")
 , Stream = require("stream").Stream
 , path = require("path")
 , knownOpts = { "foo" : [String, null]
 , "bar" : [Stream, Number]
 , "baz" : path
 , "bloo" : ["big", "medium", "small"]
 , "flag" : Boolean
 , "pick" : Boolean
 , "many" : [String, Array]
 }
 , shortHands = { "foofoo" : ["--foo", "Mr. Foo"]
 , "b7" : ["--bar", "7"]
 , "m" : ["--bloo", "medium"]
 , "p" : ["--pick"]
 , "f" : ["--flag"]
 }
 // everything is optional.
 // knownOpts and shorthands default to {}
 // arg list defaults to process.argv
 // slice defaults to 2
 , parsed = nopt(knownOpts, shortHands, process.argv, 2)
console.log(parsed)

This would give you support for any of the following:

$ node my-program.js --foo "blerp" --no-flag
{ "foo" : "blerp", "flag" : false }

$ node my-program.js ---bar 7 --foo "Mr. Hand" --flag
{ bar: 7, foo: "Mr. Hand", flag: true }

$ node my-program.js --foo "blerp" -f -----p
{ foo: "blerp", flag: true, pick: true }

$ node my-program.js -fp --foofoo
{ foo: "Mr. Foo", flag: true, pick: true }

$ node my-program.js --foofoo -- -fp # -- stops the flag parsing.
{ foo: "Mr. Foo", argv: { remain: ["-fp"] } }

$ node my-program.js --blatzk 1000 -fp # unknown opts are ok.
{ blatzk: 1000, flag: true, pick: true }

$ node my-program.js --blatzk true -fp # but they need a value
{ blatzk: true, flag: true, pick: true }

$ node my-program.js --no-blatzk -fp # unless they start with "no-"
{ blatzk: false, flag: true, pick: true }

$ node my-program.js --baz b/a/z # known paths are resolved.
{ baz: "/Users/isaacs/b/a/z" }

if Array is one of the types, then it can take many
values, and will always be an array. The other types provided
specify what types are allowed in the list.

$ node my-program.js --many 1 --many null --many foo
{ many: ["1", "null", "foo"] }

$ node my-program.js --many foo
{ many: ["foo"] }

Read the tests at the bottom of lib/nopt.js for more examples of
what this puppy can do.

Types

The following types are supported, and defined on nopt.typeDefs

		String: A normal string. No parsing is done.

		path: A file system path. Gets resolved against cwd if not absolute.

		url: A url. If it doesn’t parse, it isn’t accepted.

		Number: Must be numeric.

		Date: Must parse as a date. If it does, and Date is one of the options,
then it will return a Date object, not a string.

		Boolean: Must be either true or false. If an option is a boolean,
then it does not need a value, and its presence will imply true as
the value. To negate boolean flags, do --no-whatever or --whatever false

		NaN: Means that the option is strictly not allowed. Any value will
fail.

		Stream: An object matching the “Stream” class in node. Valuable
for use when validating programmatically. (npm uses this to let you
supply any WriteStream on the outfd and logfd config options.)

		Array: If Array is specified as one of the types, then the value
will be parsed as a list of options. This means that multiple values
can be specified, and that the value will always be an array.

If a type is an array of values not on this list, then those are
considered valid values. For instance, in the example above, the
--bloo option can only be one of "big", "medium", or "small",
and any other value will be rejected.

When parsing unknown fields, "true", "false", and "null" will be
interpreted as their JavaScript equivalents, and numeric values will be
interpreted as a number.

You can also mix types and values, or multiple types, in a list. For
instance { blah: [Number, null] } would allow a value to be set to
either a Number or null.

To define a new type, add it to nopt.typeDefs. Each item in that
hash is an object with a type member and a validate method. The
type member is an object that matches what goes in the type list. The
validate method is a function that gets called with validate(data, key, val). Validate methods should assign data[key] to the valid
value of val if it can be handled properly, or return boolean
false if it cannot.

You can also call nopt.clean(data, types, typeDefs) to clean up a
config object and remove its invalid properties.

Error Handling

By default, nopt outputs a warning to standard error when invalid
options are found. You can change this behavior by assigning a method
to nopt.invalidHandler. This method will be called with
the offending nopt.invalidHandler(key, val, types).

If no nopt.invalidHandler is assigned, then it will console.error
its whining. If it is assigned to boolean false then the warning is
suppressed.

Abbreviations

Yes, they are supported. If you define options like this:

{ "foolhardyelephants" : Boolean
, "pileofmonkeys" : Boolean }

Then this will work:

node program.js --foolhar --pil
node program.js --no-f --pileofmon
etc.

Shorthands

Shorthands are a hash of shorter option names to a snippet of args that
they expand to.

If multiple one-character shorthands are all combined, and the
combination does not unambiguously match any other option or shorthand,
then they will be broken up into their constituent parts. For example:

{ "s" : ["--loglevel", "silent"]
, "g" : "--global"
, "f" : "--force"
, "p" : "--parseable"
, "l" : "--long"
}

npm ls -sgflp
just like doing this:
npm ls --loglevel silent --global --force --long --parseable

The Rest of the args

The config object returned by nopt is given a special member called
argv, which is an object with the following fields:

		remain: The remaining args after all the parsing has occurred.

		original: The args as they originally appeared.

		cooked: The args after flags and shorthands are expanded.

Slicing

Node programs are called with more or less the exact argv as it appears
in C land, after the v8 and node-specific options have been plucked off.
As such, argv[0] is always node and argv[1] is always the
JavaScript program being run.

That’s usually not very useful to you. So they’re sliced off by
default. If you want them, then you can pass in 0 as the last
argument, or any other number that you’d like to slice off the start of
the list.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/colors/ReadMe.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

colors.js - get color and style in your node.js console (and browser) like what

[image:]

Installation

npm install colors

colors and styles!

		bold

		italic

		underline

		inverse

		yellow

		cyan

		white

		magenta

		green

		red

		grey

		blue

		rainbow

		zebra

		random

Usage

var colors = require('./colors');

console.log('hello'.green); // outputs green text
console.log('i like cake and pies'.underline.red) // outputs red underlined text
console.log('inverse the color'.inverse); // inverses the color
console.log('OMG Rainbows!'.rainbow); // rainbow (ignores spaces)

Creating Custom themes

var colors = require('colors');

colors.setTheme({
 silly: 'rainbow',
 input: 'grey',
 verbose: 'cyan',
 prompt: 'grey',
 info: 'green',
 data: 'grey',
 help: 'cyan',
 warn: 'yellow',
 debug: 'blue',
 error: 'red'
});

// outputs red text
console.log("this is an error".error);

// outputs yellow text
console.log("this is a warning".warn);

Contributors

Marak (Marak Squires)
Alexis Sellier (cloudhead)
mmalecki (Maciej Małecki)
nicoreed (Nico Reed)
morganrallen (Morgan Allen)
JustinCampbell (Justin Campbell)
ded (Dustin Diaz)

, Marak Squires , Justin Campbell, Dustin Diaz (@ded)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/node_modules/ws/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: Build Status] [http://travis-ci.org/einaros/ws]

ws: a node.js websocket library

ws is a simple to use websocket implementation, up-to-date against RFC-6455, and probably the fastest WebSocket library for node.js [http://web.archive.org/web/20130314230536/http://hobbycoding.posterous.com/the-fastest-websocket-module-for-nodejs].

Passes the quite extensive Autobahn test suite. See http://einaros.github.com/ws for the full reports.

Comes with a command line utility, wscat, which can either act as a server (–listen), or client (–connect); Use it to debug simple websocket services.

Protocol support

		Hixie draft 76 (Old and deprecated, but still in use by Safari and Opera. Added to ws version 0.4.2, but server only. Can be disabled by setting the disableHixie option to true.)

		HyBi drafts 07-12 (Use the option protocolVersion: 8, or argument -p 8 for wscat)

		HyBi drafts 13-17 (Current default, alternatively option protocolVersion: 13, or argument -p 13 for wscat)

See the echo.websocket.org example below for how to use the protocolVersion option.

Usage

Installing

npm install ws

Sending and receiving text data

var WebSocket = require('ws');
var ws = new WebSocket('ws://www.host.com/path');
ws.on('open', function() {
 ws.send('something');
});
ws.on('message', function(data, flags) {
 // flags.binary will be set if a binary data is received
 // flags.masked will be set if the data was masked
});

Sending binary data

var WebSocket = require('ws');
var ws = new WebSocket('ws://www.host.com/path');
ws.on('open', function() {
 var array = new Float32Array(5);
 for (var i = 0; i < array.length; ++i) array[i] = i / 2;
 ws.send(array, {binary: true, mask: true});
});

Setting mask, as done for the send options above, will cause the data to be masked according to the websocket protocol. The same option applies for text data.

Server example

var WebSocketServer = require('ws').Server
 , wss = new WebSocketServer({port: 8080});
wss.on('connection', function(ws) {
 ws.on('message', function(message) {
 console.log('received: %s', message);
 });
 ws.send('something');
});

Server sending broadcast data

var WebSocketServer = require('ws').Server
 , wss = new WebSocketServer({port: 8080});

wss.broadcast = function(data) {
 for(var i in this.clients)
 this.clients[i].send(data);
};

Error handling best practices

// If the WebSocket is closed before the following send is attempted
ws.send('something');

// Errors (both immediate and async write errors) can be detected in an optional callback.
// The callback is also the only way of being notified that data has actually been sent.
ws.send('something', function(error) {
 // if error is null, the send has been completed,
 // otherwise the error object will indicate what failed.
});

// Immediate errors can also be handled with try/catch-blocks, but **note**
// that since sends are inherently asynchronous, socket write failures will *not*
// be captured when this technique is used.
try {
 ws.send('something');
}
catch (e) {
 // handle error
}

echo.websocket.org demo

var WebSocket = require('ws');
var ws = new WebSocket('ws://echo.websocket.org/', {protocolVersion: 8, origin: 'http://websocket.org'});
ws.on('open', function() {
 console.log('connected');
 ws.send(Date.now().toString(), {mask: true});
});
ws.on('close', function() {
 console.log('disconnected');
});
ws.on('message', function(data, flags) {
 console.log('Roundtrip time: ' + (Date.now() - parseInt(data)) + 'ms', flags);
 setTimeout(function() {
 ws.send(Date.now().toString(), {mask: true});
 }, 500);
});

wscat against echo.websocket.org

$ npm install -g ws
$ wscat -c ws://echo.websocket.org
connected (press CTRL+C to quit)
> hi there
< hi there
> are you a happy parrot?
< are you a happy parrot?

Other examples

For a full example with a browser client communicating with a ws server, see the examples folder.

Note that the usage together with Express 3.0 is quite different from Express 2.x. The difference is expressed in the two different serverstats-examples.

Otherwise, see the test cases.

Running the tests

make test

API Docs

See the doc/ directory for Node.js-like docs for the ws classes.

License

(The MIT License)

Copyright (c) 2011 Einar Otto Stangvik

<

einaros@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/nopt/node_modules/abbrev/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

abbrev-js

Just like ruby’s Abbrev [http://apidock.com/ruby/Abbrev].

Usage:

var abbrev = require("abbrev");
abbrev("foo", "fool", "folding", "flop");

// returns:
{ fl: 'flop'
, flo: 'flop'
, flop: 'flop'
, fol: 'folding'
, fold: 'folding'
, foldi: 'folding'
, foldin: 'folding'
, folding: 'folding'
, foo: 'foo'
, fool: 'fool'
}

This is handy for command-line scripts, or other cases where you want to be able to accept shorthands.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/node_modules/xmlhttprequest/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-XMLHttpRequest

node-XMLHttpRequest is a wrapper for the built-in http client to emulate the
browser XMLHttpRequest object.

This can be used with JS designed for browsers to improve reuse of code and
allow the use of existing libraries.

Note: This library currently conforms to XMLHttpRequest 1 [http://www.w3.org/TR/XMLHttpRequest/]. Version 2.0 will target XMLHttpRequest Level 2 [http://www.w3.org/TR/XMLHttpRequest2/].

Usage

Here’s how to include the module in your project and use as the browser-based
XHR object.

var XMLHttpRequest = require("xmlhttprequest").XMLHttpRequest;
var xhr = new XMLHttpRequest();

Note: use the lowercase string “xmlhttprequest” in your require(). On
case-sensitive systems (eg Linux) using uppercase letters won’t work.

Versions

Prior to 1.4.0 version numbers were arbitrary. From 1.4.0 on they conform to
the standard major.minor.bugfix. 1.x shouldn’t necessarily be considered
stable just because it’s above 0.x.

Since the XMLHttpRequest API is stable this library’s API is stable as
well. Major version numbers indicate significant core code changes.
Minor versions indicate minor core code changes or better conformity to
the W3C spec.

Supports

		Async and synchronous requests

		GET, POST, PUT, and DELETE requests

		All spec methods (open, send, abort, getRequestHeader,
getAllRequestHeaders, event methods)

		Requests to all domains

Known Issues / Missing Features

For a list of open issues or to report your own visit the github issues
page [https://github.com/driverdan/node-XMLHttpRequest/issues].

		Local file access may have unexpected results for non-UTF8 files

		Synchronous requests don’t set headers properly

		Synchronous requests freeze node while waiting for response (But that’s what you want, right? Stick with async!).

		Some events are missing, such as abort

		getRequestHeader is case-sensitive

		Cookies aren’t persisted between requests

		Missing XML support

		Missing basic auth

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/nopt/node_modules/abbrev/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 To get started, sign the
Contributor License Agreement.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/node_modules/ws/node_modules/nan/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Native Abstractions for Node.js

A header file filled with macro and utility goodness for making add-on development for Node.js easier across versions 0.8, 0.10 and 0.11, and eventually 0.12.

Current version: 1.0.0 (See nan.h [https://github.com/rvagg/nan/blob/master/nan.h] for complete ChangeLog)

[image: NPM] [https://nodei.co/npm/nan/] [image: NPM] [https://nodei.co/npm/nan/]

Thanks to the crazy changes in V8 (and some in Node core), keeping native addons compiling happily across versions, particularly 0.10 to 0.11/0.12, is a minor nightmare. The goal of this project is to store all logic necessary to develop native Node.js addons without having to inspect NODE_MODULE_VERSION and get yourself into a macro-tangle.

This project also contains some helper utilities that make addon development a bit more pleasant.

		News & Updates

		Usage

		Example

		API

[bookmark: news]

News & Updates

May-2013: Major changes for V8 3.25 / Node 0.11.13

Node 0.11.11 and 0.11.12 were both broken releases for native add-ons, you simply can’t properly compile against either of them for different reasons. But we now have a 0.11.13 release that jumps a couple of versions of V8 ahead and includes some more, major (traumatic) API changes.

Because we are now nearing Node 0.12 and estimate that the version of V8 we are using in Node 0.11.13 will be close to the API we get for 0.12, we have taken the opportunity to not only fix NAN for 0.11.13 but make some major changes to improve the NAN API.

We have removed support for Node 0.11 versions prior to 0.11.13, (although our tests are still passing for 0.11.10). As usual, our tests are run against (and pass) the last 5 versions of Node 0.8 and Node 0.10. We also include Node 0.11.13 obviously.

The major change is something that Benjamin Byholm has put many hours in to. We now have a fantastic new NanNew<T>(args) interface for creating new Locals, this replaces NanNewLocal() and much more. If you look in ./nan.h you’ll see a large number of overloaded versions of this method. In general you should be able to NanNew<Type>(arguments) for any type you want to make a Local from. This includes Persistent types, so we now have a Local<T> NanNew(const Persistent<T> arg) to replace NanPersistentToLocal().

We also now have NanUndefined(), NanNull(), NanTrue() and NanFalse(). Mainly because of the new requirement for an Isolate argument for each of the native V8 versions of this.

V8 has now introduced an EscapableHandleScope from which you scope.Escape(Local<T> value) to return a value from a one scope to another. This replaces the standard HandleScope and scope.Close(Local<T> value), although HandleScope still exists for when you don’t need to return a handle to the caller. For NAN we are exposing it as NanEscapableScope() and NanEscapeScope(), while NanScope() is still how you create a new scope that doesn’t need to return handles. For older versions of Node/V8, it’ll still map to the older HandleScope functionality.

NanFromV8String() was deprecated and has now been removed. You should use NanCString() or NanRawString() instead.

Because node::MakeCallback() now takes an Isolate, and because it doesn’t exist in older versions of Node, we’ve introduced NanMakeCallabck(). You should always use this when calling a JavaScript function from C++.

There’s lots more, check out the Changelog in nan.h or look through #86 [https://github.com/rvagg/nan/pull/86] for all the gory details.

Dec-2013: NanCString and NanRawString

Two new functions have been introduced to replace the functionality that’s been provided by NanFromV8String until now. NanCString has sensible defaults so it’s super easy to fetch a null-terminated c-style string out of a v8::String. NanFromV8String is still around and has defaults that allow you to pass a single handle to fetch a char* while NanRawString requires a little more attention to arguments.

Nov-2013: Node 0.11.9+ breaking V8 change

The version of V8 that’s shipping with Node 0.11.9+ has changed the signature for new Locals to: v8::Local<T>::New(isolate, value), i.e. introducing the isolate argument and therefore breaking all new Local declarations for previous versions. NAN 0.6+ now includes a NanNewLocal<T>(value) that can be used in place to work around this incompatibility and maintain compatibility with 0.8->0.11.9+ (minus a few early 0.11 releases).

For example, if you wanted to return a null on a callback you will have to change the argument from v8::Local<v8::Value>::New(v8::Null()) to NanNewLocal<v8::Value>(v8::Null()).

Nov-2013: Change to binding.gyp "include_dirs" for NAN

Inclusion of NAN in a project’s binding.gyp is now greatly simplified. You can now just use "<!(node -e \"require('nan')\")" in your "include_dirs", see example below (note Windows needs the quoting around require to be just right: "require('nan')" with appropriate \ escaping).

[bookmark: usage]

Usage

Simply add NAN as a dependency in the package.json of your Node addon:

$ npm install --save nan

Pull in the path to NAN in your binding.gyp so that you can use #include <nan.h> in your .cpp files:

"include_dirs" : [
 "<!(node -e \"require('nan')\")"
]

This works like a -I<path-to-NAN> when compiling your addon.

[bookmark: example]

Example

See LevelDOWN [https://github.com/rvagg/node-leveldown/pull/48] for a full example of NAN in use.

For a simpler example, see the async pi estimation example [https://github.com/rvagg/nan/tree/master/examples/async_pi_estimate] in the examples directory for full code and an explanation of what this Monte Carlo Pi estimation example does. Below are just some parts of the full example that illustrate the use of NAN.

Compare to the current 0.10 version of this example, found in the node-addon-examples [https://github.com/rvagg/node-addon-examples/tree/master/9_async_work] repository and also a 0.11 version of the same found here [https://github.com/kkoopa/node-addon-examples/tree/5c01f58fc993377a567812597e54a83af69686d7/9_async_work].

Note that there is no embedded version sniffing going on here and also the async work is made much simpler, see below for details on the NanAsyncWorker class.

// addon.cc
#include <node.h>
#include <nan.h>
// ...

using v8::FunctionTemplate;
using v8::Handle;
using v8::Object;

void InitAll(Handle<Object> exports) {
 exports->Set(NanSymbol("calculateSync"),
 NanNew<FunctionTemplate>(CalculateSync)->GetFunction());

 exports->Set(NanSymbol("calculateAsync"),
 NanNew<FunctionTemplate>(CalculateAsync)->GetFunction());
}

NODE_MODULE(addon, InitAll)

// sync.h
#include <node.h>
#include <nan.h>

NAN_METHOD(CalculateSync);

// sync.cc
#include <node.h>
#include <nan.h>
#include "./sync.h"
// ...

using v8::Number;

// Simple synchronous access to the `Estimate()` function
NAN_METHOD(CalculateSync) {
 NanScope();

 // expect a number as the first argument
 int points = args[0]->Uint32Value();
 double est = Estimate(points);

 NanReturnValue(NanNew<Number>(est));
}

// async.cc
#include <node.h>
#include <nan.h>
#include "./async.h"

// ...

using v8::Function;
using v8::Local;
using v8::Null;
using v8::Number;
using v8::Value;

class PiWorker : public NanAsyncWorker {
 public:
 PiWorker(NanCallback *callback, int points)
 : NanAsyncWorker(callback), points(points) {}
 ~PiWorker() {}

 // Executed inside the worker-thread.
 // It is not safe to access V8, or V8 data structures
 // here, so everything we need for input and output
 // should go on `this`.
 void Execute () {
 estimate = Estimate(points);
 }

 // Executed when the async work is complete
 // this function will be run inside the main event loop
 // so it is safe to use V8 again
 void HandleOKCallback () {
 NanScope();

 Local<Value> argv[] = {
 NanNew(NanNull())
 , NanNew<Number>(estimate)
 };

 callback->Call(2, argv);
 };

 private:
 int points;
 double estimate;
};

// Asynchronous access to the `Estimate()` function
NAN_METHOD(CalculateAsync) {
 NanScope();

 int points = args[0]->Uint32Value();
 NanCallback *callback = new NanCallback(args[1].As<Function>());

 NanAsyncQueueWorker(new PiWorker(callback, points));
 NanReturnUndefined();
}

[bookmark: api]

API

		NAN_METHOD

		NAN_GETTER

		NAN_SETTER

		NAN_PROPERTY_GETTER

		NAN_PROPERTY_SETTER

		NAN_PROPERTY_ENUMERATOR

		NAN_PROPERTY_DELETER

		NAN_PROPERTY_QUERY

		NAN_INDEX_GETTER

		NAN_INDEX_SETTER

		NAN_INDEX_ENUMERATOR

		NAN_INDEX_DELETER

		NAN_INDEX_QUERY

		NAN_WEAK_CALLBACK

		NAN_DEPRECATED

		NAN_INLINE

		NanNew

		NanUndefined

		NanNull

		NanTrue

		NanFalse

		NanReturnValue

		NanReturnUndefined

		NanReturnNull

		NanReturnEmptyString

		NanScope

		NanEscapableScope

		NanEscapeScope

		NanLocker

		NanUnlocker

		NanGetInternalFieldPointer

		NanSetInternalFieldPointer

		NanObjectWrapHandle

		NanSymbol

		NanGetPointerSafe

		NanSetPointerSafe

		NanRawString

		NanCString

		NanBooleanOptionValue

		NanUInt32OptionValue

		NanError, NanTypeError, NanRangeError

		NanThrowError, NanThrowTypeError, NanThrowRangeError, NanThrowError(Handle), NanThrowError(Handle, int)

		NanNewBufferHandle(char *, size_t, FreeCallback, void *), NanNewBufferHandle(char *, uint32_t), NanNewBufferHandle(uint32_t)

		NanBufferUse(char *, uint32_t)

		NanNewContextHandle

		NanGetCurrentContext

		NanHasInstance

		NanDisposePersistent

		NanAssignPersistent

		NanMakeWeakPersistent

		NanSetTemplate

		NanMakeCallback

		NanCompileScript

		NanRunScript

		NanAdjustExternalMemory

		NanAddGCEpilogueCallback

		NanAddGCPrologueCallback

		NanRemoveGCEpilogueCallback

		NanRemoveGCPrologueCallback

		NanGetHeapStatistics

		NanCallback

		NanAsyncWorker

		NanAsyncQueueWorker

[bookmark: api_nan_method]

NAN_METHOD(methodname)

Use NAN_METHOD to define your V8 accessible methods:

// .h:
class Foo : public node::ObjectWrap {
 ...

 static NAN_METHOD(Bar);
 static NAN_METHOD(Baz);
}

// .cc:
NAN_METHOD(Foo::Bar) {
 ...
}

NAN_METHOD(Foo::Baz) {
 ...
}

The reason for this macro is because of the method signature change in 0.11:

// 0.10 and below:
Handle<Value> name(const Arguments& args)

// 0.11 and above
void name(const FunctionCallbackInfo<Value>& args)

The introduction of FunctionCallbackInfo brings additional complications:

[bookmark: api_nan_getter]

NAN_GETTER(methodname)

Use NAN_GETTER to declare your V8 accessible getters. You get a Local<String> property and an appropriately typed args object that can act like the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_GETTER.

[bookmark: api_nan_setter]

NAN_SETTER(methodname)

Use NAN_SETTER to declare your V8 accessible setters. Same as NAN_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_property_getter]

NAN_PROPERTY_GETTER(cbname)

Use NAN_PROPERTY_GETTER to declare your V8 accessible property getters. You get a Local<String> property and an appropriately typed args object that can act similar to the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_GETTER.

[bookmark: api_nan_property_setter]

NAN_PROPERTY_SETTER(cbname)

Use NAN_PROPERTY_SETTER to declare your V8 accessible property setters. Same as NAN_PROPERTY_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_property_enumerator]

NAN_PROPERTY_ENUMERATOR(cbname)

Use NAN_PROPERTY_ENUMERATOR to declare your V8 accessible property enumerators. You get an appropriately typed args object like the args argument to a NAN_PROPERTY_GETTER call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_ENUMERATOR.

[bookmark: api_nan_property_deleter]

NAN_PROPERTY_DELETER(cbname)

Use NAN_PROPERTY_DELETER to declare your V8 accessible property deleters. Same as NAN_PROPERTY_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_DELETER.

[bookmark: api_nan_property_query]

NAN_PROPERTY_QUERY(cbname)

Use NAN_PROPERTY_QUERY to declare your V8 accessible property queries. Same as NAN_PROPERTY_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_PROPERTY_QUERY.

[bookmark: api_nan_index_getter]

NAN_INDEX_GETTER(cbname)

Use NAN_INDEX_GETTER to declare your V8 accessible index getters. You get a uint32_t index and an appropriately typed args object that can act similar to the args argument to a NAN_METHOD call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_GETTER.

[bookmark: api_nan_index_setter]

NAN_INDEX_SETTER(cbname)

Use NAN_INDEX_SETTER to declare your V8 accessible index setters. Same as NAN_INDEX_GETTER but you also get a Local<Value> value object to work with.

[bookmark: api_nan_index_enumerator]

NAN_INDEX_ENUMERATOR(cbname)

Use NAN_INDEX_ENUMERATOR to declare your V8 accessible index enumerators. You get an appropriately typed args object like the args argument to a NAN_INDEX_GETTER call.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_ENUMERATOR.

[bookmark: api_nan_index_deleter]

NAN_INDEX_DELETER(cbname)

Use NAN_INDEX_DELETER to declare your V8 accessible index deleters. Same as NAN_INDEX_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_DELETER.

[bookmark: api_nan_index_query]

NAN_INDEX_QUERY(cbname)

Use NAN_INDEX_QUERY to declare your V8 accessible index queries. Same as NAN_INDEX_GETTER.

You can use NanReturnNull(), NanReturnEmptyString(), NanReturnUndefined() and NanReturnValue() in a NAN_INDEX_QUERY.

[bookmark: api_nan_weak_callback]

NAN_WEAK_CALLBACK(cbname)

Use NAN_WEAK_CALLBACK to define your V8 WeakReference callbacks. Do not use for declaration. There is an argument object const _NanWeakCallbackData<T, P> &data allowing access to the weak object and the supplied parameter through its GetValue and GetParameter methods.

NAN_WEAK_CALLBACK(weakCallback) {
 int *parameter = data.GetParameter();
 NanMakeCallback(NanGetCurrentContext()->Global(), data.GetValue(), 0, NULL);
 if ((*parameter)++ == 0) {
 data.Revive();
 } else {
 delete parameter;
 data.Dispose();
 }
}

[bookmark: api_nan_deprecated]

NAN_DEPRECATED

Declares a function as deprecated.

static NAN_DEPRECATED NAN_METHOD(foo) {
 ...
}

[bookmark: api_nan_inline]

NAN_INLINE

Inlines a function.

NAN_INLINE int foo(int bar) {
 ...
}

[bookmark: api_nan_new]

Local<

T>

 NanNew<

T>

(...)

Use NanNew to construct almost all v8 objects and make new local handles.

Local<String> s = NanNew<String>("value");

...

Persistent<Object> o;

...

Local<Object> lo = NanNew(o);

[bookmark: api_nan_undefined]

Handle<

Primitive>

 NanUndefined()

Use instead of Undefined()

[bookmark: api_nan_null]

Handle<

Primitive>

 NanNull()

Use instead of Null()

[bookmark: api_nan_true]

Handle<

Primitive>

 NanTrue()

Use instead of True()

[bookmark: api_nan_false]

Handle<

Primitive>

 NanFalse()

Use instead of False()

[bookmark: api_nan_return_value]

NanReturnValue(Handle<

Value>

)

Use NanReturnValue when you want to return a value from your V8 accessible method:

NAN_METHOD(Foo::Bar) {
 ...

 NanReturnValue(NanNew<String>("FooBar!"));
}

No return statement required.

[bookmark: api_nan_return_undefined]

NanReturnUndefined()

Use NanReturnUndefined when you don’t want to return anything from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnUndefined();
}

[bookmark: api_nan_return_null]

NanReturnNull()

Use NanReturnNull when you want to return Null from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnNull();
}

[bookmark: api_nan_return_empty_string]

NanReturnEmptyString()

Use NanReturnEmptyString when you want to return an empty String from your V8 accessible method:

NAN_METHOD(Foo::Baz) {
 ...

 NanReturnEmptyString();
}

[bookmark: api_nan_scope]

NanScope()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanScope() necessary, use it in place of HandleScope scope:

NAN_METHOD(Foo::Bar) {
 NanScope();

 NanReturnValue(NanNew<String>("FooBar!"));
}

[bookmark: api_nan_escapable_scope]

NanEscapableScope()

The separation of handle scopes into escapable and inescapable scopes makes NanEscapableScope() necessary, use it in place of HandleScope scope when you later wish to Close() the scope:

Handle<String> Foo::Bar() {
 NanEscapableScope();

 return NanEscapeScope(NanNew<String>("FooBar!"));
}

[bookmark: api_nan_esacpe_scope]

Local<

T>

 NanEscapeScope(Handle<

T>

 value);

Use together with NanEscapableScope to escape the scope. Corresponds to HandleScope::Close or EscapableHandleScope::Escape.

[bookmark: api_nan_locker]

NanLocker()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanLocker() necessary, use it in place of Locker locker:

NAN_METHOD(Foo::Bar) {
 NanLocker();
 ...
 NanUnlocker();
}

[bookmark: api_nan_unlocker]

NanUnlocker()

The introduction of isolate references for many V8 calls in Node 0.11 makes NanUnlocker() necessary, use it in place of Unlocker unlocker:

NAN_METHOD(Foo::Bar) {
 NanLocker();
 ...
 NanUnlocker();
}

[bookmark: api_nan_get_internal_field_pointer]

void * NanGetInternalFieldPointer(Handle<

Object>

, int)

Gets a pointer to the internal field with at index from a V8 Object handle.

Local<Object> obj;
...
NanGetInternalFieldPointer(obj, 0);

[bookmark: api_nan_set_internal_field_pointer]

void NanSetInternalFieldPointer(Handle<

Object>

, int, void *)

Sets the value of the internal field at index on a V8 Object handle.

static Persistent<Function> dataWrapperCtor;
...
Local<Object> wrapper = NanPersistentToLocal(dataWrapperCtor)->NewInstance();
NanSetInternalFieldPointer(wrapper, 0, this);

[bookmark: api_nan_object_wrap_handle]

Local<

Object>

 NanObjectWrapHandle(Object)

When you want to fetch the V8 object handle from a native object you’ve wrapped with Node’s ObjectWrap, you should use NanObjectWrapHandle:

NanObjectWrapHandle(iterator)->Get(NanSymbol("end"))

[bookmark: api_nan_symbol]

String NanSymbol(char *)

Use to create string symbol objects (i.e. v8::String::NewSymbol(x)), for getting and setting object properties, or names of objects.

bool foo = false;
if (obj->Has(NanSymbol("foo")))
 foo = optionsObj->Get(NanSymbol("foo"))->BooleanValue()

[bookmark: api_nan_get_pointer_safe]

Type NanGetPointerSafe(Type *[, Type])

A helper for getting values from optional pointers. If the pointer is NULL, the function returns the optional default value, which defaults to 0. Otherwise, the function returns the value the pointer points to.

char *plugh(uint32_t *optional) {
 char res[] = "xyzzy";
 uint32_t param = NanGetPointerSafe<uint32_t>(optional, 0x1337);
 switch (param) {
 ...
 }
 NanSetPointerSafe<uint32_t>(optional, 0xDEADBEEF);
}

[bookmark: api_nan_set_pointer_safe]

bool NanSetPointerSafe(Type *, Type)

A helper for setting optional argument pointers. If the pointer is NULL, the function simply returns false. Otherwise, the value is assigned to the variable the pointer points to.

const char *plugh(size_t *outputsize) {
 char res[] = "xyzzy";
 if !(NanSetPointerSafe<size_t>(outputsize, strlen(res) + 1)) {
 ...
 }

 ...
}

[bookmark: api_nan_raw_string]

void* NanRawString(Handle<

Value>

, enum Nan::Encoding, size_t *, void *, size_t, int)

When you want to convert a V8 String to a char* buffer, use NanRawString. You have to supply an encoding as well as a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows setting String::WriteOptions.
Just remember that you’ll end up with an object that you’ll need to delete[] at some point unless you supply your own buffer:

size_t count;
void* decoded = NanRawString(args[1], Nan::BASE64, &count, NULL, 0, String::HINT_MANY_WRITES_EXPECTED);
char param_copy[count];
memcpy(param_copy, decoded, count);
delete[] decoded;

[bookmark: api_nan_c_string]

char* NanCString(Handle<

Value>

, size_t *[, char *, size_t, int])

When you want to convert a V8 String to a null-terminated C char* use NanCString. The resulting char* will be UTF-8-encoded, and you need to supply a pointer to a variable that will be assigned the number of bytes in the returned string. It is also possible to supply a buffer and its length to the function in order not to have a new buffer allocated. The final argument allows optionally setting String::WriteOptions, which default to v8::String::NO_OPTIONS.
Just remember that you’ll end up with an object that you’ll need to delete[] at some point unless you supply your own buffer:

size_t count;
char* name = NanCString(args[0], &count);

[bookmark: api_nan_boolean_option_value]

bool NanBooleanOptionValue(Handle<

Value>

, Handle<

String>

[, bool])

When you have an “options” object that you need to fetch properties from, boolean options can be fetched with this pair. They check first if the object exists (IsEmpty), then if the object has the given property (Has) then they get and convert/coerce the property to a bool.

The optional last parameter is the default value, which is false if left off:

// `foo` is false unless the user supplies a truthy value for it
bool foo = NanBooleanOptionValue(optionsObj, NanSymbol("foo"));
// `bar` is true unless the user supplies a falsy value for it
bool bar = NanBooleanOptionValueDefTrue(optionsObj, NanSymbol("bar"), true);

[bookmark: api_nan_uint32_option_value]

uint32_t NanUInt32OptionValue(Handle<

Value>

, Handle<

String>

, uint32_t)

Similar to NanBooleanOptionValue, use NanUInt32OptionValue to fetch an integer option from your options object. Can be any kind of JavaScript Number and it will be coerced to an unsigned 32-bit integer.

Requires all 3 arguments as a default is not optional:

uint32_t count = NanUInt32OptionValue(optionsObj, NanSymbol("count"), 1024);

[bookmark: api_nan_error]

NanError(message), NanTypeError(message), NanRangeError(message)

For making Error, TypeError and RangeError objects.

Local<Value> res = NanError("you must supply a callback argument");

[bookmark: api_nan_throw_error]

NanThrowError(message), NanThrowTypeError(message), NanThrowRangeError(message), NanThrowError(Local<

Value>

), NanThrowError(Local<

Value>

, int)

For throwing Error, TypeError and RangeError objects. You should return this call:

return NanThrowError("you must supply a callback argument");

Can also handle any custom object you may want to throw. If used with the error code argument, it will add the supplied error code to the error object as a property called code.

[bookmark: api_nan_new_buffer_handle]

Local<

Object>

 NanNewBufferHandle(char *, uint32_t), Local<

Object>

 NanNewBufferHandle(uint32_t)

The Buffer API has changed a little in Node 0.11, this helper provides consistent access to Buffer creation:

NanNewBufferHandle((char*)value.data(), value.size());

Can also be used to initialize a Buffer with just a size argument.

Can also be supplied with a NanFreeCallback and a hint for the garbage collector.

[bookmark: api_nan_buffer_use]

Local<

Object>

 NanBufferUse(char*, uint32_t)

Buffer::New(char*, uint32_t) prior to 0.11 would make a copy of the data.
While it was possible to get around this, it required a shim by passing a
callback. So the new API Buffer::Use(char*, uint32_t) was introduced to remove
needing to use this shim.

NanBufferUse uses the char* passed as the backing data, and will free the
memory automatically when the weak callback is called. Keep this in mind, as
careless use can lead to “double free or corruption” and other cryptic failures.

[bookmark: api_nan_has_instance]

bool NanHasInstance(Persistent<

FunctionTemplate>

&, Handle<

Value>

)

Can be used to check the type of an object to determine it is of a particular class you have already defined and have a Persistent<FunctionTemplate> handle for.

Local<

Context>

 NanNewContextHandle([ExtensionConfiguration*, Handle<

ObjectTemplate>

, Handle<

Value>

])

Creates a new Local<Context> handle.

Local<FunctionTemplate> ftmpl = NanNew<FunctionTemplate>();
Local<ObjectTemplate> otmpl = ftmpl->InstanceTemplate();
Local<Context> ctx = NanNewContextHandle(NULL, otmpl);

Local NanGetCurrentContext()

Gets the current context.

Local<Context> ctx = NanGetCurrentContext();

[bookmark: api_nan_dispose_persistent]

void NanDisposePersistent(Persistent<

T>

 &)

Use NanDisposePersistent to dispose a Persistent handle.

NanDisposePersistent(persistentHandle);

[bookmark: api_nan_assign_persistent]

NanAssignPersistent(type, handle, object)

Use NanAssignPersistent to assign a non-Persistent handle to a Persistent one. You can no longer just declare a Persistent handle and assign directly to it later, you have to Reset it in Node 0.11, so this makes it easier.

In general it is now better to place anything you want to protect from V8’s garbage collector as properties of a generic Object and then assign that to a Persistent. This works in older versions of Node also if you use NanAssignPersistent:

Persistent<Object> persistentHandle;

...

Local<Object> obj = NanNew<Object>();
obj->Set(NanSymbol("key"), keyHandle); // where keyHandle might be a Local<String>
NanAssignPersistent(Object, persistentHandle, obj)

[bookmark: api_nan_make_weak_persistent]

NanMakeWeakPersistent(Handle<

T>

 handle, P* parameter, _NanWeakCallbackInfo<

T, P>

::Callback callback)

Creates a weak persistent handle with the supplied parameter and NAN_WEAK_CALLBACK. The callback has to be fully specialized to work on all versions of Node.

NAN_WEAK_CALLBACK(weakCallback) {

...

}

Local<Function> func;

...

int *parameter = new int(0);
NanMakeWeakPersistent(func, parameter, &weakCallback<Function, int>);

[bookmark: api_nan_set_template]

NanSetTemplate(templ, name, value)

Use to add properties on object and function templates.

[bookmark: api_nan_make_callback]

NanMakeCallback(target, func, argc, argv)

Use instead of node::MakeCallback to call javascript functions. This is the only proper way of calling functions.

[bookmark: api_nan_compile_script]

NanCompileScript(Handle s [, const ScriptOrigin&

 origin])

Use to create new scripts bound to the current context.

[bookmark: api_nan_run_script]

NanRunScript(script)

Use to run both bound and unbound scripts.

[bookmark: api_nan_adjust_external_memory]

NanAdjustExternalMemory(int change_in_bytes)

Simply does AdjustAmountOfExternalAllocatedMemory

[bookmark: api_nan_add_gc_epilogue_callback]

NanAddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type_filter=kGCTypeAll)

Simply does AddGCEpilogueCallback

[bookmark: api_nan_add_gc_prologue_callback]

NanAddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type_filter=kGCTypeAll)

Simply does AddGCPrologueCallback

[bookmark: api_nan_remove_gc_epilogue_callback]

NanRemoveGCEpilogueCallback(GCEpilogueCallback callback)

Simply does RemoveGCEpilogueCallback

[bookmark: api_nan_add_gc_prologue_callback]

NanRemoveGCPrologueCallback(GCPrologueCallback callback)

Simply does RemoveGCPrologueCallback

[bookmark: api_nan_get_heap_statistics]

NanGetHeapStatistics(HeapStatistics *heap_statistics)

Simply does GetHeapStatistics

[bookmark: api_nan_callback]

NanCallback

Because of the difficulties imposed by the changes to Persistent handles in V8 in Node 0.11, creating Persistent versions of your Handle<Function> is annoyingly tricky. NanCallback makes it easier by taking your handle, making it persistent until the NanCallback is deleted and even providing a handy Call() method to fetch and execute the callback Function.

Local<Function> callbackHandle = args[0].As<Function>();
NanCallback *callback = new NanCallback(callbackHandle);
// pass `callback` around and it's safe from GC until you:
delete callback;

You can execute the callback like so:

// no arguments:
callback->Call(0, NULL);

// an error argument:
Handle<Value> argv[] = {
 NanError(NanNew<String>("fail!"))
};
callback->Call(1, argv);

// a success argument:
Handle<Value> argv[] = {
 NanNull(),
 NanNew<String>("w00t!")
};
callback->Call(2, argv);

NanCallback also has a Local<Function> GetCallback() method that you can use
to fetch a local handle to the underlying callback function, as well as a
void SetFunction(Handle<Function>) for setting the callback on the
NanCallback. Additionally a generic constructor is available for using
NanCallback without performing heap allocations.

[bookmark: api_nan_async_worker]

NanAsyncWorker

NanAsyncWorker is an abstract class that you can subclass to have much of the annoying async queuing and handling taken care of for you. It can even store arbitrary V8 objects for you and have them persist while the async work is in progress.

See a rough outline of the implementation:

class NanAsyncWorker {
public:
 NanAsyncWorker (NanCallback *callback);

 // Clean up persistent handles and delete the *callback
 virtual ~NanAsyncWorker ();

 // Check the `char *errmsg` property and call HandleOKCallback()
 // or HandleErrorCallback depending on whether it has been set or not
 virtual void WorkComplete ();

 // You must implement this to do some async work. If there is an
 // error then allocate `errmsg` to a message and the callback will
 // be passed that string in an Error object
 virtual void Execute ();

 // Save a V8 object in a Persistent handle to protect it from GC
 void SavePersistent(const char *key, Local<Object> &obj);

 // Fetch a stored V8 object (don't call from within `Execute()`)
 Local<Object> GetFromPersistent(const char *key);

protected:
 // Set this if there is an error, otherwise it's NULL
 const char *errmsg;

 // Default implementation calls the callback function with no arguments.
 // Override this to return meaningful data
 virtual void HandleOKCallback ();

 // Default implementation calls the callback function with an Error object
 // wrapping the `errmsg` string
 virtual void HandleErrorCallback ();
};

[bookmark: api_nan_async_queue_worker]

NanAsyncQueueWorker(NanAsyncWorker *)

NanAsyncQueueWorker will run a NanAsyncWorker asynchronously via libuv. Both the execute and after_work steps are taken care of for you

—

most of the logic for this is embedded in NanAsyncWorker.

Contributors

NAN is only possible due to the excellent work of the following contributors:

		Rod Vagg		GitHub/rvagg		Twitter/@rvagg

		Benjamin Byholm		GitHub/kkoopa

		Trevor Norris		GitHub/trevnorris		Twitter/@trevnorris

		Nathan Rajlich		GitHub/TooTallNate		Twitter/@TooTallNate

		Brett Lawson		GitHub/brett19		Twitter/@brett19x

		Ben Noordhuis		GitHub/bnoordhuis		Twitter/@bnoordhuis

Licence &

 copyright

Copyright (c) 2014 NAN contributors (listed above).

Native Abstractions for Node.js is licensed under an MIT +no-false-attribs license. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE file for more details.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/email-templates/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Node Email Templates

![NPM version][npm-image] [https://npmjs.org/package/email-templates]
![Build Status][travis-image] [http://travis-ci.org/niftylettuce/node-email-templates]
![NPM downloads][npm-downloads] [https://npmjs.org/package/email-templates]
![Test Coverage][coveralls-image] [https://coveralls.io/r/niftylettuce/node-email-templates?branch=master]
![MIT License][license-image]
![Gitter][gitter-image] [https://gitter.im/niftylettuce/node-email-templates]

Node.js NPM package for rendering beautiful emails with your template engine and CSS pre-processor of choice coupled with email-friendly inline CSS using juice [https://github.com/LearnBoost/juice].

Enjoy this package? Check out eskimo [http://eskimo.io] and express-cdn [https://github.com/niftylettuce/express-cdn], and follow @niftylettuce [http://twitter.com/niftylettuce]!

Index

		Email Templates

		Installation

		Quick Start

		EJS Custom Tags

		Examples
		Basic

		Nodemailer

		Postmark

		Lazyweb Requests

		Changelog

		Contributors

		License

Email Templates

For customizable, pre-built email templates, see Email Blueprints [https://github.com/mailchimp/Email-Blueprints] and Transactional Email Templates [https://github.com/mailgun/transactional-email-templates].

Supported Template Engines

		ejs [https://github.com/visionmedia/ejs]

		jade [https://github.com/visionmedia/jade]

		swig [https://github.com/paularmstrong/swig]

		handlebars [https://github.com/wycats/handlebars.js]

		emblem [https://github.com/machty/emblem.js]

		dust-linkedin [https://github.com/linkedin/dustjs]

Supported CSS Pre-processors

		less [http://lesscss.org/]

		sass [http://sass-lang.com/]

		stylus [http://learnboost.github.io/stylus/]

		styl [https://github.com/visionmedia/styl]

Prerequisites

This module depends on jsdom [https://github.com/tmpvar/jsdom] which requires the ability to compile C++ on your localhost. Before installing, please verify that you have the prerequisites installed for your OS.

		OSX requirements [https://github.com/tmpvar/jsdom#mac]

		Linux requirements [https://github.com/tmpvar/jsdom#linux]

Important Note for Windows Users

Developing on OS X or Ubuntu/Linux is recommended, but if you only have access to a Windows machine you can do one of the following:

		Use vagrant [http://www.vagrantup.com/] to create a linux dev environment (recommended)

		Follow the Windows installation guide [https://github.com/brianmcd/contextify/wiki/Windows-Installation-Guide] for contextify

Installation

npm install -S email-templates

Starting with version 1.1.1 you must install the engines you wish to use by adding them to your package.json dependencies.

npm install -S [ejs|jade|swig|handlebars|emblem|dust-linkedin]

Quick Start

		Install the module for your respective project:

npm install -S email-templates

		Install the template engine you intend to use:

		ejs

		jade

		swig

		handlebars

		emblem

		dust-linkedin

npm install -S <engine>

		Create a folder called templates inside your root directory (or elsewhere).

mkdir templates

		For each of your email templates (e.g. a welcome email to send to users when they register on your site), respectively name and create a folder inside the templates folder.

mkdir templates/welcome-email

		Add the following files inside the template’s folder:

		html.{{ext}} (required)

		text.{{ext}} (optional)

		style.{{ext}}(optional)

See supported template engines for possible template engine extensions (e.g. .ejs, .jade, .swig) to use for the value of {{ext}} above.

You may prefix any file name with anything you like to help you identify the files more easily in your IDE. The only requirement is that the filename contains html., text., and style. respectively.

		You may use the include directive from ejs [https://github.com/visionmedia/ejs] (for example, to include a common header or footer). See the /examples folder for details.

		Utilize one of the examples below for your respective email module and start sending beautiful emails!

Template Engine Options

If your want to configure your template engine, just pass options.

Want to use different opening and closing tags instead of the EJS’s default <% and %>?.

// ...
emailTemplates(templatesDir, { open: '{{', close: '}}' }, function(err, template) {
// ...

You can also pass other options from EJS’s documentation.

Want to add a helper or partial to Handlebars?

// ...
emailTemplates(templatesDir, {
 helpers: {
 uppercase: function(context) {
 return context.toUpperCase()
 }
 }, partials: {
 // ...
 }
})
// ...

Examples

Basic

Render a template for a single email or render multiple (having only loaded the template once).

var path = require('path')
 , templatesDir = path.join(__dirname, 'templates')
 , emailTemplates = require('email-templates');

emailTemplates(templatesDir, function(err, template) {

 // Render a single email with one template
 var locals = { pasta: 'Spaghetti' };

 template('pasta-dinner', locals, function(err, html, text) {
 // ...
 });

 // Render multiple emails with one template
 var locals = [
 { pasta: 'Spaghetti' },
 { pasta: 'Rigatoni' }
];

 var Render = function(locals) {
 this.locals = locals;
 this.send = function(err, html, text) {
 // ...
 };
 this.batch = function(batch) {
 batch(this.locals, this.send);
 };
 };

 // An example users object
 var users = [
 {
 email: 'pappa.pizza@spaghetti.com',
 name: {
 first: 'Pappa',
 last: 'Pizza'
 }
 },
 {
 email: 'mister.geppetto@spaghetti.com',
 name: {
 first: 'Mister',
 last: 'Geppetto'
 }
 }
];

 template('pasta-dinner', true, function(err, batch) {
 for(var user in users) {
 var render = new Render(users[user]);
 render.batch(batch);
 }
 });

});

Nodemailer [https://github.com/andris9/Nodemailer]

var path = require('path')
 , templatesDir = path.resolve(__dirname, '..', 'templates')
 , emailTemplates = require('email-templates')
 , nodemailer = require('nodemailer');

emailTemplates(templatesDir, function(err, template) {

 if (err) {
 console.log(err);
 } else {

 // ## Send a single email

 // Prepare nodemailer transport object
 var transport = nodemailer.createTransport("SMTP", {
 service: "Gmail",
 auth: {
 user: "some-user@gmail.com",
 pass: "some-password"
 }
 });

 // An example users object with formatted email function
 var locals = {
 email: 'mamma.mia@spaghetti.com',
 name: {
 first: 'Mamma',
 last: 'Mia'
 }
 };

 // Send a single email
 template('newsletter', locals, function(err, html, text) {
 if (err) {
 console.log(err);
 } else {
 transport.sendMail({
 from: 'Spicy Meatball <spicy.meatball@spaghetti.com>',
 to: locals.email,
 subject: 'Mangia gli spaghetti con polpette!',
 html: html,
 // generateTextFromHTML: true,
 text: text
 }, function(err, responseStatus) {
 if (err) {
 console.log(err);
 } else {
 console.log(responseStatus.message);
 }
 });
 }
 });

 // ## Send a batch of emails and only load the template once

 // Prepare nodemailer transport object
 var transportBatch = nodemailer.createTransport("SMTP", {
 service: "Gmail",
 auth: {
 user: "some-user@gmail.com",
 pass: "some-password"
 }
 });

 // An example users object
 var users = [
 {
 email: 'pappa.pizza@spaghetti.com',
 name: {
 first: 'Pappa',
 last: 'Pizza'
 }
 },
 {
 email: 'mister.geppetto@spaghetti.com',
 name: {
 first: 'Mister',
 last: 'Geppetto'
 }
 }
];

 // Custom function for sending emails outside the loop
 //
 // NOTE:
 // We need to patch postmark.js module to support the API call
 // that will let us send a batch of up to 500 messages at once.
 // (e.g. <https://github.com/diy/trebuchet/blob/master/lib/index.js#L160>)
 var Render = function(locals) {
 this.locals = locals;
 this.send = function(err, html, text) {
 if (err) {
 console.log(err);
 } else {
 transportBatch.sendMail({
 from: 'Spicy Meatball <spicy.meatball@spaghetti.com>',
 to: locals.email,
 subject: 'Mangia gli spaghetti con polpette!',
 html: html,
 // generateTextFromHTML: true,
 text: text
 }, function(err, responseStatus) {
 if (err) {
 console.log(err);
 } else {
 console.log(responseStatus.message);
 }
 });
 }
 };
 this.batch = function(batch) {
 batch(this.locals, templatesDir, this.send);
 };
 };

 // Load the template and send the emails
 template('newsletter', true, function(err, batch) {
 for(var user in users) {
 var render = new Render(users[user]);
 render.batch(batch);
 }
 });

 }
});

Postmark [http://postmarkapp.com/]

This example utilizes Postmark.js [https://github.com/voodootikigod/postmark.js].

Did you know nodemailer can also be used to send SMTP email through Postmark? See this section [https://github.com/andris9/Nodemailer#well-known-services-for-smtp] of their Readme for more info.

For more message format options, see this section [http://developer.postmarkapp.com/developer-build.html#message-format] of Postmark’s developer documentation section.

var path = require('path')
 , templatesDir = path.resolve(__dirname, '..', 'templates')
 , emailTemplates = require('email-templates')
 , postmark = require('postmark')('your-api-key');

emailTemplates(templatesDir, function(err, template) {

 if (err) {
 console.log(err);
 } else {

 // ## Send a single email

 // An example users object with formatted email function
 var locals = {
 email: 'mamma.mia@spaghetti.com',
 name: {
 first: 'Mamma',
 last: 'Mia'
 }
 };

 // Send a single email
 template('newsletter', locals, function(err, html, text) {
 if (err) {
 console.log(err);
 } else {
 postmark.send({
 From: 'Spicy Meatball <spicy.meatball@spaghetti.com>',
 To: locals.email,
 Subject: 'Mangia gli spaghetti con polpette!',
 HtmlBody: html,
 TextBody: text
 }, function(err, response) {
 if (err) {
 console.log(err.status);
 console.log(err.message);
 } else {
 console.log(response);
 }
 });
 }
 });

 // ## Send a batch of emails and only load the template once

 // An example users object
 var users = [
 {
 email: 'pappa.pizza@spaghetti.com',
 name: {
 first: 'Pappa',
 last: 'Pizza'
 }
 },
 {
 email: 'mister.geppetto@spaghetti.com',
 name: {
 first: 'Mister',
 last: 'Geppetto'
 }
 }
];

 // Custom function for sending emails outside the loop
 //
 // NOTE:
 // We need to patch postmark.js module to support the API call
 // that will let us send a batch of up to 500 messages at once.
 // (e.g. <https://github.com/diy/trebuchet/blob/master/lib/index.js#L160>)
 var Render = function(locals) {
 this.locals = locals;
 this.send = function(err, html, text) {
 if (err) {
 console.log(err);
 } else {
 postmark.send({
 From: 'Spicy Meatball <spicy.meatball@spaghetti.com>',
 To: locals.email,
 Subject: 'Mangia gli spaghetti con polpette!',
 HtmlBody: html,
 TextBody: text
 }, function(err, response) {
 if (err) {
 console.log(err.status);
 console.log(err.message);
 } else {
 console.log(response);
 }
 });
 }
 };
 this.batch = function(batch) {
 batch(this.locals, templatesDir, this.send);
 };
 };

 // Load the template and send the emails
 template('newsletter', true, function(err, batch) {
 for(user in users) {
 var render = new Render(users[user]);
 render.batch(batch);
 }
 });

 }
});

Conventions

See nifty-conventions [https://github.com/niftylettuce/nifty-conventions] for code guidelines, general project requirements, and git workflow.

Contributors

		Nick Baugh niftylettuce@gmail.com

		Andrea Baccega vekexasia@gmail.com

		Nic Jansma http://nicj.net

		Jason Sims sims.jrobert@gmail.com

		Miguel Mota hello@miguelmota.com

		Jeduan Cornejo jeduan@gmail.com

Full list of contributors can be found on the GitHub Contributor Graph [https://github.com/niftylettuce/node-email-templates/graphs/contributors]

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/node_modules/ws/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

v0.4.31 - September 23th, 2013

		Component support

v0.4.30 - August 30th, 2013

		BufferedAmount could be undefined, default to 0 [TooTallNate]

		Support protocols as second argument and options as third [TooTallNate]

		Proper browserify shim [mcollina]

		Broadcasting example in README [stefanocudini]

v0.4.29 - August 23th, 2013

		Small clean up of the Node 0.11 support by using NAN from the NPM registry [kkoopa]

		Support for custom Agent‘s through the options. [gramakri] & [TooTallNate]

		Support for custom headers through the options [3rd-Eden]

		Added a gypfile flag to the package.json for compiled module discovery [wolfeidau]

v0.4.28 - August 16th, 2013

		Node 0.11 support. [kkoopa]

		Authorization headers are sent when basic auth is used in the url [jcrugzz]

		Origin header will now include the port number [Jason Plum]

		Race condition fixed where data was received before the readyState was updated. [saschagehlich]

v0.4.27 - June 27th, 2013

		Frames are no longer masked in wscat. [slaskis]

		Don’t retrain reference to large slab buffers. [jmatthewsr-msi]

		Don’t use Buffer.byteLength for ArrayBuffer’s. [Anthony Pesch]

		Fix browser field in package.json. [shtylman]

		Client-side certificate support & documentation improvements. [Lukas Berns]

		WebSocket readyState’s is added to the prototype for spec compatiblity. [BallBearing]

		Use Object.defineProperty. [arlolra]

		Autodetect ArrayBuffers as binary when sending. [BallBearing]

		Check instanceof Buffer for binary data. [arlolra]

		Emit the close event before destroying the internal socket. [3rd-Eden]

		Don’t setup multiply timeouts for one connection. [AndreasMadsen]

		Allow support for binding to ethereal port. [wpreul]

		Fix broken terminate reference. [3rd-Eden]

		Misc node 0.10 test fixes and documentation improvements. [3rd-Eden]

		Ensure ssl options are propagated to request. [einaros]

		Add ‘Host’ and ‘Origin’ to request header. [Lars-Magnus Skog]

		Subprotocol support. [kanaka]

		Honor ArrayBufferView’s byteOffset when sending. [Anthony Pesch]

		Added target attribute for events. [arlolra]

v0.4.26 - Skipped

v0.4.25 - December 17th, 2012

		Removed install.js. [shtylman]

		Added browser field to package.json. [shtylman]

		Support overwriting host header. [Raynos]

		Emit ‘listening’ also with custom http server. [sebiq]

v0.4.24 - December 6th, 2012

		Yet another intermediate release, to not delay minor features any longer.

		Native support installation issues further circumvented. [einaros]

v0.4.23 - November 19th, 2012

		Service release - last before major upgrade.

		Changes default host from 127.0.0.1 to 0.0.0.0. [einaros]

v0.4.22 - October 3rd, 2012

		clear failsafe cleanup timeout once cleanup is called [AndreasMadsen]

		added w3c compatible CloseEvent for onclose / addEventListener(“close”, ...). [einaros]

		fix the sub protocol header handler [sonnyp]

		fix unhandled exception if socket closes and ‘error’ is emitted [jmatthewsr-ms]

v0.4.21 - July 14th, 2012

		Emit error if server reponds with anything other than status code 101. [einaros]

		Added ‘headers’ event to server. [rauchg]

		path.exists moved to fs.exists. [blakmatrix]

v0.4.20 - June 26th, 2012

		node v0.8.0 compatibility release.

v0.4.19 - June 19th, 2012

		Change sender to merge buffers for relatively small payloads, may improve perf in some cases [einaros]

		Avoid EventEmitter for Receiver classes. As above this may improve perf. [einaros]

		Renamed fallback files from the somewhat misleading ‘*Windows’. [einaros]

v0.4.18 - June 14th 2012

		Fixed incorrect md5 digest encoding in Hixie handshake [nicokaiser]

		Added example of use with Express 3 [einaros]

		Change installation procedure to not require –ws:native to build native extensions. They will now build if a compiler is available. [einaros]

v0.4.17 - June 13th 2012

		Improve error handling during connection handshaking [einaros]

		Ensure that errors are caught also after connection teardown [nicokaiser]

		Update ‘mocha’ version to 1.1.0. [einaros]

		Stop showing ‘undefined’ for some error logs. [tricknotes]

		Update ‘should’ version to 0.6.3 [tricknotes]

v0.4.16 - June 1st 2012

		Build fix for Windows. [einaros]

v0.4.15 - May 20th 2012

		Enable fauxe streaming for hixie tansport. [einaros]

		Allow hixie sender to deal with buffers. [einaros/pigne]

		Allow error code 1011. [einaros]

		Fix framing for empty packets (empty pings and pongs might break). [einaros]

		Improve error and close handling, to avoid connections lingering in CLOSING state. [einaros]

v0.4.14 - Apr 30th 2012

		use node-gyp instead of node-waf [TooTallNate]

		remove old windows compatibility makefile, and silently fall back to native modules [einaros]

		ensure connection status [nicokaiser]

		websocket client updated to use port 443 by default for wss:// connections [einaros]

		support unix sockets [kschzt]

v0.4.13 - Apr 12th 2012

		circumvent node 0.6+ related memory leak caused by Object.defineProperty [nicokaiser]

		improved error handling, improving stability in massive load use cases [nicokaiser]

v0.4.12 - Mar 30th 2012

		various memory leak / possible memory leak cleanups [einaros]

		api documentation [nicokaiser]

		add option to disable client tracking [nicokaiser]

v0.4.11 - Mar 24th 2012

		node v0.7 compatibillity release

		gyp support [TooTallNate]

		commander dependency update [jwueller]

		loadbalancer support [nicokaiser]

v0.4.10 - Mar 22th 2012

		Final hixie close frame fixes. [nicokaiser]

v0.4.9 - Mar 21st 2012

		Various hixie bugfixes (such as proper close frame handling). [einaros]

v0.4.8 - Feb 29th 2012

		Allow verifyClient to run asynchronously [karlsequin]

		Various bugfixes and cleanups. [einaros]

v0.4.7 - Feb 21st 2012

		Exposed bytesReceived from websocket client object, which makes it possible to implement bandwidth sampling. [einaros]

		Updated browser based file upload example to include and output per websocket channel bandwidth sampling. [einaros]

		Changed build scripts to check which architecture is currently in use. Required after the node.js changes to have prebuilt packages target ia32 by default. [einaros]

v0.4.6 - Feb 9th 2012

		Added browser based file upload example. [einaros]

		Added server-to-browser status push example. [einaros]

		Exposed pause() and resume() on WebSocket object, to enable client stream shaping. [einaros]

v0.4.5 - Feb 7th 2012

		Corrected regression bug in handling of connections with the initial frame delivered across both http upgrade head and a standalone packet. This would lead to a race condition, which in some cases could cause message corruption. [einaros]

v0.4.4 - Feb 6th 2012

		Pass original request object to verifyClient, for cookie or authentication verifications. [einaros]

		Implemented addEventListener and slightly improved the emulation API by adding a MessageEvent with a readonly data attribute. [aslakhellesoy]

		Rewrite parts of hybi receiver to avoid stack overflows for large amounts of packets bundled in the same buffer / packet. [einaros]

v0.4.3 - Feb 4th 2012

		Prioritized update: Corrected issue which would cause sockets to stay open longer than necessary, and resource leakage because of this. [einaros]

v0.4.2 - Feb 4th 2012

		Breaking change: WebSocketServer’s verifyOrigin option has been renamed to verifyClient. [einaros]

		verifyClient now receives { origin: ‘origin header’, secure: true/false }, where ‘secure’ will be true for ssl connections. [einaros]

		Split benchmark, in preparation for more thorough case. [einaros]

		Introduced hixie-76 draft support for server, since Safari (iPhone / iPad / OS X) and Opera still aren’t updated to use Hybi. [einaros]

		Expose ‘supports’ object from WebSocket, to indicate e.g. the underlying transport’s support for binary data. [einaros]

		Test and code cleanups. [einaros]

v0.4.1 - Jan 25th 2012

		Use readline in wscat [tricknotes]

		Refactor _state away, in favor of the new _readyState [tricknotes]

		travis-ci integration [einaros]

		Fixed race condition in testsuite, causing a few tests to fail (without actually indicating errors) on travis [einaros]

		Expose pong event [paddybyers]

		Enabled running of WebSocketServer in noServer-mode, meaning that upgrades are passed in manually. [einaros]

		Reworked connection procedure for WebSocketServer, and cleaned up tests. [einaros]

v0.4.0 - Jan 2nd 2012

		Windows compatibility [einaros]

		Windows compatible test script [einaros]

v0.3.9 - Jan 1st 2012

		Improved protocol framing performance [einaros]

		WSS support [kazuyukitanimura]

		WSS tests [einaros]

		readyState exposed [justinlatimer, tricknotes]

		url property exposed [justinlatimer]

		Removed old ‘state’ property [einaros]

		Test cleanups [einaros]

v0.3.8 - Dec 27th 2011

		Made it possible to listen on specific paths, which is especially good to have for precreated http servers [einaros]

		Extensive WebSocket / WebSocketServer cleanup, including changing all internal properties to unconfigurable, unenumerable properties [einaros]

		Receiver modifications to ensure even better performance with fragmented sends [einaros]

		Fixed issue in sender.js, which would cause SlowBuffer instances (such as returned from the crypto library’s randomBytes) to be copied (and thus be dead slow) [einaros]

		Removed redundant buffer copy in sender.js, which should improve server performance [einaros]

v0.3.7 - Dec 25nd 2011

		Added a browser based API which uses EventEmitters internally [3rd-Eden]

		Expose request information from upgrade event for websocket server clients [mmalecki]

v0.3.6 - Dec 19th 2011

		Added option to let WebSocket.Server use an already existing http server [mmalecki]

		Migrating various option structures to use options.js module [einaros]

		Added a few more tests, options and handshake verifications to ensure that faulty connections are dealt with [einaros]

		Code cleanups in Sender and Receiver, to ensure even faster parsing [einaros]

v0.3.5 - Dec 13th 2011

		Optimized Sender.js, Receiver.js and bufferutil.cc:

		Apply loop-unrolling-like small block copies rather than use node.js Buffer#copy() (which is slow).

		Mask blocks of data using combination of 32bit xor and loop-unrolling, instead of single bytes.

		Keep pre-made send buffer for small transfers.

		Leak fixes and code cleanups.

v0.3.3 - Dec 12th 2011

		Compile fix for Linux.

		Rewrote parts of WebSocket.js, to avoid try/catch and thus avoid optimizer bailouts.

v0.3.2 - Dec 11th 2011

		Further performance updates, including the additions of a native BufferUtil module, which deals with several of the cpu intensive WebSocket operations.

v0.3.1 - Dec 8th 2011

		Service release, fixing broken tests.

v0.3.0 - Dec 8th 2011

		Node.js v0.4.x compatibility.

		Code cleanups and efficiency improvements.

		WebSocket server added, although this will still mainly be a client library.

		WebSocket server certified to pass the Autobahn test suite.

		Protocol improvements and corrections - such as handling (redundant) masks for empty fragments.

		‘wscat’ command line utility added, which can act as either client or server.

v0.2.6 - Dec 3rd 2011

		Renamed to ‘ws’. Big woop, right – but easy-websocket really just doesn’t cut it anymore!

v0.2.5 - Dec 3rd 2011

		Rewrote much of the WebSocket parser, to ensure high speed for highly fragmented messages.

		Added a BufferPool, as a start to more efficiently deal with allocations for WebSocket connections. More work to come, in that area.

		Updated the Autobahn report, at http://einaros.github.com/easy-websocket, with comparisons against WebSocket-Node 1.0.2 and Chrome 16.

v0.2.0 - Nov 25th 2011

		Major rework to make sure all the Autobahn test cases pass. Also updated the internal tests to cover more corner cases.

v0.1.2 - Nov 14th 2011

		Back and forth, back and forth: now settled on keeping the api (event names, methods) closer to the websocket browser api. This will stick now.

		Started keeping this history record. Better late than never, right?

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/dateformat/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

node-dateformat

A node.js package for Steven Levithan’s excellent dateFormat() [http://blog.stevenlevithan.com/archives/date-time-format] function.

Modifications

		Removed the Date.prototype.format method. Sorry folks, but extending native prototypes is for suckers.

		Added a module.exports = dateFormat; statement at the bottom

Usage

As taken from Steven’s post, modified to match the Modifications listed above:

var dateFormat = require('dateformat');
var now = new Date();

// Basic usage
dateFormat(now, "dddd, mmmm dS, yyyy, h:MM:ss TT");
// Saturday, June 9th, 2007, 5:46:21 PM

// You can use one of several named masks
dateFormat(now, "isoDateTime");
// 2007-06-09T17:46:21

// ...Or add your own
dateFormat.masks.hammerTime = 'HH:MM! "Can\'t touch this!"';
dateFormat(now, "hammerTime");
// 17:46! Can't touch this!

// When using the standalone dateFormat function,
// you can also provide the date as a string
dateFormat("Jun 9 2007", "fullDate");
// Saturday, June 9, 2007

// Note that if you don't include the mask argument,
// dateFormat.masks.default is used
dateFormat(now);
// Sat Jun 09 2007 17:46:21

// And if you don't include the date argument,
// the current date and time is used
dateFormat();
// Sat Jun 09 2007 17:46:22

// You can also skip the date argument (as long as your mask doesn't
// contain any numbers), in which case the current date/time is used
dateFormat("longTime");
// 5:46:22 PM EST

// And finally, you can convert local time to UTC time. Simply pass in
// true as an additional argument (no argument skipping allowed in this case):
dateFormat(now, "longTime", true);
// 10:46:21 PM UTC

// ...Or add the prefix "UTC:" to your mask.
dateFormat(now, "UTC:h:MM:ss TT Z");
// 10:46:21 PM UTC

// You can also get the ISO 8601 week of the year:
dateFormat(now, "W");
// 42

License

(c) 2007-2009 Steven Levithan stevenlevithan.com [http://stevenlevithan.com/], MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Glob

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

Attention: node-glob users!

The API has changed dramatically between 2.x and 3.x. This library is
now 100% JavaScript, and the integer flags have been replaced with an
options object.

Also, there’s an event emitter class, proper tests, and all the other
things you’ve come to expect from node modules.

And best of all, no compilation!

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Features

Please see the minimatch
documentation [https://github.com/isaacs/minimatch] for more details.

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options]

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instanting the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		error The error encountered. When an error is encountered, the
glob object is in an undefined state, and should be discarded.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		abort Stop the search.

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the glob object, as well.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence. It will cause
ELOOP to be triggered one level sooner in the case of cyclical
symbolic links.

		silent When an unusual error is encountered
when attempting to read a directory, a warning will be printed to
stderr. Set the silent option to true to suppress these warnings.

		strict When an unusual error is encountered
when attempting to read a directory, the process will just continue on
in search of other matches. Set the strict option to raise an error
in these cases.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary to
set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set.
Set this flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that case-insensitive
filesystems will sometimes result in glob returning results that are
case-insensitively matched anyway, since readdir and stat will not
raise an error.

		debug Set to enable debug logging in minimatch and glob.

		globDebug Set to enable debug logging in glob, but not minimatch.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not. Note that this is different from the way that ** is
handled by ruby’s Dir class.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the statCache object is reused between glob calls.

Users are thus advised not to use a glob result as a
guarantee of filesystem state in the face of rapid changes.
For the vast majority of operations, this is never a problem.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself. When set, an empty list is returned if there are
no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/lodash/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Lo-Dash v0.9.2

A utility library delivering consistency, customization [http://lodash.com/custom-builds], performance [http://lodash.com/benchmarks], & extras [http://lodash.com/#features].

Download

		Development build [https://raw.github.com/lodash/lodash/0.9.2/lodash.js]

		Production build [https://raw.github.com/lodash/lodash/0.9.2/lodash.min.js]

		Underscore build [https://raw.github.com/lodash/lodash/0.9.2/lodash.underscore.min.js] tailored for projects already using Underscore

		CDN copies of ≤ v0.9.2’s Production [http://cdnjs.cloudflare.com/ajax/libs/lodash.js/0.9.2/lodash.min.js], Underscore [http://cdnjs.cloudflare.com/ajax/libs/lodash.js/0.9.2/lodash.underscore.min.js], and Development [http://cdnjs.cloudflare.com/ajax/libs/lodash.js/0.9.2/lodash.js] builds are available on cdnjs [http://cdnjs.com/] thanks to CloudFlare [http://www.cloudflare.com/]

		For optimal file size, create a custom build [http://lodash.com/custom-builds] with only the features you need

Dive in

We’ve got API docs [http://lodash.com/docs], benchmarks [http://lodash.com/benchmarks], and unit tests [http://lodash.com/tests].

Create your own benchmarks at jsPerf [http://jsperf.com], or search [http://jsperf.com/search?q=lodash] for existing ones.

For a list of upcoming features, check out our roadmap [https://github.com/lodash/lodash/wiki/Roadmap].

Screencasts

For more information check out these screencasts over Lo-Dash:

		Introducing Lo-Dash [https://vimeo.com/44154599]

		Lo-Dash optimizations and custom builds [https://vimeo.com/44154601]

		Lo-Dash’s origin and why it’s a better utility belt [https://vimeo.com/44154600]

		Unit testing in Lo-Dash [https://vimeo.com/45865290]

		Lo-Dash’s approach to native method use [https://vimeo.com/48576012]

Features

		AMD loader support (RequireJS [http://requirejs.org/], curl.js [https://github.com/cujojs/curl], etc.)

		_.clone [http://lodash.com/docs#clone] supports “deep” cloning

		_.contains [http://lodash.com/docs#contains] accepts a fromIndex argument

		_.forEach [http://lodash.com/docs#forEach] is chainable and supports exiting iteration early

		_.forIn [http://lodash.com/docs#forIn] for iterating over an object’s own and inherited properties

		_.forOwn [http://lodash.com/docs#forOwn] for iterating over an object’s own properties

		_.isPlainObject [http://lodash.com/docs#isPlainObject] checks if values are created by the Object constructor

		_.lateBind [http://lodash.com/docs#lateBind] for late binding

		_.merge [http://lodash.com/docs#merge] for a “deep” _.extend [http://lodash.com/docs#extend]

		_.partial [http://lodash.com/docs#partial] for partial application without this binding

		_.pick [http://lodash.com/docs#pick] and _.omit [http://lodash.com/docs#omit] accepts callback and thisArg arguments

		_.template [http://lodash.com/docs#template] supports ES6 delimiters [http://people.mozilla.org/~jorendorff/es6-draft.html#sec-7.8.6] and utilizes sourceURLs [http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/#toc-sourceurl] for easier debugging

		_.contains [http://lodash.com/docs#contains], _.size [http://lodash.com/docs#size], _.toArray [http://lodash.com/docs#toArray],
and more… [http://lodash.com/docs] accept strings

Support

Lo-Dash has been tested in at least Chrome 5~23, Firefox 1~16, IE 6-10, Opera 9.25-12, Safari 3-6, Node.js 0.4.8-0.8.14, Narwhal 0.3.2, RingoJS 0.8, and Rhino 1.7RC5.

Installation and usage

In browsers:

<script src="lodash.js"></script>

Using npm [http://npmjs.org/]:

npm install lodash

npm install -g lodash
npm link lodash

In Node.js [http://nodejs.org/] and RingoJS v0.8.0+ [http://ringojs.org/]:

var _ = require('lodash');

Note: If Lo-Dash is installed globally, run npm link lodash [http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/] in your project’s root directory before requiring it.

In RingoJS v0.7.0- [http://ringojs.org/]:

var _ = require('lodash')._;

In Rhino [http://www.mozilla.org/rhino/]:

load('lodash.js');

In an AMD loader like RequireJS [http://requirejs.org/]:

require({
 'paths': {
 'underscore': 'path/to/lodash'
 }
},
['underscore'], function(_) {
 console.log(_.VERSION);
});

Resolved Underscore.js issues

		Allow iteration of objects with a length property [#799 [https://github.com/documentcloud/underscore/pull/799], test [https://github.com/lodash/lodash/blob/0.9.2/test/test.js#L545-551]]

		Fix cross-browser object iteration bugs [#60 [https://github.com/documentcloud/underscore/issues/60], #376 [https://github.com/documentcloud/underscore/issues/376], test [https://github.com/lodash/lodash/blob/0.9.2/test/test.js#L558-582]]

		Methods should work on pages with incorrectly shimmed native methods [#7 [https://github.com/documentcloud/underscore/issues/7], #742 [https://github.com/documentcloud/underscore/issues/742], test [https://github.com/lodash/lodash/blob/0.9.2/test/test.js#L140-146]]

		_.isEmpty should support jQuery/MooTools DOM query collections [#690 [https://github.com/documentcloud/underscore/pull/690], test [https://github.com/lodash/lodash/blob/0.9.2/test/test.js#L747-752]]

		_.isObject should avoid V8 bug #2291 [http://code.google.com/p/8/issues/detail?id=2291] [#605 [https://github.com/documentcloud/underscore/issues/605], test [https://github.com/lodash/lodash/blob/0.9.2/test/test.js#L828-840]]

		_.keys should work with arguments objects cross-browser [#396 [https://github.com/documentcloud/underscore/issues/396], test [https://github.com/lodash/lodash/blob/0.9.2/test/test.js#L921-923]]

		_.range should coerce arguments to numbers [#634 [https://github.com/documentcloud/underscore/issues/634], #683 [https://github.com/documentcloud/underscore/issues/683], test [https://github.com/lodash/lodash/blob/0.9.2/test/test.js#L1337-1340]]

Release Notes

v0.9.2

		Added fromIndex argument to _.contains

		Added moduleId build option

		Added Closure Compiler “simple” optimizations to the build process

		Added support for strings in _.max and _.min

		Added support for ES6 template delimiters to _.template

		Ensured re-minification of Lo-Dash by third parties avoids Closure Compiler bugs

		Optimized _.every, _.find, _.some, and _.uniq

The full changelog is available here [https://github.com/lodash/lodash/wiki/Changelog].

BestieJS

Lo-Dash is part of the BestieJS [https://github.com/bestiejs] “Best in Class” module collection. This means we promote solid browser/environment support, ES5 precedents, unit testing, and plenty of documentation.

Author

| [image: twitter/jdalton] [http://twitter.com/jdalton] |
|—|
| John-David Dalton [http://allyoucanleet.com/] |

Contributors

[image: twitter/blainebublitz] [http://twitter.com/blainebublitz]	[image: twitter/kitcambridge] [https://twitter.com/kitcambridge]	[image: twitter/mathias] [http://twitter.com/mathias]
—	—	—
Blaine Bublitz [http://iceddev.com/]	Kit Cambridge [http://kitcambridge.github.io/]	Mathias Bynens [http://mathiasbynens.be/]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Socket.IO

Socket.IO is a Node.JS project that makes WebSockets and realtime possible in
all browsers. It also enhances WebSockets by providing built-in multiplexing,
horizontal scalability, automatic JSON encoding/decoding, and more.

How to Install

npm install socket.io

How to use

First, require socket.io:

var io = require('socket.io');

Next, attach it to a HTTP/HTTPS server. If you’re using the fantastic express
web framework:

Express 3.x

var app = express()
 , server = require('http').createServer(app)
 , io = io.listen(server);

server.listen(80);

io.sockets.on('connection', function (socket) {
 socket.emit('news', { hello: 'world' });
 socket.on('my other event', function (data) {
 console.log(data);
 });
});

Express 2.x

var app = express.createServer()
 , io = io.listen(app);

app.listen(80);

io.sockets.on('connection', function (socket) {
 socket.emit('news', { hello: 'world' });
 socket.on('my other event', function (data) {
 console.log(data);
 });
});

Finally, load it from the client side code:

<script src="/socket.io/socket.io.js"></script>
<script>
 var socket = io.connect('http://localhost');
 socket.on('news', function (data) {
 console.log(data);
 socket.emit('my other event', { my: 'data' });
 });
</script>

For more thorough examples, look at the examples/ directory.

Short recipes

Sending and receiving events.

Socket.IO allows you to emit and receive custom events.
Besides connect, message and disconnect, you can emit custom events:

// note, io.listen(<port>) will create a http server for you
var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 io.sockets.emit('this', { will: 'be received by everyone' });

 socket.on('private message', function (from, msg) {
 console.log('I received a private message by ', from, ' saying ', msg);
 });

 socket.on('disconnect', function () {
 io.sockets.emit('user disconnected');
 });
});

Storing data associated to a client

Sometimes it’s necessary to store data associated with a client that’s
necessary for the duration of the session.

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.on('set nickname', function (name) {
 socket.set('nickname', name, function () { socket.emit('ready'); });
 });

 socket.on('msg', function () {
 socket.get('nickname', function (err, name) {
 console.log('Chat message by ', name);
 });
 });
});

Client side

<script>
 var socket = io.connect('http://localhost');

 socket.on('connect', function () {
 socket.emit('set nickname', prompt('What is your nickname?'));
 socket.on('ready', function () {
 console.log('Connected !');
 socket.emit('msg', prompt('What is your message?'));
 });
 });
</script>

Restricting yourself to a namespace

If you have control over all the messages and events emitted for a particular
application, using the default / namespace works.

If you want to leverage 3rd-party code, or produce code to share with others,
socket.io provides a way of namespacing a socket.

This has the benefit of multiplexing a single connection. Instead of
socket.io using two WebSocket connections, it’ll use one.

The following example defines a socket that listens on ‘/chat’ and one for
‘/news’:

Server side

var io = require('socket.io').listen(80);

var chat = io
 .of('/chat')
 .on('connection', function (socket) {
 socket.emit('a message', { that: 'only', '/chat': 'will get' });
 chat.emit('a message', { everyone: 'in', '/chat': 'will get' });
 });

var news = io
 .of('/news');
 .on('connection', function (socket) {
 socket.emit('item', { news: 'item' });
 });

Client side:

<script>
 var chat = io.connect('http://localhost/chat')
 , news = io.connect('http://localhost/news');

 chat.on('connect', function () {
 chat.emit('hi!');
 });

 news.on('news', function () {
 news.emit('woot');
 });
</script>

Sending volatile messages.

Sometimes certain messages can be dropped. Let’s say you have an app that
shows realtime tweets for the keyword bieber.

If a certain client is not ready to receive messages (because of network slowness
or other issues, or because he’s connected through long polling and is in the
middle of a request-response cycle), if he doesn’t receive ALL the tweets related
to bieber your application won’t suffer.

In that case, you might want to send those messages as volatile messages.

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 var tweets = setInterval(function () {
 getBieberTweet(function (tweet) {
 socket.volatile.emit('bieber tweet', tweet);
 });
 }, 100);

 socket.on('disconnect', function () {
 clearInterval(tweets);
 });
});

Client side

In the client side, messages are received the same way whether they’re volatile
or not.

Getting acknowledgements

Sometimes, you might want to get a callback when the client confirmed the message
reception.

To do this, simply pass a function as the last parameter of .send or .emit.
What’s more, when you use .emit, the acknowledgement is done by you, which
means you can also pass data along:

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.on('ferret', function (name, fn) {
 fn('woot');
 });
});

Client side

<script>
 var socket = io.connect(); // TIP: .connect with no args does auto-discovery
 socket.on('connect', function () { // TIP: you can avoid listening on `connect` and listen on events directly too!
 socket.emit('ferret', 'tobi', function (data) {
 console.log(data); // data will be 'woot'
 });
 });
</script>

Broadcasting messages

To broadcast, simply add a broadcast flag to emit and send method calls.
Broadcasting means sending a message to everyone else except for the socket
that starts it.

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.broadcast.emit('user connected');
 socket.broadcast.json.send({ a: 'message' });
});

Rooms

Sometimes you want to put certain sockets in the same room, so that it’s easy
to broadcast to all of them together.

Think of this as built-in channels for sockets. Sockets join and leave
rooms in each socket.

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.join('justin bieber fans');
 socket.broadcast.to('justin bieber fans').emit('new fan');
 io.sockets.in('rammstein fans').emit('new non-fan');
});

Using it just as a cross-browser WebSocket

If you just want the WebSocket semantics, you can do that too.
Simply leverage send and listen on the message event:

Server side

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.on('message', function () { });
 socket.on('disconnect', function () { });
});

Client side

<script>
 var socket = io.connect('http://localhost/');
 socket.on('connect', function () {
 socket.send('hi');

 socket.on('message', function (msg) {
 // my msg
 });
 });
</script>

Changing configuration

Configuration in socket.io is TJ-style:

Server side

var io = require('socket.io').listen(80);

io.configure(function () {
 io.set('transports', ['websocket', 'flashsocket', 'xhr-polling']);
});

io.configure('development', function () {
 io.set('transports', ['websocket', 'xhr-polling']);
 io.enable('log');
});

License

(The MIT License)

Copyright (c) 2011 Guillermo Rauch

<

guillermo@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/glob/node_modules/graceful-fs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

graceful-fs

graceful-fs functions as a drop-in replacement for the fs module,
making various improvements.

The improvements are meant to normalize behavior across different
platforms and environments, and to make filesystem access more
resilient to errors.

Improvements over fs module

graceful-fs:

		keeps track of how many file descriptors are open, and by default
limits this to 1024. Any further requests to open a file are put in a
queue until new slots become available. If 1024 turns out to be too
much, it decreases the limit further.

		fixes lchmod for Node versions prior to 0.6.2.

		implements fs.lutimes if possible. Otherwise it becomes a noop.

		ignores EINVAL and EPERM errors in chown, fchown or
lchown if the user isn’t root.

		makes lchmod and lchown become noops, if not available.

		retries reading a file if read results in EAGAIN error.

On Windows, it retries renaming a file for up to one second if EACCESS
or EPERM error occurs, likely because antivirus software has locked
the directory.

Configuration

The maximum number of open file descriptors that graceful-fs manages may
be adjusted by setting fs.MAX_OPEN to a different number. The default
is 1024.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/glob/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 A dead simple way to do inheritance in JS.

var inherits = require("inherits")

function Animal () {
 this.alive = true
}
Animal.prototype.say = function (what) {
 console.log(what)
}

inherits(Dog, Animal)
function Dog () {
 Dog.super.apply(this)
}
Dog.prototype.sniff = function () {
 this.say("sniff sniff")
}
Dog.prototype.bark = function () {
 this.say("woof woof")
}

inherits(Chihuahua, Dog)
function Chihuahua () {
 Chihuahua.super.apply(this)
}
Chihuahua.prototype.bark = function () {
 this.say("yip yip")
}

// also works
function Cat () {
 Cat.super.apply(this)
}
Cat.prototype.hiss = function () {
 this.say("CHSKKSS!!")
}
inherits(Cat, Animal, {
 meow: function () { this.say("miao miao") }
})
Cat.prototype.purr = function () {
 this.say("purr purr")
}

var c = new Chihuahua
assert(c instanceof Chihuahua)
assert(c instanceof Dog)
assert(c instanceof Animal)

The actual function is laughably small. 10-lines small.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

socket.io

Sockets for the rest of us

The socket.io client is basically a simple HTTP Socket interface implementation.
It looks similar to WebSocket while providing additional features and
leveraging other transports when WebSocket is not supported by the user’s
browser.

var socket = io.connect('http://domain.com');
socket.on('connect', function () {
 // socket connected
});
socket.on('custom event', function () {
 // server emitted a custom event
});
socket.on('disconnect', function () {
 // socket disconnected
});
socket.send('hi there');

Recipes

Utilizing namespaces (ie: multiple sockets)

If you want to namespace all the messages and events emitted to a particular
endpoint, simply specify it as part of the connect uri:

var chat = io.connect('http://localhost/chat');
chat.on('connect', function () {
 // chat socket connected
});

var news = io.connect('/news'); // io.connect auto-detects host
news.on('connect', function () {
 // news socket connected
});

Emitting custom events

To ease with the creation of applications, you can emit custom events outside
of the global message event.

var socket = io.connect();
socket.emit('server custom event', { my: 'data' });

Forcing disconnection

var socket = io.connect();
socket.on('connect', function () {
 socket.disconnect();
});

Documentation

io#connect

io.connect(uri, [options]);

Options:

		resource

socket.io

The resource is what allows the socket.io server to identify incoming connections by socket.io clients. In other words, any HTTP server can implement socket.io and still serve other normal, non-realtime HTTP requests.

		transports

['websocket', 'flashsocket', 'htmlfile', 'xhr-multipart', 'xhr-polling', 'jsonp-polling']

A list of the transports to attempt to utilize (in order of preference).

		‘connect timeout’

5000

The amount of milliseconds a transport has to create a connection before we consider it timed out.

		‘try multiple transports’

true

A boolean indicating if we should try other transports when the connectTimeout occurs.

		reconnect

true

A boolean indicating if we should automatically reconnect if a connection is disconnected.

		‘reconnection delay’

500

The amount of milliseconds before we try to connect to the server again. We are using a exponential back off algorithm for the following reconnections, on each reconnect attempt this value will get multiplied (500 > 1000 > 2000 > 4000 > 8000).

		‘max reconnection attempts’

10

The amount of attempts should we make using the current transport to connect to the server? After this we will do one final attempt, and re-try with all enabled transport methods before we give up.

Properties:

		options

The passed in options combined with the defaults.

		connected

Whether the socket is connected or not.

		connecting

Whether the socket is connecting or not.

		reconnecting

Whether we are reconnecting or not.

		transport

The transport instance.

Methods:

		connect(λ)

Establishes a connection. If λ is supplied as argument, it will be called once the connection is established.

		send(message)

A string of data to send.

		disconnect

Closes the connection.

		on(event, λ)

Adds a listener for the event event.

		once(event, λ)

Adds a one time listener for the event event. The listener is removed after the first time the event is fired.

		removeListener(event, λ)

Removes the listener λ for the event event.

Events:

		connect

Fired when the connection is established and the handshake successful.

		connecting(transport_type)

Fired when a connection is attempted, passing the transport name.

		connect_failed

Fired when the connection timeout occurs after the last connection attempt.
This only fires if the connectTimeout option is set.
If the tryTransportsOnConnectTimeout option is set, this only fires once all
possible transports have been tried.

		message(message)

Fired when a message arrives from the server

		close

Fired when the connection is closed. Be careful with using this event, as some transports will fire it even under temporary, expected disconnections (such as XHR-Polling).

		disconnect

Fired when the connection is considered disconnected.

		reconnect(transport_type,reconnectionAttempts)

Fired when the connection has been re-established. This only fires if the reconnect option is set.

		reconnecting(reconnectionDelay,reconnectionAttempts)

Fired when a reconnection is attempted, passing the next delay for the next reconnection.

		reconnect_failed

Fired when all reconnection attempts have failed and we where unsuccessful in reconnecting to the server.

Contributors

Guillermo Rauch

<

guillermo@learnboost.com>

Arnout Kazemier

<

info@3rd-eden.com>

License

(The MIT License)

Copyright (c) 2010 LearnBoost

<

dev@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.9.17 / 2014-05-22

		use static channels for remote syncing instead of subscribing/unsubscribing 5 channels for every connection

		Use destroy buffer size on websocket transport method as well

		http-polling : adding ‘X-XSS-Protection : 0;’ to headers necessary not only to jsonp-polling but http-polling

0.9.16 / 2013-06-06

		transports: added tests for htmlfile escaping/unescaping

0.9.15 / 2013-06-06

		transports: added escaping to htmlfile (fixes #1251)

0.9.14 / 2013-03-29

		manager: fix memory leak with SSL [jpallen]

0.9.13 / 2012-12-13

		package: fixed base64id requirement

0.9.12 / 2012-12-13

		manager: fix for latest node which is returning a clone with listeners [viirya]

0.9.11 / 2012-11-02

		package: move redis to optionalDependenices [3rd-Eden]

		bumped client

0.9.10 / 2012-08-10

		Don’t lowercase log messages

		Always set the HTTP response in case an error should be returned to the client

		Create or destroy the flash policy server on configuration change

		Honour configuration to disable flash policy server

		Add express 3.0 instructions on Readme.md

		Bump client

0.9.9 / 2012-08-01

		Fixed sync disconnect xhrs handling

		Put license text in its own file (#965)

		Add warning to .listen() to ease the migration to Express 3.x

		Restored compatibility with node 0.4.x

0.9.8 / 2012-07-24

		Bumped client.

0.9.7 / 2012-07-24

		Prevent crash when socket leaves a room twice.

		Corrects unsafe usage of for..in

		Fix for node 0.8 with gzip compression [vadimi]

		Update redis to support Node 0.8.x

		Made ID generation securely random

		Fix Redis Store race condition in manager onOpen unsubscribe callback

		Fix for EventEmitters always reusing the same Array instance for listeners

0.9.6 / 2012-04-17

		Fixed XSS in jsonp-polling.

0.9.5 / 2012-04-05

		Added test for polling and socket close.

		Ensure close upon request close.

		Fix disconnection reason being lost for polling transports.

		Ensure that polling transports work with Connection: close.

		Log disconnection reason.

0.9.4 / 2012-04-01

		Disconnecting from namespace improvement (#795) [DanielBaulig]

		Bumped client with polling reconnection loop (#438)

0.9.3 / 2012-03-28

		Fix “Syntax error” on FF Web Console with XHR Polling [mikito]

0.9.2 / 2012-03-13

		More sensible close timeout default (fixes disconnect issue)

0.9.1-1 / 2012-03-02

		Bumped client with NPM dependency fix.

0.9.1 / 2012-03-02

		Changed heartbeat timeout and interval defaults (60 and 25 seconds)

		Make tests work both on 0.4 and 0.6

		Updated client (improvements + bug fixes).

0.9.0 / 2012-02-26

		Make it possible to use a regexp to match the socket.io resource URL.
We need this because we have to prefix the socket.io URL with a variable ID.

		Supplemental fix to gavinuhma/authfix, it looks like the same Access-Control-Origin logic is needed in the http and xhr-polling transports

		Updated express dep for windows compatibility.

		Combine two substr calls into one in decodePayload to improve performance

		Minor documentation fix

		Minor. Conform to style of other files.

		Switching setting to ‘match origin protocol’

		Revert “Fixes leaking Redis subscriptions for #663. The local flag was not getting passed through onClientDisconnect().”

		Revert “Handle leaked dispatch:[id] subscription.”

		Merge pull request #667 from dshaw/patch/redis-disconnect

		Handle leaked dispatch:[id] subscription.

		Fixes leaking Redis subscriptions for #663. The local flag was not getting passed through onClientDisconnect().

		Prevent memory leaking on uncompleted requests & add max post size limitation

		Fix for testcase

		Set Access-Control-Allow-Credentials true, regardless of cookie

		Remove assertvarnish from package as it breaks on 0.6

		Correct irc channel

		Added proper return after reserved field error

		Fixes manager.js failure to close connection after transport error has happened

		Added implicit port 80 for origin checks. fixes #638

		Fixed bug #432 in 0.8.7

		Set Access-Control-Allow-Origin header to origin to enable withCredentials

		Adding configuration variable matchOriginProtocol

		Fixes location mismatch error in Safari.

		Use tty to detect if we should add colors or not by default.

		Updated the package location.

0.8.7 / 2011-11-05

		Fixed memory leaks in closed clients.

		Fixed memory leaks in namespaces.

		Fixed websocket handling for malformed requests from proxies. [einaros]

		Node 0.6 compatibility. [einaros] [3rd-Eden]

		Adapted tests and examples.

0.8.6 / 2011-10-27

		Added JSON decoding on jsonp-polling transport.

		Fixed README example.

		Major speed optimizations [3rd-Eden] [einaros] [visionmedia]

		Added decode/encode benchmarks [visionmedia]

		Added support for black-listing client sent events.

		Fixed logging options, closes #540 [3rd-Eden]

		Added vary header for gzip [3rd-Eden]

		Properly cleaned up async websocket / flashsocket tests, after patching node-websocket-client

		Patched to properly shut down when a finishClose call is made during connection establishment

		Added support for socket.io version on url and far-future Expires [3rd-Eden] [getify]

		Began IE10 compatibility [einaros] [tbranyen]

		Misc WebSocket fixes [einaros]

		Added UTF8 to respone headers for htmlfile [3rd-Eden]

0.8.5 / 2011-10-07

		Added websocket draft HyBi-16 support. [einaros]

		Fixed websocket continuation bugs. [einaros]

		Fixed flashsocket transport name.

		Fixed websocket tests.

		Ensured parser#decodePayload doesn’t choke.

		Added http referrer verification to manager verifyOrigin.

		Added access control for cross domain xhr handshakes [3rd-Eden]

		Added support for automatic generation of socket.io files [3rd-Eden]

		Added websocket binary support [einaros]

		Added gzip support for socket.io.js [3rd-Eden]

		Expose socket.transport [3rd-Eden]

		Updated client.

0.8.4 / 2011-09-06

		Client build

0.8.3 / 2011-09-03

		Fixed \n parsing for non-JSON packets (fixes #479).

		Fixed parsing of certain unicode characters (fixes #451).

		Fixed transport message packet logging.

		Fixed emission of error event resulting in an uncaught exception if unhandled (fixes #476).

		Fixed; allow for falsy values as the configuration value of log level (fixes #491).

		Fixed repository URI in package.json. Fixes #504.

		Added text/plain content-type to handshake responses [einaros]

		Improved single byte writes [einaros]

		Updated socket.io-flashsocket default port from 843 to 10843 [3rd-Eden]

		Updated client.

0.8.2 / 2011-08-29

		Updated client.

0.8.1 / 2011-08-29

		Fixed utf8 bug in send framing in websocket [einaros]

		Fixed typo in docs [Znarkus]

		Fixed bug in send framing for over 64kB of data in websocket [einaros]

		Corrected ping handling in websocket transport [einaros]

0.8.0 / 2011-08-28

		Updated to work with two-level websocket versioning. [einaros]

		Added hybi07 support. [einaros]

		Added hybi10 support. [einaros]

		Added http referrer verification to manager.js verifyOrigin. [einaors]

0.7.11 / 2011-08-27

		Updated socket.io-client.

0.7.10 / 2011-08-27

		Updated socket.io-client.

0.7.9 / 2011-08-12

		Updated socket.io-client.

		Make sure we only do garbage collection when the server we receive is actually run.

0.7.8 / 2011-08-08

		Changed; make sure sio#listen passes options to both HTTP server and socket.io manager.

		Added docs for sio#listen.

		Added options parameter support for Manager constructor.

		Added memory leaks tests and test-leaks Makefile task.

		Removed auto npm-linking from make test.

		Make sure that you can disable heartbeats. [3rd-Eden]

		Fixed rooms memory leak [3rd-Eden]

		Send response once we got all POST data, not immediately [Pita]

		Fixed onLeave behavior with missing clientsk [3rd-Eden]

		Prevent duplicate references in rooms.

		Added alias for to to in and in to to.

		Fixed roomClients definition.

		Removed dependency on redis for installation without npm [3rd-Eden]

		Expose path and querystring in handshakeData [3rd-Eden]

0.7.7 / 2011-07-12

		Fixed double dispatch handling with emit to closed clients.

		Added test for emitting to closed clients to prevent regression.

		Fixed race condition in redis test.

		Changed Transport#end instrumentation.

		Leveraged $emit instead of emit internally.

		Made tests faster.

		Fixed double disconnect events.

		Fixed disconnect logic

		Simplified remote events handling in Socket.

		Increased testcase timeout.

		Fixed unknown room emitting (GH-291). [3rd-Eden]

		Fixed address in handshakeData. [3rd-Eden]

		Removed transports definition in chat example.

		Fixed room cleanup

		Fixed; make sure the client is cleaned up after booting.

		Make sure to mark the client as non-open if the connection is closed.

		Removed unneeded buffer declarations.

		Fixed; make sure to clear socket handlers and subscriptions upon transport close.

0.7.6 / 2011-06-30

		Fixed general dispatching when a client has closed.

0.7.5 / 2011-06-30

		Fixed dispatching to clients that are disconnected.

0.7.4 / 2011-06-30

		Fixed; only clear handlers if they were set. [level09]

0.7.3 / 2011-06-30

		Exposed handshake data to clients.

		Refactored dispatcher interface.

		Changed; Moved id generation method into the manager.

		Added sub-namespace authorization. [3rd-Eden]

		Changed; normalized SocketNamespace local eventing [dvv]

		Changed; Use packet.reason or default to ‘packet’ [3rd-Eden]

		Changed console.error to console.log.

		Fixed; bind both servers at the same time do that the test never times out.

		Added 304 support.

		Removed Transport#name for abstract interface.

		Changed; lazily require http and https module only when needed. [3rd-Eden]

0.7.2 / 2011-06-22

		Make sure to write a packet (of type noop) when closing a poll.
This solves a problem with cross-domain requests being flagged as aborted and
reconnection being triggered.

		Added noop message type.

0.7.1 / 2011-06-21

		Fixed cross-domain XHR.

		Added CORS test to xhr-polling suite.

0.7.0 / 2010-06-21

		http://socket.io/announcement.html

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/rimraf/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 rm -rf for node.

Install with npm install rimraf, or just drop rimraf.js somewhere.

API

rimraf(f, callback)

The callback will be called with an error if there is one. Certain
errors are handled for you:

		Windows: EBUSY and ENOTEMPTY - rimraf will back off a maximum of
opts.maxBusyTries times before giving up.

		ENOENT - If the file doesn’t exist, rimraf will return
successfully, since your desired outcome is already the case.

rimraf.sync

It can remove stuff synchronously, too. But that’s not so good. Use
the async API. It’s better.

CLI

If installed with npm install rimraf -g it can be used as a global
command rimraf <path> which is useful for cross platform support.

mkdirp

If you need to create a directory recursively, check out
mkdirp [https://github.com/substack/node-mkdirp].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/karma/node_modules/socket.io/node_modules/socket.io-client/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.9.16 / 2013-06-06

		transports: fix escaping for tests

0.9.15 / 2013-06-06

		transports: added unescaping for escaped htmlfile

		skipped 12-14 to match socket.io server version

0.9.11 / 2012-11-02

		Enable use of ‘xhr’ transport in Node.js

		Fix the problem with disconnecting xhr-polling users

		Add should to devDependencies

		Prefer XmlHttpRequest if CORS is available

		Make client compatible with AMD loaders.

0.9.10 / 2012-08-10

		fix removeAllListeners to behave as expected.

		set withCredentials to true only if xdomain.

		socket: disable disconnect on unload by default.

0.9.9 / 2012-08-01

		socket: fixed disconnect xhr url and made it actually sync

		*: bump xmlhttprequest dep

0.9.8 / 2012-07-24

		Fixed build.

0.9.7 / 2012-07-24

		iOS websocket crash fix.

		Fixed potential open collision.

		Fixed disconnectSync.

0.9.6 / 2012-04-17

		Don’t position the jsonp form off the screen (android fix).

0.9.5 / 2012-04-05

		Bumped version.

0.9.4 / 2012-04-01

		Fixes polling loop upon reconnect advice (fixes #438).

0.9.3 / 2012-03-28

		Fix XHR.check, which was throwing an error transparently and causing non-IE browsers to fall back to JSONP [mikito]

		Fixed forced disconnect on window close [zzzaaa]

0.9.2 / 2012-03-13

		Transport order set by “options” [zzzaaa]

0.9.1-1 / 2012-03-02

		Fixed active-x-obfuscator NPM dependency.

0.9.1 / 2012-03-02

		Misc corrections.

		Added warning within Firefox about webworker test in test runner.

		Update ws dependency [einaros]

		Implemented client side heartbeat checks. [felixge]

		Improved Firewall support with ActiveX obfuscation. [felixge]

		Fixed error handling during connection process. [Outsideris]

0.9.0 / 2012-02-26

		Added DS_Store to gitignore.

		Updated depedencies.

		Bumped uglify

		Tweaking code so it doesn’t throw an exception when used inside a WebWorker in Firefox

		Do not rely on Array.prototype.indexOf as it breaks with pages that use the Prototype.js library.

		Windows support landed

		Use @einaros ws module instead of the old crap one

		Fix for broken closeTimeout and ‘IE + xhr’ goes into infinite loop on disconnection

		Disabled reconnection on error if reconnect option is set to false

		Set withCredentials to true before xhr to fix authentication

		Clears the timeout from reconnection attempt when there is a successful or failed reconnection.
This fixes the issue of setTimeout’s carrying over from previous reconnection
and changing (skipping) values of self.reconnectionDelay in the newer reconnection.

		Removed decoding of parameters when chunking the query string.
This was used later on to construct the url to post to the socket.io server
for connection and if we’re adding custom parameters of our own to this url
(for example for OAuth authentication) they were being sent decoded, which is wrong.

0.8.7 / 2011-11-05

		Bumped client

0.8.6 / 2011-10-27

		Added WebWorker support.

		Fixed swfobject and web_socket.js to not assume window.

		Fixed CORS detection for webworker.

		Fix defer for webkit in a webworker.

		Fixed io.util.request to not rely on window.

		FIxed; use global instead of window and dont rely on document.

		Fixed; JSON-P handshake if CORS is not available.

		Made underlying Transport disconnection trigger immediate socket.io disconnect.

		Fixed warning when compressing with Google Closure Compiler.

		Fixed builder’s uglify utf-8 support.

		Added workaround for loading indicator in FF jsonp-polling. [3rd-Eden]

		Fixed host discovery lookup. [holic]

		Fixed close timeout when disconnected/reconnecting. [jscharlach]

		Fixed jsonp-polling feature detection.

		Fixed jsonp-polling client POSTing of \n.

		Fixed test runner on IE6/7

0.8.5 / 2011-10-07

		Bumped client

0.8.4 / 2011-09-06

		Corrected build

0.8.3 / 2011-09-03

		Fixed \n parsing for non-JSON packets.

		Fixed; make Socket.IO XHTML doctype compatible (fixes #460 from server)

		Fixed support for Node.JS running socket.io-client.

		Updated repository name in package.json.

		Added support for different policy file ports without having to port
forward 843 on the server side [3rd-Eden]

0.8.2 / 2011-08-29

		Fixed flashsocket detection.

0.8.1 / 2011-08-29

		Bump version.

0.8.0 / 2011-08-28

		Added MozWebSocket support (hybi-10 doesn’t require API changes) [einaros].

0.7.11 / 2011-08-27

		Corrected previous release (missing build).

0.7.10 / 2011-08-27

		Fix for failing fallback in websockets

0.7.9 / 2011-08-12

		Added check on Socket#onConnect to prevent double connect events on the main manager.

		Fixed socket namespace connect test. Remove broken alternative namespace connect test.

		Removed test handler for removed test.

		Bumped version to match socket.io server.

0.7.5 / 2011-08-08

		Added querystring support for connect [3rd-Eden]

		Added partial Node.JS transports support [3rd-Eden, josephg]

		Fixed builder test.

		Changed util.inherit to replicate Object.create / proto.

		Changed and cleaned up some acceptance tests.

		Fixed race condition with a test that could not be run multiple times.

		Added test for encoding a payload.

		Added the ability to override the transport to use in acceptance test [3rd-Eden]

		Fixed multiple connect packets [DanielBaulig]

		Fixed jsonp-polling over-buffering [3rd-Eden]

		Fixed ascii preservation in minified socket.io client [3rd-Eden]

		Fixed socket.io in situations where the page is not served through utf8.

		Fixed namespaces not reconnecting after disconnect [3rd-Eden]

		Fixed default port for secure connections.

0.7.4 / 2011-07-12

		Added SocketNamespace#of shortcut. [3rd-Eden]

		Fixed a IE payload decoding bug. [3rd-Eden]

		Honor document protocol, unless overriden. [dvv]

		Fixed new builder dependencies. [3rd-Eden]

0.7.3 / 2011-06-30

		Fixed; acks don’t depend on arity. They’re automatic for .send and
callback based for .emit. [dvv]

		Added support for sub-sockets authorization. [3rd-Eden]

		Added BC support for new io.connect. [fat]

		Fixed double connect events. [3rd-Eden]

		Fixed reconnection with jsonp-polling maintaining old sessionid. [franck34]

0.7.2 / 2011-06-22

		Added noop message type.

0.7.1 / 2011-06-21

		Bumped socket.io dependency version for acceptance tests.

0.7.0 / 2011-06-21

		http://socket.io/announcement.html

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Nodeunit

Simple syntax, powerful tools. Nodeunit provides easy async unit testing for
node.js and the browser.

		Simple to use

		Just export the tests from a module

		Works with node.js and in the browser

		Helps you avoid common pitfalls when testing asynchronous code

		Easy to add test cases with setUp and tearDown functions if you wish

		Flexible reporters for custom output, built-in support for HTML and jUnit XML

		Allows the use of mocks and stubs

Contributors

		alexgorbatchev [https://github.com/alexgorbatchev]

		alexkwolfe [https://github.com/alexkwolfe]

		azatoth [https://github.com/azatoth]

		kadirpekel [https://github.com/kadirpekel]

		lambdalisue [https://github.com/lambdalisue]

		luebken [https://github.com/luebken]

		orlandov [https://github.com/orlandov]

		Sannis [https://github.com/Sannis]

		sstephenson [https://github.com/sstephenson]

		thegreatape [https://github.com/thegreatape]

		mmalecki [https://github.com/mmalecki]

		and thanks to cjohansen [https://github.com/cjohansen] for input and advice
on implementing setUp and tearDown functions. See
cjohansen’s fork [https://github.com/cjohansen/nodeunit].

Also, check out gerad’s nodeunit-dsl [https://github.com/gerad/nodeunit-dsl]
project, which implements a ‘pretty dsl on top of nodeunit’.

More contributor information can be found in the
CONTRIBUTORS.md [https://github.com/caolan/nodeunit/blob/master/CONTRIBUTORS.md]
file.

Usage

Here is an example unit test module:

exports.testSomething = function(test){
 test.expect(1);
 test.ok(true, "this assertion should pass");
 test.done();
};

exports.testSomethingElse = function(test){
 test.ok(false, "this assertion should fail");
 test.done();
};

When run using the included test runner, this will output the following:

[image:]

Installation

There are two options for installing nodeunit:

		Clone / download nodeunit from github [https://github.com/caolan/nodeunit],
then:

make && sudo make install

		Install via npm:

npm install nodeunit -g

API Documentation

Nodeunit uses the functions available in the node.js
assert module [http://nodejs.org/docs/v0.4.2/api/assert.html]:

		ok(value, [message]) - Tests if value is a true value.

		equal(actual, expected, [message]) - Tests shallow, coercive equality
with the equal comparison operator (==).

		notEqual(actual, expected, [message]) - Tests shallow, coercive
non-equality with the not equal comparison operator (!=).

		deepEqual(actual, expected, [message]) - Tests for deep equality.

		notDeepEqual(actual, expected, [message]) - Tests for any deep
inequality.

		strictEqual(actual, expected, [message]) - Tests strict equality, as
determined by the strict equality operator (===)

		notStrictEqual(actual, expected, [message]) - Tests strict non-equality,
as determined by the strict not equal operator (!==)

		throws(block, [error], [message]) - Expects block to throw an error.

		doesNotThrow(block, [error], [message]) - Expects block not to throw an
error.

		ifError(value) - Tests if value is not a false value, throws if it is a
true value. Useful when testing the first argument, error in callbacks.

Nodeunit also provides the following functions within tests:

		expect(amount) - Specify how many assertions are expected to run within a
test. Very useful for ensuring that all your callbacks and assertions are
run.

		done() - Finish the current test function, and move on to the next. ALL
tests should call this!

Nodeunit aims to be simple and easy to learn. This is achieved through using
existing structures (such as node.js modules) to maximum effect, and reducing
the API where possible, to make it easier to digest.

Tests are simply exported from a module, but they are still run in the order
they are defined.

Note: Users of old nodeunit versions may remember using ok, equals and
same in the style of qunit, instead of the assert functions above. These
functions still exist for backwards compatibility, and are simply aliases to
their assert module counterparts.

Asynchronous Testing

When testing asynchronous code, there are a number of sharp edges to watch out
for. Thankfully, nodeunit is designed to help you avoid as many of these
pitfalls as possible. For the most part, testing asynchronous code in nodeunit
just works.

Tests run in series

While running tests in parallel seems like a good idea for speeding up your
test suite, in practice I’ve found it means writing much more complicated
tests. Because of node’s module cache, running tests in parallel means mocking
and stubbing is pretty much impossible. One of the nicest things about testing
in javascript is the ease of doing stubs:

var _readFile = fs.readFile;
fs.readFile = function(path, callback){
 // it's a stub!
};
// test function that uses fs.readFile

// we're done
fs.readFile = _readFile;

You cannot do this when running tests in parallel. In order to keep testing as
simple as possible, nodeunit avoids it. Thankfully, most unit-test suites run
fast anyway.

Explicit ending of tests

When testing async code it’s important that tests end at the correct point, not
just after a given number of assertions. Otherwise your tests can run short,
ending before all assertions have completed. It’s important to detect too
many assertions as well as too few. Combining explicit ending of tests with
an expected number of assertions helps to avoid false test passes, so be sure
to use the test.expect() method at the start of your test functions, and
test.done() when finished.

Groups, setUp and tearDown

Nodeunit allows the nesting of test functions:

exports.test1 = function (test) {
 ...
}

exports.group = {
 test2: function (test) {
 ...
 },
 test3: function (test) {
 ...
 }
}

This would be run as:

test1
group - test2
group - test3

Using these groups, Nodeunit allows you to define a setUp function, which is
run before each test, and a tearDown function, which is run after each test
calls test.done():

module.exports = {
 setUp: function (callback) {
 this.foo = 'bar';
 callback();
 },
 tearDown: function (callback) {
 // clean up
 callback();
 },
 test1: function (test) {
 test.equals(this.foo, 'bar');
 test.done();
 }
};

In this way, it’s possible to have multiple groups of tests in a module, each
group with its own setUp and tearDown functions.

Running Tests

Nodeunit comes with a basic command-line test runner, which can be installed
using sudo make install. Example usage:

nodeunit testmodule1.js testfolder [...]

If no entry file specified, test defaults.

The default test reporter uses color output, because I think that’s more fun :) I
intend to add a no-color option in future. To give you a feeling of the fun you’ll
be having writing tests, lets fix the example at the start of the README:

[image:]

Ahhh, Doesn’t that feel better?

When using the included test runner, it will exit using the failed number of
assertions as the exit code. This means it exits with 0 when all tests pass.

Command-line Options

		–reporter FILE - you can set the test reporter to a custom module or
on of the modules in nodeunit/lib/reporters, when omitted, the default test runner
is used.

		–list-reporters - list available built-in reporters.

		–config FILE - load config options from a JSON file, allows
the customisation of color schemes for the default test reporter etc. See
bin/nodeunit.json for current available options.

		-t testName - run specifc test only.

		-f fullTestName - run specific test only. fullTestName is built so: “outerGroup - .. - innerGroup - testName”.

		–version or -v - report nodeunit version

		–help - show nodeunit help

Running tests in the browser

Nodeunit tests can also be run inside the browser. For example usage, see
the examples/browser folder. The basic syntax is as follows:

test.html

<html>
 <head>
 <title>Example Test Suite</title>
 <link rel="stylesheet" href="nodeunit.css" type="text/css" />
 <script src="nodeunit.js"></script>
 <script src="suite1.js"></script>
 <script src="suite2.js"></script>
 </head>
 <body>
 <h1 id="nodeunit-header">Example Test Suite</h1>
 <script>
 nodeunit.run({
 'Suite One': suite1,
 'Suite Two': suite2
 });
 </script>
 </body>
</html>

Here, suite1 and suite2 are just object literals containing test functions
or groups, as would be returned if you did require('test-suite') in node.js:

suite1.js

this.suite1 = {
 'example test': function (test) {
 test.ok(true, 'everything is ok');
 test.done();
 }
};

If you wish to use a commonjs format for your test suites (using exports), it is
up to you to define the commonjs tools for the browser. There are a number of
alternatives and it’s important it fits with your existing code, which is
why nodeunit does not currently provide this out of the box.

In the example above, the tests will run when the page is loaded.

The browser-version of nodeunit.js is created in dist/browser when you do, make browser. You’ll need UglifyJS [https://github.com/mishoo/UglifyJS] installed in
order for it to automatically create nodeunit.min.js.

Adding nodeunit to Your Projects

If you don’t want people to have to install the nodeunit command-line tool,
you’ll want to create a script that runs the tests for your project with the
correct require paths set up. Here’s an example test script, that assumes you
have nodeunit in a suitably located node_modules directory.

#!/usr/bin/env node
var reporter = require('nodeunit').reporters.default;
reporter.run(['test']);

If you’re using git, you might find it useful to include nodeunit as a
submodule. Using submodules makes it easy for developers to download nodeunit
and run your test suite, without cluttering up your repository with
the source code. To add nodeunit as a git submodule do the following:

git submodule add git://github.com/caolan/nodeunit.git node_modules/nodeunit

This will add nodeunit to the node_modules folder of your project. Now, when
cloning the repository, nodeunit can be downloaded by doing the following:

git submodule init
git submodule update

Let’s update the test script above with a helpful hint on how to get nodeunit,
if it’s missing:

#!/usr/bin/env node
try {
 var reporter = require('nodeunit').reporters.default;
}
catch(e) {
 console.log("Cannot find nodeunit module.");
 console.log("You can download submodules for this project by doing:");
 console.log("");
 console.log(" git submodule init");
 console.log(" git submodule update");
 console.log("");
 process.exit();
}

process.chdir(__dirname);
reporter.run(['test']);

Now if someone attempts to run your test suite without nodeunit installed they
will be prompted to download the submodules for your project.

Built-in Test Reporters

		default - The standard reporter seen in the nodeunit screenshots

		minimal - Pretty, minimal output, shows errors and progress only

		html - Outputs a HTML report to stdout

		junit - Creates jUnit compatible XML reports, which can be used with
continuous integration tools such as Hudson [http://hudson-ci.org/].

		machineout - Simple reporter for machine analysis. There is
nodeunit.vim [https://github.com/lambdalisue/nodeunit.vim] which is useful for TDD on VIM.

Writing a Test Reporter

Nodeunit exports runTest(fn, options), runModule(mod, options) and
runFiles(paths, options). You’ll most likely want to run test suites from
files, which can be done using the latter function. The options argument can
contain callbacks which run during testing. Nodeunit provides the following
callbacks:

		moduleStart(name) - called before a module is tested

		moduleDone(name, assertions) - called once all test functions within the
module have completed (see assertions object reference below)
ALL tests within the module

		testStart(name) - called before a test function is run

		testReady(test) - called before a test function is run with the test object that will be passed to the test function

		testDone(name, assertions) - called once a test function has completed
(by calling test.done())

		log(assertion) - called whenever an assertion is made (see assertion
object reference below)

		done(assertions) - called after all tests/modules are complete

The assertion object:

		passed() - did the assertion pass?

		failed() - did the assertion fail?

		error - the AssertionError if the assertion failed

		method - the nodeunit assertion method used (ok, same, equals...)

		message - the message the assertion method was called with (optional)

The assertionList object:

		An array-like object with the following new attributes:
		failures() - the number of assertions which failed

		duration - the time taken for the test to complete in msecs

For a reference implementation of a test reporter, see lib/reporters/default.js in
the nodeunit project directory.

Sandbox utility

This is a function which evaluates JavaScript files in a sandbox and returns the
context. The sandbox function can be used for testing client-side code or private
un-exported functions within a module.

var sandbox = require('nodeunit').utils.sandbox;
var example = sandbox('example.js');

sandbox(files, sandbox) - Evaluates JavaScript files in a sandbox, returning
the context. The first argument can either be a single filename or an array of
filenames. If multiple filenames are given their contents are concatenated before
evaluation. The second argument is an optional context to use for the sandbox.

Note: When working with the sandbox if your script depends on outside sources
(i.e. using require) then you will want to pass that into the optional
context when setting up the sandbox.

var sandbox = require('nodeunit').utils.sandbox;
// pass in some node globals
var box_globals = {
 // Passing module.exports into the sandbox will give your code access to it.
 module: {exports: exports},
 // Passing require into the sandbox will give your code access to use it AND
 // will share the cache with modules already required from outside the sandbox.
 require: require,
 // Passing console into the sandbox will give your code access to it
 console: console
};
var example = sandbox('example.js', box_globals);

Running the nodeunit Tests

The tests for nodeunit are written using nodeunit itself as the test framework.
However, the module test-base.js first does some basic tests using the assert
module to ensure that test functions are actually run, and a basic level of
nodeunit functionality is available.

To run the nodeunit tests do:

make test

Note: There was a bug in node v0.2.0 causing the tests to hang, upgrading
to v0.2.1 fixes this.

machineout reporter

The default reporter is readable for human but not for machine analysis.
When you want to analyze the output of nodeunit, use machineout reporter and you will get

[image:]

nodeunit with vim

There is nodeunit.vim [https://github.com/lambdalisue/nodeunit.vim] so you can use
nodeunit with VIM.

That compiler uses machineout reporter and it is useful to use
with vim-makegreen [https://github.com/reinh/vim-makegreen].

Contributing

Contributions to the project are most welcome, so feel free to fork and improve.
When submitting a pull request, please run make lint first to ensure
we’re following a consistent coding style.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/growl/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

1.7.0 / 2012-12-30

		support transient notifications in Gnome

1.6.1 / 2012-09-25

		restore compatibility with node < 0.8 [fgnass]

1.6.0 / 2012-09-06

		add notification center support [drudge]

1.5.1 / 2012-04-08

		Merge pull request #16 from KyleAMathews/patch-1

		Fixes #15

1.5.0 / 2012-02-08

		Added windows support [perfusorius]

1.4.1 / 2011-12-28

		Fixed: dont exit(). Closes #9

1.4.0 / 2011-12-17

		Changed API: growl.notify() -> growl()

1.3.0 / 2011-12-17

		Added support for Ubuntu/Debian/Linux users [niftylettuce]

		Fixed: send notifications even if title not specified [alessioalex]

1.2.0 / 2011-10-06

		Add support for priority.

1.1.0 / 2011-03-15

		Added optional callbacks

		Added parsing of version

1.0.1 / 2010-03-26

		Fixed; sys.exec -> child_process.exec to support latest node

1.0.0 / 2010-03-19

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 This is a mix-and-match set of utilities that you can use to write test
harnesses and frameworks that communicate with one another using the
Test Anything Protocol.

If you don’t yet know what TAP is, you better ask
somebody [http://testanything.org/].

Default Usage:

		Make a directory. Maybe call it ‘test’. That’d be nice and obvious.

		Put a bunch of test scripts in there. If they’re node programs, then
they should be ”.js”. Anything else is assumed to be some kind of shell
script, which should have a shebang line.

		npm install tap

		Update package.json scripts.test to include tap ./test example
gist [https://gist.github.com/4469613]

		npm test

The output will be TAP-compliant.

For extra special bonus points, you can do something like this:

var test = require("tap").test
test("make sure the thingie is a thing", function (t) {
 t.equal(thingie, "thing", "thingie should be thing")
 t.deepEqual(array, ["foo", "bar"], "array has foo and bar elements")
 t.deepEqual(object, {foo: 42}, "object has foo property")
 t.type(thingie, "string", "type of thingie is string")
 t.ok(true, "this is always true")
 t.notOk(false, "this is never true")
 t.test("a child test", function (t) {
 t.equal(this, superEasy, "right!?")
 t.similar(7, 2, "ever notice 7 is kinda like 2?", {todo: true})
 t.test("so skippable", {skip: true}, function (t) {
 t.plan(1) // only one test in this block
 t.ok(true, "but when the flag changes, it'll pass")
 // no need to end, since we had a plan.
 })
 t.end()
 })
 t.ok(99, "can also skip individual assertions", {skip: true})
 // end lets it know it's over.
 t.end()
})
test("another one", function (t) {
 t.plan(1)
 t.ok(true, "It's ok to plan, and also end. Watch.")
 t.end() // but it must match the plan!
})

Node-tap is actually a collection of several modules, any of which may be
mixed and matched however you please.

If you don’t like this test framework, and think you can do much much
better, I strongly encourage you to do so! If you use this library,
however, at least to output TAP-compliant results when process.env.TAP
is set, then the data coming out of your framework will be much more
consumable by machines.

You can also use this to build programs that consume the TAP data, so
this is very useful for CI systems and such.

		tap-assert: A collection of assert functions that return TAP result
objects.

		tap-consumer: A stream interface for consuming TAP data.

		tap-producer: A class that produces a TAP stream by taking in result
objects.

		tap-results: A class for keeping track of TAP result objects as they
pass by, counting up skips, passes, fails, and so on.

		tap-runner: A program that runs through a directory running all the
tests in it. (Tests which may or may not be TAP-outputting tests. But
it’s better if they are.)

		tap-test: A class for actually running tests.

		tap-harness: A class that runs tests. (Tests are also Harnesses,
which is how sub-tests run.)

		tap-global-harness: A default harness that provides the top-level
support for running TAP tests.

Experimental Code Coverage with runforcover & bunker:

TAP_COV=1 tap ./test [--cover=./lib,foo.js] [--coverage-dir=./coverage]

This feature is experimental, and will most likely change somewhat
before being finalized. Feedback welcome.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/CONTRIBUTORS.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Nodeunit contributors (sorted alphabeticaly)

		Alex Gorbatchev [https://github.com/alexgorbatchev]
		Deeper default object inspection

		Timeout to ensure flushing of console output (default reporter)

		Alex Wolfe [https://github.com/alexkwolfe]
		HTML test reporter

		Caolan McMahon [https://github.com/caolan]
		Author and maintainer

		Most features develpopment

		Carl Fürstenberg [https://github.com/azatoth]
		Debian-friendly Makefile, supports both ‘node’ and ‘nodejs’ executables

		Sandbox utility

		Minimal test reporter

		Gerad Suyderhoud [https://github.com/gerad]
		First comand-line tool

		Kadir Pekel [https://github.com/kadirpekel]
		Improvements to default test reporter

		HTTP test utility

		Λlisue [https://github.com/lambdalisue]
		Add machineout reporter

		Matthias Lübken [https://github.com/luebken]
		Utility functions for tracking incomplete tests on exit

		Oleg Efimov [https://github.com/Sannis]
		Adding ‘make lint’ and fixing nodelint errors

		Option parsing, –help text and config file support

		Reporters option for command-line tool

		Orlando Vazquez [https://github.com/orlandov]
		Added jUnit XML reporter

		Ryan Dahl [https://github.com/ry]
		Add package.json

		Sam Stephenson [https://github.com/sstephenson]
		Coffee-script support

		Thomas Mayfield [https://github.com/thegreatape]
		Async setUp and tearDown support for testCase

		Maciej Małecki [https://github.com/mmalecki]
		Removal of testCase

Full contributors list [https://github.com/caolan/nodeunit/contributors].

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/debug/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/cli/node_modules/glob/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/debug/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.0.0 / 2014-09-01

		package: update “browserify” to v5.11.0

		node: use stderr rather than stdout for logging (#29, @stephenmathieson)

1.0.4 / 2014-07-15

		dist: recompile

		example: remove console.info() log usage

		example: add “Content-Type” UTF-8 header to browser example

		browser: place %c marker after the space character

		browser: reset the “content” color via color: inherit

		browser: add colors support for Firefox >= v31

		debug: prefer an instance log() function over the global one (#119)

		Readme: update documentation about styled console logs for FF v31 (#116, @wryk)

1.0.3 / 2014-07-09

		Add support for multiple wildcards in namespaces (#122, @seegno)

		browser: fix lint

1.0.2 / 2014-06-10

		browser: update color palette (#113, @gscottolson)

		common: make console logging function configurable (#108, @timoxley)

		node: fix %o colors on old node <= 0.8.x

		Makefile: find node path using shell/which (#109, @timoxley)

1.0.1 / 2014-06-06

		browser: use removeItem() to clear localStorage

		browser, node: don’t set DEBUG if namespaces is undefined (#107, @leedm777)

		package: add “contributors” section

		node: fix comment typo

		README: list authors

1.0.0 / 2014-06-04

		make ms diff be global, not be scope

		debug: ignore empty strings in enable()

		node: make DEBUG_COLORS able to disable coloring

		*: export the colors array

		npmignore: don’t publish the dist dir

		Makefile: refactor to use browserify

		package: add “browserify” as a dev dependency

		Readme: add Web Inspector Colors section

		node: reset terminal color for the debug content

		node: map “%o” to util.inspect()

		browser: map “%j” to JSON.stringify()

		debug: add custom “formatters”

		debug: use “ms” module for humanizing the diff

		Readme: add “bash” syntax highlighting

		browser: add Firebug color support

		browser: add colors for WebKit browsers

		node: apply log to console

		rewrite: abstract common logic for Node & browsers

		add .jshintrc file

0.8.1 / 2014-04-14

		package: re-add the “component” section

0.8.0 / 2014-03-30

		add enable() method for nodejs. Closes #27

		change from stderr to stdout

		remove unnecessary index.js file

0.7.4 / 2013-11-13

		remove “browserify” key from package.json (fixes something in browserify)

0.7.3 / 2013-10-30

		fix: catch localStorage security error when cookies are blocked (Chrome)

		add debug(err) support. Closes #46

		add .browser prop to package.json. Closes #42

0.7.2 / 2013-02-06

		fix package.json

		fix: Mobile Safari (private mode) is broken with debug

		fix: Use unicode to send escape character to shell instead of octal to work with strict mode javascript

0.7.1 / 2013-02-05

		add repository URL to package.json

		add DEBUG_COLORED to force colored output

		add browserify support

		fix component. Closes #24

0.7.0 / 2012-05-04

		Added .component to package.json

		Added debug.component.js build

0.6.0 / 2012-03-16

		Added support for “-” prefix in DEBUG [Vinay Pulim]

		Added .enabled flag to the node version [TooTallNate]

0.5.0 / 2012-02-02

		Added: humanize diffs. Closes #8

		Added debug.disable() to the CS variant

		Removed padding. Closes #10

		Fixed: persist client-side variant again. Closes #9

0.4.0 / 2012-02-01

		Added browser variant support for older browsers [TooTallNate]

		Added debug.enable('project:*') to browser variant [TooTallNate]

		Added padding to diff (moved it to the right)

0.3.0 / 2012-01-26

		Added millisecond diff when isatty, otherwise UTC string

0.2.0 / 2012-01-22

		Added wildcard support

0.1.0 / 2011-12-02

		Added: remove colors unless stderr isatty [TooTallNate]

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/cli/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Glob

Match files using the patterns the shell uses, like stars and stuff.

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

Attention: node-glob users!

The API has changed dramatically between 2.x and 3.x. This library is
now 100% JavaScript, and the integer flags have been replaced with an
options object.

Also, there’s an event emitter class, proper tests, and all the other
things you’ve come to expect from node modules.

And best of all, no compilation!

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Features

Please see the minimatch
documentation [https://github.com/isaacs/minimatch] for more details.

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options])

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instanting the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		error The error encountered. When an error is encountered, the
glob object is in an undefined state, and should be discarded.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

		statCache Collection of all the stat results the glob search
performed.

		cache Convenience object. Each field has the following possible
values:
		false - Path does not exist

		true - Path exists

		1 - Path exists, and is not a directory

		2 - Path exists, and is a directory

		[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		abort Stop the search.

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the glob object, as well.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence. It will cause
ELOOP to be triggered one level sooner in the case of cyclical
symbolic links.

		silent When an unusual error is encountered
when attempting to read a directory, a warning will be printed to
stderr. Set the silent option to true to suppress these warnings.

		strict When an unusual error is encountered
when attempting to read a directory, the process will just continue on
in search of other matches. Set the strict option to raise an error
in these cases.

		cache See cache property above. Pass in a previously generated
cache object to save some fs calls.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary to
set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set.
Set this flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that case-insensitive
filesystems will sometimes result in glob returning results that are
case-insensitively matched anyway, since readdir and stat will not
raise an error.

		debug Set to enable debug logging in minimatch and glob.

		globDebug Set to enable debug logging in glob, but not minimatch.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes. For the vast majority
of operations, this is never a problem.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/glob/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/cli/node_modules/glob/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Glob

Match files using the patterns the shell uses, like stars and stuff.

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

Attention: node-glob users!

The API has changed dramatically between 2.x and 3.x. This library is
now 100% JavaScript, and the integer flags have been replaced with an
options object.

Also, there’s an event emitter class, proper tests, and all the other
things you’ve come to expect from node modules.

And best of all, no compilation!

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Features

Please see the minimatch
documentation [https://github.com/isaacs/minimatch] for more details.

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options])

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instanting the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		error The error encountered. When an error is encountered, the
glob object is in an undefined state, and should be discarded.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

		statCache Collection of all the stat results the glob search
performed.

		cache Convenience object. Each field has the following possible
values:
		false - Path does not exist

		true - Path exists

		1 - Path exists, and is not a directory

		2 - Path exists, and is a directory

		[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		abort Stop the search.

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the glob object, as well.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence. It will cause
ELOOP to be triggered one level sooner in the case of cyclical
symbolic links.

		silent When an unusual error is encountered
when attempting to read a directory, a warning will be printed to
stderr. Set the silent option to true to suppress these warnings.

		strict When an unusual error is encountered
when attempting to read a directory, the process will just continue on
in search of other matches. Set the strict option to raise an error
in these cases.

		cache See cache property above. Pass in a previously generated
cache object to save some fs calls.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary to
set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set.
Set this flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that case-insensitive
filesystems will sometimes result in glob returning results that are
case-insensitively matched anyway, since readdir and stat will not
raise an error.

		debug Set to enable debug logging in minimatch and glob.

		globDebug Set to enable debug logging in glob, but not minimatch.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes. For the vast majority
of operations, this is never a problem.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/cli/node_modules/glob/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/glob/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself. When set, an empty list is returned if there are
no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/hooker/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

JavaScript Hooker

Monkey-patch (hook) functions for debugging and stuff.

Getting Started

This code should work just fine in Node.js:

First, install the module with: npm install hooker

var hooker = require('hooker');
hooker.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7

Or in the browser:

<script src="dist/ba-hooker.min.js"></script>
<script>
hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7
</script>

In the browser, you can attach Hooker’s methods to any object.

<script>
this.exports = Bocoup.utils;
</script>
<script src="dist/ba-hooker.min.js"></script>
<script>
Bocoup.utils.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7
</script>

Documentation

hooker.hook

Monkey-patch (hook) one or more methods of an object.

Signature:

hooker.hook(object, [props,] [options | prehookFunction])

props

The optional props argument can be a method name, array of method names or null. If null (or omitted), all enumerable methods of object will be hooked.

options

		pre - (Function) a pre-hook function to be executed before the original function. Arguments passed into the method will be passed into the pre-hook function as well.

		post - (Function) a post-hook function to be executed after the original function. The original function’s result is passed into the post-hook function as its first argument, followed by the method arguments.

		once - (Boolean) if true, auto-unhook the function after the first execution.

		passName - (Boolean) if true, pass the name of the method into the pre-hook function as its first arg (preceding all other arguments), and into the post-hook function as the second arg (after result but preceding all other arguments).

Returns:

An array of hooked method names.

hooker.unhook

Un-monkey-patch (unhook) one or more methods of an object.

Signature:

hooker.unhook(object [, props])

props

The optional props argument can be a method name, array of method names or null. If null (or omitted), all methods of object will be unhooked.

Returns:

An array of unhooked method names.

hooker.orig

Get a reference to the original method from a hooked function.

Signature:

hooker.orig(object, props)

hooker.override

When a pre- or post-hook returns the result of this function, the value
passed will be used in place of the original function’s return value. Any
post-hook override value will take precedence over a pre-hook override value.

Signature:

hooker.override(value)

hooker.preempt

When a pre-hook returns the result of this function, the value passed will
be used in place of the original function’s return value, and the original
function will NOT be executed.

Signature:

hooker.preempt(value)

hooker.filter

When a pre-hook returns the result of this function, the context and
arguments passed will be applied into the original function.

Signature:

hooker.filter(context, arguments)

Examples

See the unit tests for more examples.

var hooker = require('hooker');
// Simple logging.
hooker.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7

hooker.unhook(Math, "max"); // (This is assumed between all further examples)
Math.max(5, 6, 7) // 7

// Returning hooker.override(value) overrides the original value.
hooker.hook(Math, "max", function() {
 if (arguments.length === 0) {
 return hooker.override(9000);
 }
});
Math.max(5, 6, 7) // 7
Math.max() // 9000

// Auto-unhook after one execution.
hooker.hook(Math, "max", {
 once: true,
 pre: function() {
 console.log("Init something here");
 }
});
Math.max(5, 6, 7) // logs: "Init something here", returns 7
Math.max(5, 6, 7) // 7

// Filter `this` and arguments through a pre-hook function.
hooker.hook(Math, "max", {
 pre: function() {
 var args = [].map.call(arguments, function(num) {
 return num * 2;
 });
 return hooker.filter(this, args); // thisValue, arguments
 }
});
Math.max(5, 6, 7) // 14

// Modify the original function's result with a post-hook function.
hooker.hook(Math, "max", {
 post: function(result) {
 return hooker.override(result * 100);
 }
});
Math.max(5, 6, 7) // 700

// Hook every Math method. Note: if Math's methods were enumerable, the second
// argument could be omitted. Since they aren't, an array of properties to hook
// must be explicitly passed. Non-method properties will be skipped.
// See a more generic example here: http://bit.ly/vvJlrS
hooker.hook(Math, Object.getOwnPropertyNames(Math), {
 passName: true,
 pre: function(name) {
 console.log("=> Math." + name, [].slice.call(arguments, 1));
 },
 post: function(result, name) {
 console.log("<= Math." + name, result);
 }
});

var result = Math.max(5, 6, 7);
// => Math.max [5, 6, 7]
// <= Math.max 7
result // 7

result = Math.ceil(3.456);
// => Math.ceil [3.456]
// <= Math.ceil 4
result // 4

Contributing

In lieu of a formal styleguide, take care to maintain the existing coding style. Add unit tests for any new or changed functionality. Lint and test your code using grunt [https://github.com/cowboy/grunt].

Also, please don’t edit files in the “dist” subdirectory as they are generated via grunt. You’ll find source code in the “lib” subdirectory!

Release History

2012/01/09 - v0.2.3 - First official release.

License

Copyright (c) 2012 “Cowboy” Ben AlmanLicensed under the MIT license.http://benalman.com/about/license/

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/glob/node_modules/graceful-fs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

graceful-fs

graceful-fs functions as a drop-in replacement for the fs module,
making various improvements.

The improvements are meant to normalize behavior across different
platforms and environments, and to make filesystem access more
resilient to errors.

Improvements over fs module

graceful-fs:

		Queues up open and readdir calls, and retries them once
something closes if there is an EMFILE error from too many file
descriptors.

		fixes lchmod for Node versions prior to 0.6.2.

		implements fs.lutimes if possible. Otherwise it becomes a noop.

		ignores EINVAL and EPERM errors in chown, fchown or
lchown if the user isn’t root.

		makes lchmod and lchown become noops, if not available.

		retries reading a file if read results in EAGAIN error.

On Windows, it retries renaming a file for up to one second if EACCESS
or EPERM error occurs, likely because antivirus software has locked
the directory.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/cli/node_modules/glob/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/glob/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/hooker/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

JavaScript Hooker

Monkey-patch (hook) functions for debugging and stuff.

Getting Started

This code should work just fine in Node.js:

First, install the module with: npm install hooker

var hooker = require('hooker');
hooker.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7

Or in the browser:

<script src="dist/ba-hooker.min.js"></script>
<script>
hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7
</script>

In the browser, you can attach Hooker’s methods to any object.

<script>
this.exports = Bocoup.utils;
</script>
<script src="dist/ba-hooker.min.js"></script>
<script>
Bocoup.utils.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7
</script>

Documentation

hooker.hook

Monkey-patch (hook) one or more methods of an object.

Signature:

hooker.hook(object, [props,] [options | prehookFunction])

props

The optional props argument can be a method name, array of method names or null. If null (or omitted), all enumerable methods of object will be hooked.

options

		pre - (Function) a pre-hook function to be executed before the original function. Arguments passed into the method will be passed into the pre-hook function as well.

		post - (Function) a post-hook function to be executed after the original function. The original function’s result is passed into the post-hook function as its first argument, followed by the method arguments.

		once - (Boolean) if true, auto-unhook the function after the first execution.

		passName - (Boolean) if true, pass the name of the method into the pre-hook function as its first arg (preceding all other arguments), and into the post-hook function as the second arg (after result but preceding all other arguments).

Returns:

An array of hooked method names.

hooker.unhook

Un-monkey-patch (unhook) one or more methods of an object.

Signature:

hooker.unhook(object [, props])

props

The optional props argument can be a method name, array of method names or null. If null (or omitted), all methods of object will be unhooked.

Returns:

An array of unhooked method names.

hooker.orig

Get a reference to the original method from a hooked function.

Signature:

hooker.orig(object, props)

hooker.override

When a pre- or post-hook returns the result of this function, the value
passed will be used in place of the original function’s return value. Any
post-hook override value will take precedence over a pre-hook override value.

Signature:

hooker.override(value)

hooker.preempt

When a pre-hook returns the result of this function, the value passed will
be used in place of the original function’s return value, and the original
function will NOT be executed.

Signature:

hooker.preempt(value)

hooker.filter

When a pre-hook returns the result of this function, the context and
arguments passed will be applied into the original function.

Signature:

hooker.filter(context, arguments)

Examples

See the unit tests for more examples.

var hooker = require('hooker');
// Simple logging.
hooker.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7

hooker.unhook(Math, "max"); // (This is assumed between all further examples)
Math.max(5, 6, 7) // 7

// Returning hooker.override(value) overrides the original value.
hooker.hook(Math, "max", function() {
 if (arguments.length === 0) {
 return hooker.override(9000);
 }
});
Math.max(5, 6, 7) // 7
Math.max() // 9000

// Auto-unhook after one execution.
hooker.hook(Math, "max", {
 once: true,
 pre: function() {
 console.log("Init something here");
 }
});
Math.max(5, 6, 7) // logs: "Init something here", returns 7
Math.max(5, 6, 7) // 7

// Filter `this` and arguments through a pre-hook function.
hooker.hook(Math, "max", {
 pre: function() {
 var args = [].map.call(arguments, function(num) {
 return num * 2;
 });
 return hooker.filter(this, args); // thisValue, arguments
 }
});
Math.max(5, 6, 7) // 14

// Modify the original function's result with a post-hook function.
hooker.hook(Math, "max", {
 post: function(result) {
 return hooker.override(result * 100);
 }
});
Math.max(5, 6, 7) // 700

// Hook every Math method. Note: if Math's methods were enumerable, the second
// argument could be omitted. Since they aren't, an array of properties to hook
// must be explicitly passed. Non-method properties will be skipped.
// See a more generic example here: http://bit.ly/vvJlrS
hooker.hook(Math, Object.getOwnPropertyNames(Math), {
 passName: true,
 pre: function(name) {
 console.log("=> Math." + name, [].slice.call(arguments, 1));
 },
 post: function(result, name) {
 console.log("<= Math." + name, result);
 }
});

var result = Math.max(5, 6, 7);
// => Math.max [5, 6, 7]
// <= Math.max 7
result // 7

result = Math.ceil(3.456);
// => Math.ceil [3.456]
// <= Math.ceil 4
result // 4

Contributing

In lieu of a formal styleguide, take care to maintain the existing coding style. Add unit tests for any new or changed functionality. Lint and test your code using grunt [https://github.com/cowboy/grunt].

Also, please don’t edit files in the “dist” subdirectory as they are generated via grunt. You’ll find source code in the “lib” subdirectory!

Release History

2012/01/09 - v0.2.3 - First official release.

License

Copyright (c) 2012 “Cowboy” Ben AlmanLicensed under the MIT license.http://benalman.com/about/license/

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/glob/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

grunt-contrib-nodeunit v0.4.1 [image: Build Status: Linux] [https://travis-ci.org/gruntjs/grunt-contrib-nodeunit] [image: Build Status: Windows]

Run Nodeunit unit tests.

Getting Started

This plugin requires Grunt ~0.4.0

If you haven’t used Grunt [http://gruntjs.com/] before, be sure to check out the Getting Started [http://gruntjs.com/getting-started] guide, as it explains how to create a Gruntfile [http://gruntjs.com/sample-gruntfile] as well as install and use Grunt plugins. Once you’re familiar with that process, you may install this plugin with this command:

npm install grunt-contrib-nodeunit --save-dev

Once the plugin has been installed, it may be enabled inside your Gruntfile with this line of JavaScript:

grunt.loadNpmTasks('grunt-contrib-nodeunit');

Nodeunit task

Run this task with the grunt nodeunit command.

Task targets, files and options may be specified according to the grunt Configuring tasks [http://gruntjs.com/configuring-tasks] guide.

This plugin provides server-side JavaScript unit testing via nodeunit [https://github.com/caolan/nodeunit/]. If you’re looking to test JavaScript that uses window or the DOM, please use the grunt-contrib-qunit plugin [https://github.com/gruntjs/grunt-contrib-qunit]qunit task.

Settings

options.reporter

		Type: String

		Default: 'grunt'

Specifies the reporter you want to use. For example, default, verbose or tap.

options.reporterOutput

		Type: Boolean

		Default: false

Specifies the file the reporter‘s output should be saved to. For example, tests.tap.

options.reporterOptions

		Type: Object

		Default: {}

Specifies the options passed to the reporter. For example, the junit reporter requires the output option
to be set:

grunt.initConfig({
 nodeunit: {
 all: ['test/*_test.js'],
 options: {
 reporter: 'junit',
 reporterOptions: {
 output: 'outputdir'
 }
 }
 }
});

Usage examples

Wildcards

In this example, grunt nodeunit:all or grunt nodeunit will test all files ending with _test.js in the test directory.

grunt.initConfig({
 nodeunit: {
 all: ['test/*_test.js']
 }
});

With a slight modification, grunt nodeunit:all will test files matching the same pattern in the test directory and all subdirectories.

grunt.initConfig({
 nodeunit: {
 all: ['test/**/*_test.js']
 }
});

Using Other Reporters

To use a reporter other than the default one, you can specify the reporter and reporterOutput parameters.

grunt.initConfig({
 nodeunit: {
 all: ['test/*_test.js'],
 options: {
 reporter: 'tap',
 reporterOutput: 'tests.tap',
 reporterOptions: {
 output: 'outputdir'
 }
 }
 }
});

Release History

		2014-06-21   v0.4.1   Fixes Windows JUnit issue. Check error.stack exists.

		2014-05-14   v0.4.0   Bump nodeunit to v0.9.0

		2014-01-26   v0.3.0   Adds ‘reporter’ and ‘reporterOutput’ options.

		2013-10-19   v0.2.2   Allow missing operators on error object.

		2013-09-24   v0.2.1   Fix error display.

		2013-05-23   v0.2.0   Bump nodeunit to v0.8.0

		2013-02-15   v0.1.2   First official release for Grunt 0.4.0.

		2013-01-18   v0.1.2rc6   Updating grunt/gruntplugin dependencies to rc6. Changing in-development grunt/gruntplugin dependency versions from tilde version ranges to specific versions.

		2013-01-09   v0.1.2rc5   Updating to work with grunt v0.4.0rc5. Switching to this.filesSrc api.

		2012-11-13   v0.1.1   Switch to this.file api internally.

		2012-11-04   v0.1.0   Work in progress, not yet officially released.

Task submitted by “Cowboy” Ben Alman [http://benalman.com]

This file was generated on Sat Jun 21 2014 17:24:52.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/growl/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Growl for nodejs

Growl support for Nodejs. This is essentially a port of my Ruby Growl Library [http://github.com/visionmedia/growl]. Ubuntu/Linux support added thanks to @niftylettuce [http://github.com/niftylettuce].

Installation

Install

Mac OS X (Darwin):

Install growlnotify(1) [http://growl.info/extras.php#growlnotify]. On OS X 10.8, Notification Center is supported using terminal-notifier [https://github.com/alloy/terminal-notifier]. To install:

 $ sudo gem install terminal-notifier

Install npm [http://npmjs.org/] and run:

 $ npm install growl

Ubuntu (Linux):

Install notify-send through the libnotify-bin [http://packages.ubuntu.com/libnotify-bin] package:

 $ sudo apt-get install libnotify-bin

Install npm [http://npmjs.org/] and run:

 $ npm install growl

Windows:

Download and install Growl for Windows [http://www.growlforwindows.com/gfw/default.aspx]

Download growlnotify [http://www.growlforwindows.com/gfw/help/growlnotify.aspx] - IMPORTANT : Unpack growlnotify to a folder that is present in your path!

Install npm [http://npmjs.org/] and run:

 $ npm install growl

Examples

Callback functions are optional

var growl = require('growl')
growl('You have mail!')
growl('5 new messages', { sticky: true })
growl('5 new emails', { title: 'Email Client', image: 'Safari', sticky: true })
growl('Message with title', { title: 'Title'})
growl('Set priority', { priority: 2 })
growl('Show Safari icon', { image: 'Safari' })
growl('Show icon', { image: 'path/to/icon.icns' })
growl('Show image', { image: 'path/to/my.image.png' })
growl('Show png filesystem icon', { image: 'png' })
growl('Show pdf filesystem icon', { image: 'article.pdf' })
growl('Show pdf filesystem icon', { image: 'article.pdf' }, function(err){
 // ... notified
})

Options

		title
		notification title

		name
		application name

		priority
		priority for the notification (default is 0)

		sticky
		weither or not the notification should remainin until closed

		image
		Auto-detects the context:
		path to an icon sets –iconpath

		path to an image sets –image

		capitalized word sets –appIcon

		filename uses extname as –icon

		otherwise treated as –icon

License

(The MIT License)

Copyright (c) 2009 TJ Holowaychuk tj@vision-media.ca

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/commander/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Commander.js

The complete solution for node.js [http://nodejs.org] command-line interfaces, inspired by Ruby’s commander [https://github.com/visionmedia/commander].

[image: Build Status] [http://travis-ci.org/visionmedia/commander.js]

Installation

$ npm install commander

Option parsing

Options with commander are defined with the .option() method, also serving as documentation for the options. The example below parses args and options from process.argv, leaving remaining args as the program.args array which were not consumed by options.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
 .version('0.0.1')
 .option('-p, --peppers', 'Add peppers')
 .option('-P, --pineapple', 'Add pineapple')
 .option('-b, --bbq', 'Add bbq sauce')
 .option('-c, --cheese [type]', 'Add the specified type of cheese [marble]', 'marble')
 .parse(process.argv);

console.log('you ordered a pizza with:');
if (program.peppers) console.log(' - peppers');
if (program.pineapple) console.log(' - pineapple');
if (program.bbq) console.log(' - bbq');
console.log(' - %s cheese', program.cheese);

Short flags may be passed as a single arg, for example -abc is equivalent to -a -b -c. Multi-word options such as “–template-engine” are camel-cased, becoming program.templateEngine etc.

Automated –help

The help information is auto-generated based on the information commander already knows about your program, so the following --help info is for free:

 $./examples/pizza --help

 Usage: pizza [options]

 Options:

 -V, --version output the version number
 -p, --peppers Add peppers
 -P, --pineapple Add pineapple
 -b, --bbq Add bbq sauce
 -c, --cheese <type> Add the specified type of cheese [marble]
 -h, --help output usage information

Coercion

function range(val) {
 return val.split('..').map(Number);
}

function list(val) {
 return val.split(',');
}

function collect(val, memo) {
 memo.push(val);
 return memo;
}

function increaseVerbosity(v, total) {
 return total + 1;
}

program
 .version('0.0.1')
 .usage('[options] <file ...>')
 .option('-i, --integer <n>', 'An integer argument', parseInt)
 .option('-f, --float <n>', 'A float argument', parseFloat)
 .option('-r, --range <a>..', 'A range', range)
 .option('-l, --list <items>', 'A list', list)
 .option('-o, --optional [value]', 'An optional value')
 .option('-c, --collect [value]', 'A repeatable value', collect, [])
 .option('-v, --verbose', 'A value that can be increased', increaseVerbosity, 0)
 .parse(process.argv);

console.log(' int: %j', program.integer);
console.log(' float: %j', program.float);
console.log(' optional: %j', program.optional);
program.range = program.range || [];
console.log(' range: %j..%j', program.range[0], program.range[1]);
console.log(' list: %j', program.list);
console.log(' collect: %j', program.collect);
console.log(' verbosity: %j', program.verbose);
console.log(' args: %j', program.args);

Custom help

You can display arbitrary -h, --help information
by listening for “–help”. Commander will automatically
exit once you are done so that the remainder of your program
does not execute causing undesired behaviours, for example
in the following executable “stuff” will not output when
--help is used.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('../');

function list(val) {
 return val.split(',').map(Number);
}

program
 .version('0.0.1')
 .option('-f, --foo', 'enable some foo')
 .option('-b, --bar', 'enable some bar')
 .option('-B, --baz', 'enable some baz');

// must be before .parse() since
// node's emit() is immediate

program.on('--help', function(){
 console.log(' Examples:');
 console.log('');
 console.log(' $ custom-help --help');
 console.log(' $ custom-help -h');
 console.log('');
});

program.parse(process.argv);

console.log('stuff');

yielding the following help output:

Usage: custom-help [options]

Options:

 -h, --help output usage information
 -V, --version output the version number
 -f, --foo enable some foo
 -b, --bar enable some bar
 -B, --baz enable some baz

Examples:

 $ custom-help --help
 $ custom-help -h

.outputHelp()

Output help information without exiting.

.help()

Output help information and exit immediately.

Links

		API documentation [http://visionmedia.github.com/commander.js/]

		ascii tables [https://github.com/LearnBoost/cli-table]

		progress bars [https://github.com/visionmedia/node-progress]

		more progress bars [https://github.com/substack/node-multimeter]

		examples [https://github.com/visionmedia/commander.js/tree/master/examples]

License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/cli/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 cli is a toolkit for rapidly building command line apps - it includes:

		Full featured opts/args parser

		Plugin support for adding common options and switches

		Helper methods for working with input/output and spawning child processes

		Output colored/styled messages, progress bars [https://github.com/chriso/cli/blob/master/examples/progress.js] or spinners [https://github.com/chriso/cli/blob/master/examples/spinner.js]

		Command auto-completion [https://github.com/chriso/cli/blob/master/examples/command.js] and glob support [https://github.com/chriso/cli/blob/master/examples/glob.js]

Install using npm install cli or just bundle cli.js [https://github.com/chriso/cli/raw/master/cli.js] with your app.

Example apps

sort.js

#!/usr/bin/env node
require('cli').withStdinLines(function(lines, newline) {
 this.output(lines.sort().join(newline));
});

Try it out

$./sort.js < input.txt

Let’s add support for an -n switch to use a numeric sort, and a -r switch to reverse output - only 5 extra lines of code (!)

var cli = require('cli'), options = cli.parse();

cli.withStdinLines(function(lines, newline) {
 lines.sort(!options.n ? null : function(a, b) {
 return parseInt(a) > parseInt(b);
 });
 if (options.r) lines.reverse();
 this.output(lines.join(newline));
});

static.js

Let’s create a static file server with daemon support to see the opts parser + plugins in use - note: this requires npm install creationix daemon

var cli = require('cli').enable('daemon', 'status'); //Enable 2 plugins

cli.parse({
 log: ['l', 'Enable logging'],
 port: ['p', 'Listen on this port', 'number', 8080],
 serve: [false, 'Serve static files from PATH', 'path', './public']
});

cli.main(function(args, options) {
 var server, middleware = [];

 if (options.log) {
 this.debug('Enabling logging');
 middleware.push(require('creationix/log')());
 }

 this.debug('Serving files from ' + options.serve);
 middleware.push(require('creationix/static')('/', options.serve, 'index.html'));

 server = this.createServer(middleware).listen(options.port);

 this.ok('Listening on port ' + options.port);
});

To output usage information

$./static.js --help

To create a daemon that serves files from /tmp, run

$./static.js -ld --serve=/tmp

For more examples, see ./examples [https://github.com/chriso/cli/tree/master/examples]

Helper methods

cli has methods that collect stdin (newline is autodetected as \n or \r\n)

cli.withStdin(callback); //callback receives stdin as a string
cli.withStdinLines(callback); //callback receives stdin split into an array of lines (lines, newline)

cli also has a lower level method for working with input line by line (see ./examples/cat.js [https://github.com/chriso/cli/blob/master/examples/cat.js] for an example).

cli.withInput(file, function (line, newline, eof) {
 if (!eof) {
 this.output(line + newline);
 }
});

Note: file can be omitted if you want to work with stdin

To output a progress bar, call

cli.progress(progress); //Where 0 <= progress <= 1

To spawn a child process, use

cli.exec(cmd, callback); //callback receives the output of the process (split into lines)

cli also comes bundled with kof’s node-natives [https://github.com/kof/node-natives] (access with cli.native) and creationix’ stack [https://github.com/creationix/stack] (access with cli.createServer)

Plugins

Plugins are a way of adding common opts and can be enabled using

cli.enable(plugin1, [plugin2, ...]); //To disable, use the equivalent disable() method

help - enabled by default

Adds -h,--help to output auto-generated usage information

version

Adds -v,--version to output version information for the app. cli will attempt to locate and parse a nearby package.json

To set your own app name and version, use cli.setApp(app_name, version)

status

Adds options to show/hide the stylized status messages that are output to the console when using one of these methods

cli.debug(msg); //Only shown when using --debug
cli.error(msg);
cli.fatal(msg); //Exits the process after outputting msg
cli.info(msg);
cli.ok(msg);

-k,--no-color will omit ANSI color escapes from the output

glob - requires npm install glob

Enables glob matching of arguments

daemon - requires npm install daemon

Adds -d,--daemon ARG for daemonizing the process and controlling the resulting daemon

ARG can be either start (default), stop, restart, pid (outputs the daemon’s pid if it’s running), or log (output the daemon’s stdout+stderr)

timeout

Adds -t,--timeout N to exit the process after N seconds with an error

catchall

Adds -c,--catch to catch and output uncaughtExceptions and resume execution

Note: Plugins are automatically disabled if an option or switch of the same name is already defined

LICENSE

(MIT license)

Copyright (c) 2010 Chris O’Hara cohara87@gmail.com

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/underscore/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 __
 /\ \ __
 __ __ ___ _\ \ __ _ __ ____ ___ ___ _ __ __ /_\ ____
/\ \/\ \ /' _ `\ /'_ \ /'__`\/\ __\/ ,__\ / ___\ / __`\/\ __\/'__`\ \/\ \ /',__\
\ \ _\ \/\ \/\ \/\ \ \ \/\ __/\ \ \//__, `\/\ __//\ \ \ \ \ \//\ __/ __ \ \ \/__, `\
 \ ____/\ _\ _\ ___,_\ ____\\ _\\/____/\ ____\ ____/\ _\\ ____\/_\ _\ \ \/____/
 \/___/ \/_/\/_/\/__,_ /\/____/ \/_/ \/___/ \/____/\/___/ \/_/ \/____/\/_//\ _\ \/___/
 \ ____/
 \/___/

Underscore.js is a utility-belt library for JavaScript that provides
support for the usual functional suspects (each, map, reduce, filter...)
without extending any core JavaScript objects.

For Docs, License, Tests, and pre-packed downloads, see:
http://underscorejs.org

Underscore is an open-sourced component of DocumentCloud:
https://github.com/documentcloud

Many thanks to our contributors:
https://github.com/jashkenas/underscore/contributors

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/entities/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 #entities [image: NPM version] [https://npmjs.org/package/entities] [image: Downloads] [https://npmjs.org/package/entities] [image: Build Status] [http://travis-ci.org/fb55/node-entities] [image: Coverage] [https://coveralls.io/r/fb55/node-entities]

En- & decoder for XML/HTML entities.

####Features:

		Focussed on speed

		Supports three levels of entities: XML, HTML4 & HTML5
		Supports char code entities (eg. U)

##How to…

###…install entities

npm i entities

###…use entities

//encoding
require("entities").encode(<str> data[, <int> level]);
//decoding
require("entities").decode(<str> data[, <int> level]);

The level attribute indicates what level of entities should be decoded (0 = XML, 1 = HTML4 and 2 = HTML5). The default is 0 (read: XML).

There are also methods to access the level directly. Just append the name of the level to the action and you’re ready to go (e.g. encodeHTML4(data), decodeXML(data)).

License: BSD-like

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/htmlparser2/node_modules/readable-stream/node_modules/string_decoder/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 string_decoder.js (require('string_decoder')) from Node.js core

Copyright Joyent, Inc. and other Node contributors. See LICENCE file for details.

Version numbers match the versions found in Node core, e.g. 0.10.24 matches Node 0.10.24, likewise 0.11.10 matches Node 0.11.10. Prefer the stable version over the unstable.

The build/ directory contains a build script that will scrape the source from the joyent/node [https://github.com/joyent/node] repo given a specific Node version.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/console-browserify/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

console-browserify

![build status][1] [http://travis-ci.org/Raynos/console-browserify]

![browser support][3] [http://ci.testling.com/Raynos/console-browserify]

Emulate console for all the browsers

Example

var console = require("console-browserify")

console.log("hello world!")

Installation

npm install console-browserify

Contributors

		Raynos

MIT Licenced

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/shelljs/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ShellJS - Unix shell commands for Node.js [image: Build Status] [http://travis-ci.org/arturadib/shelljs]

ShellJS is a portable (Windows/Linux/OS X) implementation of Unix shell commands on top of the Node.js API. You can use it to eliminate your shell script’s dependency on Unix while still keeping its familiar and powerful commands. You can also install it globally so you can run it from outside Node projects - say goodbye to those gnarly Bash scripts!

The project is unit-tested [http://travis-ci.org/arturadib/shelljs] and battled-tested in projects like:

		PDF.js [http://github.com/mozilla/pdf.js] - Firefox’s next-gen PDF reader

		Firebug [http://getfirebug.com/] - Firefox’s infamous debugger

		JSHint [http://jshint.com] - Most popular JavaScript linter

		Zepto [http://zeptojs.com] - jQuery-compatible JavaScript library for modern browsers

		Yeoman [http://yeoman.io/] - Web application stack and development tool

		Deployd.com [http://deployd.com] - Open source PaaS for quick API backend generation

and many more [https://npmjs.org/browse/depended/shelljs].

Installing

Via npm:

$ npm install [-g] shelljs

If the global option -g is specified, the binary shjs will be installed. This makes it possible to
run ShellJS scripts much like any shell script from the command line, i.e. without requiring a node_modules folder:

$ shjs my_script

You can also just copy shell.js into your project’s directory, and require() accordingly.

Examples

JavaScript

require('shelljs/global');

if (!which('git')) {
 echo('Sorry, this script requires git');
 exit(1);
}

// Copy files to release dir
mkdir('-p', 'out/Release');
cp('-R', 'stuff/*', 'out/Release');

// Replace macros in each .js file
cd('lib');
ls('*.js').forEach(function(file) {
 sed('-i', 'BUILD_VERSION', 'v0.1.2', file);
 sed('-i', /.*REMOVE_THIS_LINE.*\n/, '', file);
 sed('-i', /.*REPLACE_LINE_WITH_MACRO.*\n/, cat('macro.js'), file);
});
cd('..');

// Run external tool synchronously
if (exec('git commit -am "Auto-commit"').code !== 0) {
 echo('Error: Git commit failed');
 exit(1);
}

CoffeeScript

require 'shelljs/global'

if not which 'git'
 echo 'Sorry, this script requires git'
 exit 1

Copy files to release dir
mkdir '-p', 'out/Release'
cp '-R', 'stuff/*', 'out/Release'

Replace macros in each .js file
cd 'lib'
for file in ls '*.js'
 sed '-i', 'BUILD_VERSION', 'v0.1.2', file
 sed '-i', /.*REMOVE_THIS_LINE.*\n/, '', file
 sed '-i', /.*REPLACE_LINE_WITH_MACRO.*\n/, cat 'macro.js', file
cd '..'

Run external tool synchronously
if (exec 'git commit -am "Auto-commit"').code != 0
 echo 'Error: Git commit failed'
 exit 1

Global vs. Local

The example above uses the convenience script shelljs/global to reduce verbosity. If polluting your global namespace is not desirable, simply require shelljs.

Example:

var shell = require('shelljs');
shell.echo('hello world');

Make tool

A convenience script shelljs/make is also provided to mimic the behavior of a Unix Makefile. In this case all shell objects are global, and command line arguments will cause the script to execute only the corresponding function in the global target object. To avoid redundant calls, target functions are executed only once per script.

Example (CoffeeScript):

require 'shelljs/make'

target.all = ->
 target.bundle()
 target.docs()

target.bundle = ->
 cd __dirname
 mkdir 'build'
 cd 'lib'
 (cat '*.js').to '../build/output.js'

target.docs = ->
 cd __dirname
 mkdir 'docs'
 cd 'lib'
 for file in ls '*.js'
 text = grep '//@', file # extract special comments
 text.replace '//@', '' # remove comment tags
 text.to 'docs/my_docs.md'

To run the target all, call the above script without arguments: $ node make. To run the target docs: $ node make docs, and so on.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/strip-json-comments/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

strip-json-comments [image: Build Status] [https://travis-ci.org/sindresorhus/strip-json-comments]

Strip comments from JSON. Lets you use comments in your JSON files!

This is now possible:

{
 // rainbows
 "unicorn": /* ❤ */ "cake"
}

It will remove single-line comments // and multi-line comments /**/.

Also available as a gulp [https://github.com/sindresorhus/gulp-strip-json-comments]/grunt [https://github.com/sindresorhus/grunt-strip-json-comments]/broccoli [https://github.com/sindresorhus/broccoli-strip-json-comments] plugin and a require hook [https://github.com/uTest/autostrip-json-comments].

There’s already json-comments [https://npmjs.org/package/json-comments], but it’s only for Node.js and uses a naive regex to strip comments which fails on simple cases like {"a":"//"}. This module however parses out the comments.

Install

$ npm install --save strip-json-comments

$ bower install --save strip-json-comments

$ component install sindresorhus/strip-json-comments

Usage

var json = '{/*rainbows*/"unicorn":"cake"}';
JSON.parse(stripJsonComments(json));
//=> {unicorn: 'cake'}

API

stripJsonComments(input)

input

Type: string

Accepts a string with JSON and returns a string without comments.

CLI

$ npm install --global strip-json-comments

$ strip-json-comments --help

strip-json-comments input-file > output-file
or
strip-json-comments < input-file > output-file

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/console-browserify/node_modules/date-now/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

date-now

![build status][1] [http://travis-ci.org/Colingo/date-now]

![browser support][3] [http://ci.testling.com/Colingo/date-now]

A requirable version of Date.now()

Use-case is to be able to mock out Date.now() using require interception.

Example

var now = require("date-now")

var ts = now()
var ts2 = Date.now()
assert.equal(ts, ts2)

example of seed

var now = require("date-now/seed")(timeStampFromServer)

// ts is in "sync" with the seed value from the server
// useful if your users have their local time being a few minutes
// out of your server time.
var ts = now()

Installation

npm install date-now

Contributors

		Raynos

MIT Licenced

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-jshint/node_modules/jshint/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/iconv-lite/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

iconv-lite - pure javascript character encoding conversion

[image: Build Status] [http://travis-ci.org/ashtuchkin/iconv-lite]

Features

		Pure javascript. Doesn’t need native code compilation.

		Easy API.

		Works on Windows and in sandboxed environments like Cloud9 [http://c9.io].

		Encoding is much faster than node-iconv (see below for performance comparison).

Usage

var iconv = require('iconv-lite');

// Convert from an encoded buffer to string.
str = iconv.decode(buf, 'win1251');

// Convert from string to an encoded buffer.
buf = iconv.encode("Sample input string", 'win1251');

// Check if encoding is supported
iconv.encodingExists("us-ascii")

Supported encodings

		All node.js native encodings: ‘utf8’, ‘ucs2’, ‘ascii’, ‘binary’, ‘base64’

		All widespread single byte encodings: Windows 125x family, ISO-8859 family,
IBM/DOS codepages, Macintosh family, KOI8 family.
Aliases like ‘latin1’, ‘us-ascii’ also supported.

		Multibyte encodings: ‘gbk’, ‘gb2313’, ‘Big5’, ‘cp950’.

Others are easy to add, see the source. Please, participate.
Most encodings are generated from node-iconv. Thank you Ben Noordhuis and iconv authors!

Not supported yet: EUC family, Shift_JIS.

Encoding/decoding speed

Comparison with node-iconv module (1000x256kb, on Ubuntu 12.04, Core i5/2.5 GHz, Node v0.8.7).
Note: your results may vary, so please always check on your hardware.

operation iconv@1.2.4 iconv-lite@0.2.4
--
encode('win1251') ~115 Mb/s ~230 Mb/s
decode('win1251') ~95 Mb/s ~130 Mb/s

Notes

When decoding, a ‘binary’-encoded string can be used as a source buffer.Untranslatable characters are set to � or ?. No transliteration is currently supported, pull requests are welcome.

Testing

git clone git@github.com:ashtuchkin/iconv-lite.git
cd iconv-lite
npm install
npm test

To view performance:
node test/performance.js

TODO

		Support streaming character conversion, something like util.pipe(req, iconv.fromEncodingStream(‘latin1’)).

		Add more encodings.

		Add transliteration (best fit char).

		Add tests and correct support of variable-byte encodings (currently work is delegated to node).

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/up.png

node_modules/grunt/node_modules/async/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Async.js

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with node.js [http://nodejs.org], it can also be used directly in the
browser.

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, forEach…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], path.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Download

Releases are available for download from
GitHub [http://github.com/caolan/async/downloads].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 17.5kb Uncompressed

Production: async.min.js [https://github.com/caolan/async/raw/master/dist/async.min.js] - 1.7kb Packed and Gzipped

In the Browser

So far its been tested in IE6, IE7, IE8, FF3.6 and Chrome 5. Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

		forEach

		map

		filter

		reject

		reduce

		detect

		sortBy

		some

		every

		concat

Control Flow

		series

		parallel

		whilst

		until

		waterfall

		queue

		auto

		iterator

		apply

		nextTick

Utils

		memoize

		unmemoize

		log

		dir

		noConflict

Collections

[bookmark: forEach]

forEach(arr, iterator, callback)

Applies an iterator function to each item in an array, in parallel.
The iterator is called with an item from the list and a callback for when it
has finished. If the iterator passes an error to this callback, the main
callback for the forEach function is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.forEach(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: forEachSeries]

forEachSeries(arr, iterator, callback)

The same as forEach only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. This means the iterator functions will complete in order.

[bookmark: forEachLimit]

forEachLimit(arr, limit, iterator, callback)

The same as forEach only the iterator is applied to batches of items in the
array, in series. The next batch of iterators is only called once the current
one has completed processing.

Arguments

		arr - An array to iterate over.

		limit - How many items should be in each batch.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed.

		callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.forEachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in the given array through
the iterator function. The iterator is called with an item from the array and a
callback for when it has finished processing. The callback takes 2 arguments,
an error and the transformed item from the array. If the iterator passes an
error to this callback, the main callback for the map function is immediately
called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order, however
the results array will be in the same order as the original array.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed
with an error (which can be null) and a transformed item.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like path.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed.

		callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], path.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

alias: selectSeries

The same as filter only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as filter, only the iterator is applied to each item in the array
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

aliases: inject, foldl

Reduces a list of values into a single value using an async iterator to return
each successive step. Memo is the initial state of the reduction. This
function only operates in series. For performance reasons, it may make sense to
split a call to this function into a parallel map, then use the normal
Array.prototype.reduce on the results. This function is for situations where
each step in the reduction needs to be async, if you can get the data before
reducing it then its probably a good idea to do so.

Arguments

		arr - An array to iterate over.

		memo - The initial state of the reduction.

		iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback which accepts an optional error as its first argument, and the state
of the reduction as the second. If an error is passed to the callback, the
reduction is stopped and the main callback is immediately called with the
error.

		callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on the items in the array in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in a list that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original array (in terms of order) that passes the test.

If order within the original array is important then look at detectSeries.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], path.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in the array
in series. This means the result is always the first in the original array (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each value through an async iterator.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed
with an error (which can be null) and a value to use as the sort criteria.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is the items from
the original array sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like path.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed.

		callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], path.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like path.exists.

Arguments

		arr - An array to iterate over.

		iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed.

		callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], path.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies an iterator to each item in a list, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of the arguments passed to the iterator function.

Arguments

		arr - An array to iterate over

		iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback which must be called once it has completed
with an error (which can be null) and an array of results.

		callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as async.concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run an array of functions in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run and the callback for the series is
immediately called with the value of the error. Once the tasks have completed,
the results are passed to the final callback as an array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.series.

Arguments

		tasks - An array or object containing functions to run, each function is passed
a callback it must call on completion.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets an array of all the arguments passed to
the callbacks used in the array.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 },
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 },
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run an array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.parallel.

Arguments

		tasks - An array or object containing functions to run, each function is passed a
callback it must call on completion.

		callback(err, results) - An optional callback to run once all the functions
have completed. This function gets an array of all the arguments passed to
the callbacks used in the array.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 },
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 },
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls the callback when stopped,
or an error occurs.

Arguments

		test() - synchronous truth test to perform before each execution of fn.

		fn(callback) - A function to call each time the test passes. The function is
passed a callback which must be called once it has completed with an optional
error as the first argument.

		callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn, until test returns true. Calls the callback when stopped,
or an error occurs.

The inverse of async.whilst.

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs an array of functions in series, each passing their results to the next in
the array. However, if any of the functions pass an error to the callback, the
next function is not executed and the main callback is immediately called with
the error.

Arguments

		tasks - An array of functions to run, each function is passed a callback it
must call on completion.

		callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue will be processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one is available. Once
a worker has completed a task, the task’s callback is called.

Arguments

		worker(task, callback) - An asynchronous function for processing a queued
task.

		concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

		length() - a function returning the number of items waiting to be processed.

		concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

		push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

		saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

		empty - a callback that is called when the last item from the queue is given to a worker

		drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running functions based on their requirements.
Each function can optionally depend on other functions being completed first,
and each function is run as soon as its requirements are satisfied. If any of
the functions pass an error to their callback, that function will not complete
(so any other functions depending on it will not run) and the main callback
will be called immediately with the error. Functions also receive an object
containing the results of functions which have completed so far.

Arguments

		tasks - An object literal containing named functions or an array of
requirements, with the function itself the last item in the array. The key
used for each function or array is used when specifying requirements. The
syntax is easier to understand by looking at the example.

		callback(err, results) - An optional callback which is called when all the
tasks have been completed. The callback will receive an error as an argument
if any tasks pass an error to their callback. If all tasks complete
successfully, it will receive an object containing their results.

Example

async.auto({
 get_data: function(callback){
 // async code to get some data
 },
 make_folder: function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 },
 write_file: ['get_data', 'make_folder', function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, filename);
 }],
 email_link: ['write_file', function(callback, results){
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 }]
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 // async code to get some data
 },
 function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 }
],
function(results){
 async.series([
 function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 },
 email_link: function(callback){
 // once the file is written let's email a link to it...
 }
]);
});

For a complicated series of async tasks using the auto function makes adding
new tasks much easier and makes the code more readable.

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the array,
returning a continuation to call the next one after that. Its also possible to
‘peek’ the next iterator by doing iterator.next().

This function is used internally by the async module but can be useful when
you want to manually control the flow of functions in series.

Arguments

		tasks - An array of functions to run, each function is passed a callback it
must call on completion.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied, a useful
shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 },
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls the callback on a later loop around the event loop. In node.js this just
calls process.nextTick, in the browser it falls back to setTimeout(callback, 0),
which means other higher priority events may precede the execution of the callback.

This is used internally for browser-compatibility purposes.

Arguments

		callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two]
});
call_order.push('one')

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

Arguments

		fn - the function you to proxy and cache results from.

		hasher - an optional function for generating a custom hash for storing
results, it has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Comes handy in tests.

Arguments

		fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

		function - The function you want to eventually apply all arguments to.

		arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

node_modules/grunt/node_modules/exit/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

exit [image: Build Status] [http://travis-ci.org/cowboy/node-exit]

A replacement for process.exit that ensures stdio are fully drained before exiting.

To make a long story short, if process.exit is called on Windows, script output is often truncated when pipe-redirecting stdout or stderr. This module attempts to work around this issue by waiting until those streams have been completely drained before actually calling process.exit.

See Node.js issue #3584 [https://github.com/joyent/node/issues/3584] for further reference.

Tested in OS X 10.8, Windows 7 on Node.js 0.8.25 and 0.10.18.

Based on some code by @vladikoff [https://github.com/vladikoff].

Getting Started

Install the module with: npm install exit

var exit = require('exit');

// These lines should appear in the output, EVEN ON WINDOWS.
console.log("omg");
console.error("yay");

// process.exit(5);
exit(5);

// These lines shouldn't appear in the output.
console.log("wtf");
console.error("bro");

Don’t believe me? Try it for yourself.

In Windows, clone the repo and cd to the test\fixtures directory. The only difference between log.js and log-broken.js is that the former uses exit while the latter calls process.exit directly.

This test was done using cmd.exe, but you can see the same results using | grep "std" in either PowerShell or git-bash.

C:\node-exit\test\fixtures>node log.js 0 10 stdout stderr 2>&1 | find "std"
stdout 0
stderr 0
stdout 1
stderr 1
stdout 2
stderr 2
stdout 3
stderr 3
stdout 4
stderr 4
stdout 5
stderr 5
stdout 6
stderr 6
stdout 7
stderr 7
stdout 8
stderr 8
stdout 9
stderr 9

C:\node-exit\test\fixtures>node log-broken.js 0 10 stdout stderr 2>&1 | find "std"

C:\node-exit\test\fixtures>

Contributing

In lieu of a formal styleguide, take care to maintain the existing coding style. Add unit tests for any new or changed functionality. Lint and test your code using Grunt [http://gruntjs.com/].

Release History

2013-11-26 - v0.1.2 - Fixed a bug with hanging processes.2013-09-26 - v0.1.1 - Fixed some bugs. It seems to actually work now!2013-09-20 - v0.1.0 - Initial release.

License

Copyright (c) 2013 “Cowboy” Ben AlmanLicensed under the MIT license.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down.png

node_modules/stylus/node_modules/glob/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/deps/ejs/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

0.4.3 / 2011-06-20

		Fixed stacktraces line number when used multiline js expressions [Octave]

0.4.2 / 2011-05-11

		Added client side support

0.4.1 / 2011-04-21

		Fixed error context

0.4.0 / 2011-04-21

		Added; ported jade’s error reporting to ejs. [slaskis]

0.3.1 / 2011-02-23

		Fixed optional compile() options

0.3.0 / 2011-02-14

		Added ‘json’ filter [Yuriy Bogdanov]

		Use exported version of parse function to allow monkey-patching [Anatoliy Chakkaev]

0.2.1 / 2010-10-07

		Added filter support

		Fixed cache option. ~4x performance increase

0.2.0 / 2010-08-05

		Added support for global tag config

		Added custom tag support. Closes #5

		Fixed whitespace bug. Closes #4

0.1.0 / 2010-08-04

		Faster implementation [ashleydev]

0.0.4 / 2010-08-02

		Fixed single quotes for content outside of template tags. [aniero]

		Changed; exports.compile() now expects only “locals”

0.0.3 / 2010-07-15

		Fixed single quotes

0.0.2 / 2010-07-09

		Fixed newline preservation

0.0.1 / 2010-07-09

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/glob/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/deps/ejs/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

EJS

Embedded JavaScript templates.

Installation

$ npm install ejs

Features

		Complies with the Express [http://expressjs.com] view system

		Static caching of intermediate JavaScript

		Unbuffered code for conditionals etc <% code %>

		Escapes html by default with <%= code %>

		Unescaped buffering with <%- code %>

		Supports tag customization

		Filter support for designer-friendly templates

		Client-side support

Example

<% if (user) { %>
 <h2><%= user.name %></h2>
<% } %>

Usage

ejs.compile(str, options);
// => Function

ejs.render(str, options);
// => str

Options

		locals Local variables object

		cache Compiled functions are cached, requires filename

		filename Used by cache to key caches

		scope Function execution context

		debug Output generated function body

		open Open tag, defaulting to “<%”

		close Closing tag, defaulting to “%>”

Custom tags

Custom tags can also be applied globally:

var ejs = require('ejs');
ejs.open = '{{';
ejs.close = '}}';

Which would make the following a valid template:

<h1>{{= title }}</h1>

Filters

EJS conditionally supports the concept of “filters”. A “filter chain”
is a designer friendly api for manipulating data, without writing JavaScript.

Filters can be applied by supplying the : modifier, so for example if we wish to take the array [{ name: 'tj' }, { name: 'mape' }, { name: 'guillermo' }] and output a list of names we can do this simply with filters:

Template:

<p><%=: users | map:'name' | join %></p>

Output:

<p>Tj, Mape, Guillermo</p>

Render call:

ejs.render(str, {
 locals: {
 users: [
 { name: 'tj' },
 { name: 'mape' },
 { name: 'guillermo' }
]
 }
});

Or perhaps capitalize the first user’s name for display:

<p><%=: users | first | capitalize %></p>

Filter list

Currently these filters are available:

		first

		last

		capitalize

		downcase

		upcase

		sort

		sort_by:’prop’

		size

		length

		plus:n

		minus:n

		times:n

		divided_by:n

		join:’val’

		truncate:n

		truncate_words:n

		replace:pattern,substitution

		prepend:val

		append:val

		map:’prop’

		reverse

		get:’prop’

Adding filters

To add a filter simply add a method to the .filters object:

ejs.filters.last = function(obj) {
 return obj[obj.length - 1];
};

client-side support

include ./ejs.js or ./ejs.min.js and require("ejs").compile(str).

License

(The MIT License)

Copyright (c) 2009-2010 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/glob/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

node_modules/stylus/node_modules/glob/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

node_modules/grunt/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Grunt: The JavaScript Task Runner

[image: Build Status: Linux] [http://travis-ci.org/gruntjs/grunt]
[image: Build Status: Windows]
[image: Built with Grunt] [http://gruntjs.com/]

[image:]

Documentation

Visit the gruntjs.com [http://gruntjs.com/] website for all the things.

Support / Contributing

Before you make an issue, please read our Contributing [http://gruntjs.com/contributing] guide.

You can find the grunt team in #grunt on irc.freenode.net [http://webchat.freenode.net/?channels=grunt].

Release History

See the CHANGELOG.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

node_modules/grunt/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Please see the Contributing to grunt [http://gruntjs.com/contributing] guide for information on contributing to this project.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

node_modules/grunt/node_modules/hooker/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

JavaScript Hooker

Monkey-patch (hook) functions for debugging and stuff.

Getting Started

This code should work just fine in Node.js:

First, install the module with: npm install hooker

var hooker = require('hooker');
hooker.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7

Or in the browser:

<script src="dist/ba-hooker.min.js"></script>
<script>
hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7
</script>

In the browser, you can attach Hooker’s methods to any object.

<script>
this.exports = Bocoup.utils;
</script>
<script src="dist/ba-hooker.min.js"></script>
<script>
Bocoup.utils.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7
</script>

Documentation

hooker.hook

Monkey-patch (hook) one or more methods of an object.

Signature:

hooker.hook(object, [props,] [options | prehookFunction])

props

The optional props argument can be a method name, array of method names or null. If null (or omitted), all enumerable methods of object will be hooked.

options

		pre - (Function) a pre-hook function to be executed before the original function. Arguments passed into the method will be passed into the pre-hook function as well.

		post - (Function) a post-hook function to be executed after the original function. The original function’s result is passed into the post-hook function as its first argument, followed by the method arguments.

		once - (Boolean) if true, auto-unhook the function after the first execution.

		passName - (Boolean) if true, pass the name of the method into the pre-hook function as its first arg (preceding all other arguments), and into the post-hook function as the second arg (after result but preceding all other arguments).

Returns:

An array of hooked method names.

hooker.unhook

Un-monkey-patch (unhook) one or more methods of an object.

Signature:

hooker.unhook(object [, props])

props

The optional props argument can be a method name, array of method names or null. If null (or omitted), all methods of object will be unhooked.

Returns:

An array of unhooked method names.

hooker.orig

Get a reference to the original method from a hooked function.

Signature:

hooker.orig(object, props)

hooker.override

When a pre- or post-hook returns the result of this function, the value
passed will be used in place of the original function’s return value. Any
post-hook override value will take precedence over a pre-hook override value.

Signature:

hooker.override(value)

hooker.preempt

When a pre-hook returns the result of this function, the value passed will
be used in place of the original function’s return value, and the original
function will NOT be executed.

Signature:

hooker.preempt(value)

hooker.filter

When a pre-hook returns the result of this function, the context and
arguments passed will be applied into the original function.

Signature:

hooker.filter(context, arguments)

Examples

See the unit tests for more examples.

var hooker = require('hooker');
// Simple logging.
hooker.hook(Math, "max", function() {
 console.log(arguments.length + " arguments passed");
});
Math.max(5, 6, 7) // logs: "3 arguments passed", returns 7

hooker.unhook(Math, "max"); // (This is assumed between all further examples)
Math.max(5, 6, 7) // 7

// Returning hooker.override(value) overrides the original value.
hooker.hook(Math, "max", function() {
 if (arguments.length === 0) {
 return hooker.override(9000);
 }
});
Math.max(5, 6, 7) // 7
Math.max() // 9000

// Auto-unhook after one execution.
hooker.hook(Math, "max", {
 once: true,
 pre: function() {
 console.log("Init something here");
 }
});
Math.max(5, 6, 7) // logs: "Init something here", returns 7
Math.max(5, 6, 7) // 7

// Filter `this` and arguments through a pre-hook function.
hooker.hook(Math, "max", {
 pre: function() {
 var args = [].map.call(arguments, function(num) {
 return num * 2;
 });
 return hooker.filter(this, args); // thisValue, arguments
 }
});
Math.max(5, 6, 7) // 14

// Modify the original function's result with a post-hook function.
hooker.hook(Math, "max", {
 post: function(result) {
 return hooker.override(result * 100);
 }
});
Math.max(5, 6, 7) // 700

// Hook every Math method. Note: if Math's methods were enumerable, the second
// argument could be omitted. Since they aren't, an array of properties to hook
// must be explicitly passed. Non-method properties will be skipped.
// See a more generic example here: http://bit.ly/vvJlrS
hooker.hook(Math, Object.getOwnPropertyNames(Math), {
 passName: true,
 pre: function(name) {
 console.log("=> Math." + name, [].slice.call(arguments, 1));
 },
 post: function(result, name) {
 console.log("<= Math." + name, result);
 }
});

var result = Math.max(5, 6, 7);
// => Math.max [5, 6, 7]
// <= Math.max 7
result // 7

result = Math.ceil(3.456);
// => Math.ceil [3.456]
// <= Math.ceil 4
result // 4

Contributing

In lieu of a formal styleguide, take care to maintain the existing coding style. Add unit tests for any new or changed functionality. Lint and test your code using grunt [https://github.com/cowboy/grunt].

Also, please don’t edit files in the “dist” subdirectory as they are generated via grunt. You’ll find source code in the “lib” subdirectory!

Release History

2012/01/09 - v0.2.3 - First official release.

License

Copyright (c) 2012 “Cowboy” Ben AlmanLicensed under the MIT license.http://benalman.com/about/license/

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt/node_modules/eventemitter2/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 [image: build-status] [https://www.codeship.io/projects/11259]

SYNOPSIS

EventEmitter2 is an implementation of the EventEmitter found in Node.js

DESCRIPTION

FEATURES

		Namespaces/Wildcards.

		Times To Listen (TTL), extends the once concept with many.

		Browser environment compatibility.

		Demonstrates good performance in benchmarks

EventEmitterHeatUp x 3,728,965 ops/sec \302\2610.68% (60 runs sampled)
EventEmitter x 2,822,904 ops/sec \302\2610.74% (63 runs sampled)
EventEmitter2 x 7,251,227 ops/sec \302\2610.55% (58 runs sampled)
EventEmitter2 (wild) x 3,220,268 ops/sec \302\2610.44% (65 runs sampled)
Fastest is EventEmitter2

Differences (Non breaking, compatible with existing EventEmitter)

		The constructor takes a configuration object.

 var EventEmitter2 = require('eventemitter2').EventEmitter2;
 var server = new EventEmitter2({

 //
 // use wildcards.
 //
 wildcard: true,

 //
 // the delimiter used to segment namespaces, defaults to `.`.
 //
 delimiter: '::',

 //
 // if you want to emit the newListener event set to true.
 //
 newListener: false,

 //
 // max listeners that can be assigned to an event, default 10.
 //
 maxListeners: 20
 });

		Getting the actual event that fired.

 server.on('foo.*', function(value1, value2) {
 console.log(this.event, value1, value2);
 });

		Fire an event N times and then remove it, an extension of the once concept.

 server.many('foo', 4, function() {
 console.log('hello');
 });

		Pass in a namespaced event as an array rather than a delimited string.

 server.many(['foo', 'bar', 'bazz'], function() {
 console.log('hello');
 });

API

When an EventEmitter instance experiences an error, the typical action is
to emit an error event. Error events are treated as a special case.
If there is no listener for it, then the default action is to print a stack
trace and exit the program.

All EventEmitters emit the event newListener when new listeners are
added.

Namespaces with Wildcards
To use namespaces/wildcards, pass the wildcard option into the EventEmitter
constructor. When namespaces/wildcards are enabled, events can either be
strings (foo.bar) separated by a delimiter or arrays (['foo', 'bar']). The
delimiter is also configurable as a constructor option.

An event name passed to any event emitter method can contain a wild card (the
* character). If the event name is a string, a wildcard may appear as foo.*.
If the event name is an array, the wildcard may appear as ['foo', '*'].

If either of the above described events were passed to the on method,
subsequent emits such as the following would be observed...

 emitter.emit('foo.bazz');
 emitter.emit(['foo', 'bar']);

emitter.addListener(event, listener)

emitter.on(event, listener)

Adds a listener to the end of the listeners array for the specified event.

 server.on('data', function(value1, value2, value3, ...) {
 console.log('The event was raised!');
 });

 server.on('data', function(value) {
 console.log('The event was raised!');
 });

emitter.onAny(listener)

Adds a listener that will be fired when any event is emitted.

 server.onAny(function(value) {
 console.log('All events trigger this.');
 });

emitter.offAny(listener)

Removes the listener that will be fired when any event is emitted.

 server.offAny(function(value) {
 console.log('The event was raised!');
 });

emitter.once(event, listener)

Adds a one time listener for the event. The listener is invoked
only the first time the event is fired, after which it is removed.

 server.once('get', function (value) {
 console.log('Ah, we have our first value!');
 });

emitter.many(event, timesToListen, listener)

Adds a listener that will execute n times for the event before being
removed. The listener is invoked only the first n times the event is
fired, after which it is removed.

 server.many('get', 4, function (value) {
 console.log('This event will be listened to exactly four times.');
 });

emitter.removeListener(event, listener)

emitter.off(event, listener)

Remove a listener from the listener array for the specified event.
Caution: changes array indices in the listener array behind the listener.

 var callback = function(value) {
 console.log('someone connected!');
 };
 server.on('get', callback);
 // ...
 server.removeListener('get', callback);

emitter.removeAllListeners([event])

Removes all listeners, or those of the specified event.

emitter.setMaxListeners(n)

By default EventEmitters will print a warning if more than 10 listeners
are added to it. This is a useful default which helps finding memory leaks.
Obviously not all Emitters should be limited to 10. This function allows
that to be increased. Set to zero for unlimited.

emitter.listeners(event)

Returns an array of listeners for the specified event. This array can be
manipulated, e.g. to remove listeners.

 server.on('get', function(value) {
 console.log('someone connected!');
 });
 console.log(server.listeners('get')); // [[Function]]

emitter.listenersAny()

Returns an array of listeners that are listening for any event that is
specified. This array can be manipulated, e.g. to remove listeners.

 server.onAny(function(value) {
 console.log('someone connected!');
 });
 console.log(server.listenersAny()[0]); // [[Function]]

emitter.emit(event, [arg1], [arg2], [...])

Execute each of the listeners that may be listening for the specified event
name in order with the list of arguments.

LICENSE

(The MIT License)

Copyright (c) 2011 hij1nx http://www.twitter.com/hij1nx

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ‘Software’), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/nopt/node_modules/abbrev/CONTRIBUTING.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 To get started, sign the
Contributor License Agreement.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/nopt/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 If you want to write an option parser, and have it be good, there are
two ways to do it. The Right Way, and the Wrong Way.

The Wrong Way is to sit down and write an option parser. We’ve all done
that.

The Right Way is to write some complex configurable program with so many
options that you go half-insane just trying to manage them all, and put
it off with duct-tape solutions until you see exactly to the core of the
problem, and finally snap and write an awesome option parser.

If you want to write an option parser, don’t write an option parser.
Write a package manager, or a source control system, or a service
restarter, or an operating system. You probably won’t end up with a
good one of those, but if you don’t give up, and you are relentless and
diligent enough in your procrastination, you may just end up with a very
nice option parser.

USAGE

// my-program.js
var nopt = require("nopt")
 , Stream = require("stream").Stream
 , path = require("path")
 , knownOpts = { "foo" : [String, null]
 , "bar" : [Stream, Number]
 , "baz" : path
 , "bloo" : ["big", "medium", "small"]
 , "flag" : Boolean
 , "pick" : Boolean
 , "many" : [String, Array]
 }
 , shortHands = { "foofoo" : ["--foo", "Mr. Foo"]
 , "b7" : ["--bar", "7"]
 , "m" : ["--bloo", "medium"]
 , "p" : ["--pick"]
 , "f" : ["--flag"]
 }
 // everything is optional.
 // knownOpts and shorthands default to {}
 // arg list defaults to process.argv
 // slice defaults to 2
 , parsed = nopt(knownOpts, shortHands, process.argv, 2)
console.log(parsed)

This would give you support for any of the following:

$ node my-program.js --foo "blerp" --no-flag
{ "foo" : "blerp", "flag" : false }

$ node my-program.js ---bar 7 --foo "Mr. Hand" --flag
{ bar: 7, foo: "Mr. Hand", flag: true }

$ node my-program.js --foo "blerp" -f -----p
{ foo: "blerp", flag: true, pick: true }

$ node my-program.js -fp --foofoo
{ foo: "Mr. Foo", flag: true, pick: true }

$ node my-program.js --foofoo -- -fp # -- stops the flag parsing.
{ foo: "Mr. Foo", argv: { remain: ["-fp"] } }

$ node my-program.js --blatzk -fp # unknown opts are ok.
{ blatzk: true, flag: true, pick: true }

$ node my-program.js --blatzk=1000 -fp # but you need to use = if they have a value
{ blatzk: 1000, flag: true, pick: true }

$ node my-program.js --no-blatzk -fp # unless they start with "no-"
{ blatzk: false, flag: true, pick: true }

$ node my-program.js --baz b/a/z # known paths are resolved.
{ baz: "/Users/isaacs/b/a/z" }

if Array is one of the types, then it can take many
values, and will always be an array. The other types provided
specify what types are allowed in the list.

$ node my-program.js --many 1 --many null --many foo
{ many: ["1", "null", "foo"] }

$ node my-program.js --many foo
{ many: ["foo"] }

Read the tests at the bottom of lib/nopt.js for more examples of
what this puppy can do.

Types

The following types are supported, and defined on nopt.typeDefs

		String: A normal string. No parsing is done.

		path: A file system path. Gets resolved against cwd if not absolute.

		url: A url. If it doesn’t parse, it isn’t accepted.

		Number: Must be numeric.

		Date: Must parse as a date. If it does, and Date is one of the options,
then it will return a Date object, not a string.

		Boolean: Must be either true or false. If an option is a boolean,
then it does not need a value, and its presence will imply true as
the value. To negate boolean flags, do --no-whatever or --whatever false

		NaN: Means that the option is strictly not allowed. Any value will
fail.

		Stream: An object matching the “Stream” class in node. Valuable
for use when validating programmatically. (npm uses this to let you
supply any WriteStream on the outfd and logfd config options.)

		Array: If Array is specified as one of the types, then the value
will be parsed as a list of options. This means that multiple values
can be specified, and that the value will always be an array.

If a type is an array of values not on this list, then those are
considered valid values. For instance, in the example above, the
--bloo option can only be one of "big", "medium", or "small",
and any other value will be rejected.

When parsing unknown fields, "true", "false", and "null" will be
interpreted as their JavaScript equivalents, and numeric values will be
interpreted as a number.

You can also mix types and values, or multiple types, in a list. For
instance { blah: [Number, null] } would allow a value to be set to
either a Number or null. When types are ordered, this implies a
preference, and the first type that can be used to properly interpret
the value will be used.

To define a new type, add it to nopt.typeDefs. Each item in that
hash is an object with a type member and a validate method. The
type member is an object that matches what goes in the type list. The
validate method is a function that gets called with validate(data, key, val). Validate methods should assign data[key] to the valid
value of val if it can be handled properly, or return boolean
false if it cannot.

You can also call nopt.clean(data, types, typeDefs) to clean up a
config object and remove its invalid properties.

Error Handling

By default, nopt outputs a warning to standard error when invalid
options are found. You can change this behavior by assigning a method
to nopt.invalidHandler. This method will be called with
the offending nopt.invalidHandler(key, val, types).

If no nopt.invalidHandler is assigned, then it will console.error
its whining. If it is assigned to boolean false then the warning is
suppressed.

Abbreviations

Yes, they are supported. If you define options like this:

{ "foolhardyelephants" : Boolean
, "pileofmonkeys" : Boolean }

Then this will work:

node program.js --foolhar --pil
node program.js --no-f --pileofmon
etc.

Shorthands

Shorthands are a hash of shorter option names to a snippet of args that
they expand to.

If multiple one-character shorthands are all combined, and the
combination does not unambiguously match any other option or shorthand,
then they will be broken up into their constituent parts. For example:

{ "s" : ["--loglevel", "silent"]
, "g" : "--global"
, "f" : "--force"
, "p" : "--parseable"
, "l" : "--long"
}

npm ls -sgflp
just like doing this:
npm ls --loglevel silent --global --force --long --parseable

The Rest of the args

The config object returned by nopt is given a special member called
argv, which is an object with the following fields:

		remain: The remaining args after all the parsing has occurred.

		original: The args as they originally appeared.

		cooked: The args after flags and shorthands are expanded.

Slicing

Node programs are called with more or less the exact argv as it appears
in C land, after the v8 and node-specific options have been plucked off.
As such, argv[0] is always node and argv[1] is always the
JavaScript program being run.

That’s usually not very useful to you. So they’re sliced off by
default. If you want them, then you can pass in 0 as the last
argument, or any other number that you’d like to slice off the start of
the list.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Glob

Match files using the patterns the shell uses, like stars and stuff.

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

Attention: node-glob users!

The API has changed dramatically between 2.x and 3.x. This library is
now 100% JavaScript, and the integer flags have been replaced with an
options object.

Also, there’s an event emitter class, proper tests, and all the other
things you’ve come to expect from node modules.

And best of all, no compilation!

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Features

Please see the minimatch
documentation [https://github.com/isaacs/minimatch] for more details.

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options])

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instanting the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		error The error encountered. When an error is encountered, the
glob object is in an undefined state, and should be discarded.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

		statCache Collection of all the stat results the glob search
performed.

		cache Convenience object. Each field has the following possible
values:
		false - Path does not exist

		true - Path exists

		1 - Path exists, and is not a directory

		2 - Path exists, and is a directory

		[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		abort Stop the search.

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the glob object, as well.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence. It will cause
ELOOP to be triggered one level sooner in the case of cyclical
symbolic links.

		silent When an unusual error is encountered
when attempting to read a directory, a warning will be printed to
stderr. Set the silent option to true to suppress these warnings.

		strict When an unusual error is encountered
when attempting to read a directory, the process will just continue on
in search of other matches. Set the strict option to raise an error
in these cases.

		cache See cache property above. Pass in a previously generated
cache object to save some fs calls.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary to
set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set.
Set this flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that case-insensitive
filesystems will sometimes result in glob returning results that are
case-insensitively matched anyway, since readdir and stat will not
raise an error.

		debug Set to enable debug logging in minimatch and glob.

		globDebug Set to enable debug logging in glob, but not minimatch.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes. For the vast majority
of operations, this is never a problem.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/doc/nodeunit.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

nodeunit(1) – simple node.js unit testing tool

SYNOPSIS

nodeunit [options] <file-or-directory> [<file-or-directory> ...]

DESCRIPTION

Nodeunit is a simple unit testing tool based on the node.js assert module.

		Simple to use

		Just export the tests from a module

		Helps you avoid common pitfalls when testing asynchronous code

		Easy to add test cases with setUp and tearDown functions if you wish

		Allows the use of mocks and stubs

OPTIONS

–config FILE:
Load config options from a JSON file, allows the customisation
of color schemes for the default test reporter etc.
See bin/nodeunit.json for current available options.

–reporter FILE:
You can set the test reporter to a custom module or on of the modules
in nodeunit/lib/reporters, when omitted, the default test runner is used.

–list-reporters:
List available build-in reporters.

-t testName:
Run specifc test only.

-f fullTestName:
Run specific test only. fullTestName is built so: “outerGroup - .. - innerGroup - testName”.

-h, –help:
Display the help and exit.

-v, –version:
Output version information and exit.

<file-or-directory>:
You can run nodeunit on specific files or on all *.js files inside
a directory.

AUTHORS

Written by Caolan McMahon and other nodeunit contributors.
Contributors list: http://github.com/caolan/nodeunit/contributors.

REPORTING BUGS

Report nodeunit bugs to http://github.com/caolan/nodeunit/issues.

COPYRIGHT

Copyright © 2010 Caolan McMahon.
Nodeunit has been released under the MIT license:
http://github.com/caolan/nodeunit/raw/master/LICENSE.

SEE ALSO

node(1)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/sax/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sax js

A sax-style parser for XML and HTML.

Designed with node [http://nodejs.org/] in mind, but should work fine in
the browser or other CommonJS implementations.

What This Is

		A very simple tool to parse through an XML string.

		A stepping stone to a streaming HTML parser.

		A handy way to deal with RSS and other mostly-ok-but-kinda-broken XML
docs.

What This Is (probably) Not

		An HTML Parser - That’s a fine goal, but this isn’t it. It’s just
XML.

		A DOM Builder - You can use it to build an object model out of XML,
but it doesn’t do that out of the box.

		XSLT - No DOM = no querying.

		100% Compliant with (some other SAX implementation) - Most SAX
implementations are in Java and do a lot more than this does.

		An XML Validator - It does a little validation when in strict mode, but
not much.

		A Schema-Aware XSD Thing - Schemas are an exercise in fetishistic
masochism.

		A DTD-aware Thing - Fetching DTDs is a much bigger job.

Regarding <!DOCTYPEs and <!ENTITYs

The parser will handle the basic XML entities in text nodes and attribute
values: & < > ' ". It’s possible to define additional
entities in XML by putting them in the DTD. This parser doesn’t do anything
with that. If you want to listen to the ondoctype event, and then fetch
the doctypes, and read the entities and add them to parser.ENTITIES, then
be my guest.

Unknown entities will fail in strict mode, and in loose mode, will pass
through unmolested.

Usage

var sax = require("./lib/sax"),
 strict = true, // set to false for html-mode
 parser = sax.parser(strict);

parser.onerror = function (e) {
 // an error happened.
};
parser.ontext = function (t) {
 // got some text. t is the string of text.
};
parser.onopentag = function (node) {
 // opened a tag. node has "name" and "attributes"
};
parser.onattribute = function (attr) {
 // an attribute. attr has "name" and "value"
};
parser.onend = function () {
 // parser stream is done, and ready to have more stuff written to it.
};

parser.write('<xml>Hello, <who name="world">world</who>!</xml>').close();

// stream usage
// takes the same options as the parser
var saxStream = require("sax").createStream(strict, options)
saxStream.on("error", function (e) {
 // unhandled errors will throw, since this is a proper node
 // event emitter.
 console.error("error!", e)
 // clear the error
 this._parser.error = null
 this._parser.resume()
})
saxStream.on("opentag", function (node) {
 // same object as above
})
// pipe is supported, and it's readable/writable
// same chunks coming in also go out.
fs.createReadStream("file.xml")
 .pipe(saxStream)
 .pipe(fs.createWriteStream("file-copy.xml"))

Arguments

Pass the following arguments to the parser function. All are optional.

strict - Boolean. Whether or not to be a jerk. Default: false.

opt - Object bag of settings regarding string formatting. All default to false.

Settings supported:

		trim - Boolean. Whether or not to trim text and comment nodes.

		normalize - Boolean. If true, then turn any whitespace into a single
space.

		lowercase - Boolean. If true, then lowercase tag names and attribute names
in loose mode, rather than uppercasing them.

		xmlns - Boolean. If true, then namespaces are supported.

		position - Boolean. If false, then don’t track line/col/position.

Methods

write - Write bytes onto the stream. You don’t have to do this all at
once. You can keep writing as much as you want.

close - Close the stream. Once closed, no more data may be written until
it is done processing the buffer, which is signaled by the end event.

resume - To gracefully handle errors, assign a listener to the error
event. Then, when the error is taken care of, you can call resume to
continue parsing. Otherwise, the parser will not continue while in an error
state.

Members

At all times, the parser object will have the following members:

line, column, position - Indications of the position in the XML
document where the parser currently is looking.

startTagPosition - Indicates the position where the current tag starts.

closed - Boolean indicating whether or not the parser can be written to.
If it’s true, then wait for the ready event to write again.

strict - Boolean indicating whether or not the parser is a jerk.

opt - Any options passed into the constructor.

tag - The current tag being dealt with.

And a bunch of other stuff that you probably shouldn’t touch.

Events

All events emit with a single argument. To listen to an event, assign a
function to on<eventname>. Functions get executed in the this-context of
the parser object. The list of supported events are also in the exported
EVENTS array.

When using the stream interface, assign handlers using the EventEmitter
on function in the normal fashion.

error - Indication that something bad happened. The error will be hanging
out on parser.error, and must be deleted before parsing can continue. By
listening to this event, you can keep an eye on that kind of stuff. Note:
this happens much more in strict mode. Argument: instance of Error.

text - Text node. Argument: string of text.

doctype - The <!DOCTYPE declaration. Argument: doctype string.

processinginstruction - Stuff like <?xml foo="blerg" ?>. Argument:
object with name and body members. Attributes are not parsed, as
processing instructions have implementation dependent semantics.

sgmldeclaration - Random SGML declarations. Stuff like <!ENTITY p>
would trigger this kind of event. This is a weird thing to support, so it
might go away at some point. SAX isn’t intended to be used to parse SGML,
after all.

opentag - An opening tag. Argument: object with name and attributes.
In non-strict mode, tag names are uppercased, unless the lowercase
option is set. If the xmlns option is set, then it will contain
namespace binding information on the ns member, and will have a
local, prefix, and uri member.

closetag - A closing tag. In loose mode, tags are auto-closed if their
parent closes. In strict mode, well-formedness is enforced. Note that
self-closing tags will have closeTag emitted immediately after openTag.
Argument: tag name.

attribute - An attribute node. Argument: object with name and value.
In non-strict mode, attribute names are uppercased, unless the lowercase
option is set. If the xmlns option is set, it will also contains namespace
information.

comment - A comment node. Argument: the string of the comment.

opencdata - The opening tag of a <![CDATA[block.

cdata - The text of a <![CDATA[block. Since <![CDATA[blocks can get
quite large, this event may fire multiple times for a single block, if it
is broken up into multiple write()s. Argument: the string of random
character data.

closecdata - The closing tag (]]>) of a <![CDATA[block.

opennamespace - If the xmlns option is set, then this event will
signal the start of a new namespace binding.

closenamespace - If the xmlns option is set, then this event will
signal the end of a namespace binding.

end - Indication that the closed stream has ended.

ready - Indication that the stream has reset, and is ready to be written
to.

noscript - In non-strict mode, <script> tags trigger a "script"
event, and their contents are not checked for special xml characters.
If you pass noscript: true, then this behavior is suppressed.

Reporting Problems

It’s best to write a failing test if you find an issue. I will always
accept pull requests with failing tests if they demonstrate intended
behavior, but it is very hard to figure out what issue you’re describing
without a test. Writing a test is also the best way for you yourself
to figure out if you really understand the issue you think you have with
sax-js.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/nopt/node_modules/abbrev/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

abbrev-js

Just like ruby’s Abbrev [http://apidock.com/ruby/Abbrev].

Usage:

var abbrev = require("abbrev");
abbrev("foo", "fool", "folding", "flop");

// returns:
{ fl: 'flop'
, flo: 'flop'
, flop: 'flop'
, fol: 'folding'
, fold: 'folding'
, foldi: 'folding'
, foldin: 'folding'
, folding: 'folding'
, foo: 'foo'
, fool: 'fool'
}

This is handy for command-line scripts, or other cases where you want to be able to accept shorthands.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Stylus [image: Build Status] [https://travis-ci.org/LearnBoost/stylus]

Stylus is a revolutionary new language, providing an efficient, dynamic, and expressive way to generate CSS. Supporting both an indented syntax and regular CSS style.

Installation

$ npm install stylus -g

Example

border-radius()
 -webkit-border-radius: arguments
 -moz-border-radius: arguments
 border-radius: arguments

body a
 font: 12px/1.4 "Lucida Grande", Arial, sans-serif
 background: black
 color: #ccc

form input
 padding: 5px
 border: 1px solid
 border-radius: 5px

compiles to:

body a {
 font: 12px/1.4 "Lucida Grande", Arial, sans-serif;
 background: #000;
 color: #ccc;
}
form input {
 padding: 5px;
 border: 1px solid;
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
}

the following is equivalent to the indented version of Stylus source, using the CSS syntax instead:

border-radius() {
 -webkit-border-radius: arguments
 -moz-border-radius: arguments
 border-radius: arguments
}

body a {
 font: 12px/1.4 "Lucida Grande", Arial, sans-serif;
 background: black;
 color: #ccc;
}

form input {
 padding: 5px;
 border: 1px solid;
 border-radius: 5px;
}

Features

Stylus has many features. Detailed documentation links follow:

		css syntax support

		mixins

		keyword arguments

		variables

		interpolation

		arithmetic, logical, and equality operators

		importing of other stylus sheets

		introspection api

		type coercion

		@extend

		conditionals

		iteration

		nested selectors

		parent reference

		in-language functions

		variable arguments

		built-in functions (over 60)

		optional image inlining

		optional compression

		JavaScript API

		extremely terse syntax

		stylus executable

		error reporting

		single-line and multi-line comments

		css literal

		character escaping

		@keyframes support & expansion

		@font-face support

		@media support

		Connect Middleware

		TextMate bundle

		Coda/SubEtha Edit Syntax mode [https://github.com/atljeremy/Stylus.mode]

		gedit language-spec

		VIM Syntax [https://github.com/wavded/vim-stylus]

		Firebug extension

		heroku web service [http://styl.heroku.com] for compiling stylus

		style guide [https://github.com/lepture/ganam] parser and generator

		transparent vendor-specific function expansion

Community modules

		https://github.com/LearnBoost/stylus/wiki

Framework Support

		Connect

		Play! 2.0 [https://github.com/patiencelabs/play-stylus]

		Ruby On Rails [https://github.com/lucasmazza/ruby-stylus]

		Meteor [http://docs.meteor.com/#stylus]

		Grails [http://grails.org/plugin/stylus-asset-pipeline]

CMS Support

		DocPad [https://github.com/bevry/docpad]

		Punch [https://github.com/laktek/punch-stylus-compiler]

Screencasts

		Stylus Intro [http://screenr.com/bNY]

		CSS Syntax & Postfix Conditionals [http://screenr.com/A8v]

Authors

		TJ Holowaychuk (visionmedia) [http://github.com/visionmedia]

More Information

		Language comparisons

License

(The MIT License)

Copyright (c) 2010 LearnBoost

<

dev@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/yamlish/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 This is a thingie to parse the “yamlish” format used to serialize
objects in the TAP format.

It’s like yaml, but just a tiny little bit smaller.

Usage:

var yamlish = require("yamlish")
// returns a string like:
/*
some:
 object:
 - full
 - of
pretty: things
*/
yamlish.encode({some:{object:["full", "of"]}, pretty:"things"})

// returns the object
yamlish.decode(someYamlishString)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/mocha/node_modules/escape-string-regexp/readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

escape-string-regexp [image: Build Status] [https://travis-ci.org/sindresorhus/escape-string-regexp]

Escape RegExp special characters

Install

$ npm install --save escape-string-regexp

Usage

var escapeStringRegexp = require('escape-string-regexp');

var escapedString = escapeStringRegexp('how much $ for a unicorn?');
//=> how much \$ for a unicorn\?

new RegExp(escapedString);

License

MIT © Sindre Sorhus [http://sindresorhus.com]

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/slide/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Controlling Flow: callbacks are easy

What’s actually hard?

		Doing a bunch of things in a specific order.

		Knowing when stuff is done.

		Handling failures.

		Breaking up functionality into parts (avoid nested inline callbacks)

Common Mistakes

		Abandoning convention and consistency.

		Putting all callbacks inline.

		Using libraries without grokking them.

		Trying to make async code look sync.

Define Conventions

		Two kinds of functions: actors take action, callbacks get results.

		Essentially the continuation pattern. Resulting code looks similar
to fibers, but is much simpler to implement.

		Node works this way in the lowlevel APIs already, and it’s very ﬂexible.

Callbacks

		Simple responders

		Must always be prepared to handle errors, that’s why it’s the first argument.

		Often inline anonymous, but not always.

		Can trap and call other callbacks with modified data, or pass errors upwards.

Actors

		Last argument is a callback.

		If any error occurs, and can’t be handled, pass it to the callback and return.

		Must not throw. Return value ignored.

		return x ==> return cb(null, x)

		throw er ==> return cb(er)

// return true if a path is either
// a symlink or a directory.
function isLinkOrDir (path, cb) {
 fs.lstat(path, function (er, s) {
 if (er) return cb(er)
 return cb(null, s.isDirectory() || s.isSymbolicLink())
 })
}

asyncMap

Usecases

		I have a list of 10 files, and need to read all of them, and then continue when they’re all done.

		I have a dozen URLs, and need to fetch them all, and then continue when they’re all done.

		I have 4 connected users, and need to send a message to all of them, and then continue when that’s done.

		I have a list of n things, and I need to dosomething with all of them, in parallel, and get the results once they’re all complete.

Solution

var asyncMap = require("slide").asyncMap
function writeFiles (files, what, cb) {
 asyncMap(files, function (f, cb) {
 fs.writeFile(f, what, cb)
 }, cb)
}
writeFiles([my, file, list], "foo", cb)

chain

Usecases

		I have to do a bunch of things, in order. Get db credentials out of a file,
read the data from the db, write that data to another file.

		If anything fails, do not continue.

		I still have to provide an array of functions, which is a lot of boilerplate,
and a pita if your functions take args like

function (cb) {
 blah(a, b, c, cb)
}

		Results are discarded, which is a bit lame.

		No way to branch.

Solution

		reduces boilerplate by converting an array of [fn, args] to an actor
that takes no arguments (except cb)

		A bit like Function#bind, but tailored for our use-case.

		bindActor(obj, “method”, a, b, c)

		bindActor(fn, a, b, c)

		bindActor(obj, fn, a, b, c)

		branching, skipping over falsey arguments

chain([
 doThing && [thing, a, b, c]
, isFoo && [doFoo, "foo"]
, subChain && [chain, [one, two]]
], cb)

		tracking results: results are stored in an optional array passed as argument,
last result is always in results[results.length - 1].

		treat chain.first and chain.last as placeholders for the first/last
result up until that point.

Non-trivial example

		Read number files in a directory

		Add the results together

		Ping a web service with the result

		Write the response to a file

		Delete the number files

var chain = require("slide").chain
function myProgram (cb) {
 var res = [], last = chain.last, first = chain.first
 chain([
 [fs, "readdir", "the-directory"]
 , [readFiles, "the-directory", last]
 , [sum, last]
 , [ping, "POST", "example.com", 80, "/foo", last]
 , [fs, "writeFile", "result.txt", last]
 , [rmFiles, "./the-directory", first]
], res, cb)
}

Conclusion: Convention Profits

		Consistent API from top to bottom.

		Sneak in at any point to inject functionality. Testable, reusable, ...

		When ruby and python users whine, you can smile condescendingly.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/debug/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

debug

tiny node.js debugging utility modelled after node core’s debugging technique.

Installation

$ npm install debug

Usage

With debug you simply invoke the exported function to generate your debug function, passing it a name which will determine if a noop function is returned, or a decorated console.error, so all of the console format string goodies you’re used to work fine. A unique color is selected per-function for visibility.

Example app.js:

var debug = require('debug')('http')
 , http = require('http')
 , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
 debug(req.method + ' ' + req.url);
 res.end('hello\n');
}).listen(3000, function(){
 debug('listening');
});

// fake worker of some kind

require('./worker');

Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
 debug('doing some work');
}, 1000);

The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: debug http and worker]

[image: debug worker]

Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image:]

When stdout is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:

[image:]

Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use ”:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.

Wildcards

The * character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect.compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character. For example, DEBUG=*,-connect:* would include all debuggers except those starting with “connect:”.

Browser support

Debug works in the browser as well, currently persisted by localStorage. For example if you have worker:a and worker:b as shown below, and wish to debug both type debug.enable('worker:*') in the console and refresh the page, this will remain until you disable with debug.disable().

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
 a('doing some work');
}, 1000);

setInterval(function(){
 b('doing some work');
}, 1200);

Web Inspector Colors

Colors are also enabled on “Web Inspectors” that understand the %c formatting
option. These are WebKit web inspectors, Firefox (since version
31 [https://hacks.mozilla.org/2014/05/editable-box-model-multiple-selection-sublime-text-keys-much-more-firefox-developer-tools-episode-31/])
and the Firebug plugin for Firefox (any version).

Colored output looks something like:

[image:]

stderr vs stdout

You can set an alternative logging method per-namespace by overriding the log method on a per-namespace or globally:

Example stderr.js:

var debug = require('../');
var log = debug('app:log');

// by default console.log is used
log('goes to stdout!');

var error = debug('app:error');
// set this namespace to log via console.error
error.log = console.error.bind(console); // don't forget to bind to console!
error('goes to stderr');
log('still goes to stdout!');

// set all output to go via console.warn
// overrides all per-namespace log settings
debug.log = console.warn.bind(console);
log('now goes to stderr via console.warn');
error('still goes to stderr, but via console.warn now');

Authors

		TJ Holowaychuk

		Nathan Rajlich

License

(The MIT License)

Copyright (c) 2014 TJ Holowaychuk

<

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/glob/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Glob

Match files using the patterns the shell uses, like stars and stuff.

This is a glob implementation in JavaScript. It uses the minimatch
library to do its matching.

Attention: node-glob users!

The API has changed dramatically between 2.x and 3.x. This library is
now 100% JavaScript, and the integer flags have been replaced with an
options object.

Also, there’s an event emitter class, proper tests, and all the other
things you’ve come to expect from node modules.

And best of all, no compilation!

Usage

var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
 // files is an array of filenames.
 // If the `nonull` option is set, and nothing
 // was found, then files is ["**/*.js"]
 // er is an error object or null.
})

Features

Please see the minimatch
documentation [https://github.com/isaacs/minimatch] for more details.

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

		minimatch documentation [https://github.com/isaacs/minimatch]

glob(pattern, [options], cb)

		pattern {String} Pattern to be matched

		options {Object}

		cb {Function}
		err {Error | null}

		matches {Array} filenames found matching the pattern

Perform an asynchronous glob search.

glob.sync(pattern, [options])

		pattern {String} Pattern to be matched

		options {Object}

		return: {Array} filenames found matching the pattern

Perform a synchronous glob search.

Class: glob.Glob

Create a Glob object by instanting the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)

It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.

new glob.Glob(pattern, [options], [cb])

		pattern {String} pattern to search for

		options {Object}

		cb {Function} Called when an error occurs, or matches are found
		err {Error | null}

		matches {Array} filenames found matching the pattern

Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.

Properties

		minimatch The minimatch object that the glob uses.

		options The options object passed in.

		error The error encountered. When an error is encountered, the
glob object is in an undefined state, and should be discarded.

		aborted Boolean which is set to true when calling abort(). There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.

		statCache Collection of all the stat results the glob search
performed.

		cache Convenience object. Each field has the following possible
values:
		false - Path does not exist

		true - Path exists

		1 - Path exists, and is not a directory

		2 - Path exists, and is a directory

		[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir

Events

		end When the matching is finished, this is emitted with all the
matches found. If the nonull option is set, and no match was found,
then the matches list contains the original pattern. The matches
are sorted, unless the nosort flag is set.

		match Every time a match is found, this is emitted with the matched.

		error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.

		abort When abort() is called, this event is raised.

Methods

		abort Stop the search.

Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior. Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the glob object, as well.

		cwd The current working directory in which to search. Defaults
to process.cwd().

		root The place where patterns starting with / will be mounted
onto. Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)

		dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.

		nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned. Set this flag to disable that behavior.

		mark Add a / character to directory matches. Note that this
requires additional stat calls.

		nosort Don’t sort the results.

		stat Set to true to stat all results. This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence. It will cause
ELOOP to be triggered one level sooner in the case of cyclical
symbolic links.

		silent When an unusual error is encountered
when attempting to read a directory, a warning will be printed to
stderr. Set the silent option to true to suppress these warnings.

		strict When an unusual error is encountered
when attempting to read a directory, the process will just continue on
in search of other matches. Set the strict option to raise an error
in these cases.

		cache See cache property above. Pass in a previously generated
cache object to save some fs calls.

		statCache A cache of results of filesystem information, to prevent
unnecessary stat calls. While it should not normally be necessary to
set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls. (See “Race Conditions” below.)

		sync Perform a synchronous glob search.

		nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set. By default,
this implementation prevents duplicates in the result set.
Set this flag to disable that behavior.

		nonull Set to never return an empty set, instead returning a set
containing the pattern itself. This is the default in glob(3).

		nocase Perform a case-insensitive match. Note that case-insensitive
filesystems will sometimes result in glob returning results that are
case-insensitively matched anyway, since readdir and stat will not
raise an error.

		debug Set to enable debug logging in minimatch and glob.

		globDebug Set to enable debug logging in glob, but not minimatch.

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes. For example,
glob.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation. You must use
forward-slashes only in glob expressions. Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join. On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.

Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead. However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes. For the vast majority
of operations, this is never a problem.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/css-parse/Readme.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

css-parse [image: Build Status] [https://travis-ci.org/visionmedia/css-parse]

JavaScript CSS parser for nodejs and the browser.

Installation

$ npm install css-parse

Usage

var parse = require('css-parse');

// CSS input string
var css = "body { \n background-color: #fff;\n }";

var output_obj = parse(css);

// Position and Source parameters
var output_obj_pos = parse(css, { position: true, source: 'file.css' });

// Print parsed object as CSS string
console.log(JSON.stringify(output_obj, null, 2));

Example

css:

body {
 background: #eee;
 color: #888;
}

parse tree:

{
 "type": "stylesheet",
 "stylesheet": {
 "rules": [
 {
 "type": "rule",
 "selectors": [
 "body"
],
 "declarations": [
 {
 "type": "declaration",
 "property": "background",
 "value": "#eee"
 },
 {
 "type": "declaration",
 "property": "color",
 "value": "#888"
 }
]
 }
]
 }
}

parse tree with .position enabled:

{
 "type": "stylesheet",
 "stylesheet": {
 "rules": [
 {
 "type": "rule",
 "selectors": [
 "body"
],
 "declarations": [
 {
 "type": "declaration",
 "property": "background",
 "value": "#eee",
 "position": {
 "start": {
 "line": 3,
 "column": 3
 },
 "end": {
 "line": 3,
 "column": 19
 }
 }
 },
 {
 "type": "declaration",
 "property": "color",
 "value": "#888",
 "position": {
 "start": {
 "line": 4,
 "column": 3
 },
 "end": {
 "line": 4,
 "column": 14
 }
 }
 }
],
 "position": {
 "start": {
 "line": 2,
 "column": 1
 },
 "end": {
 "line": 5,
 "column": 2
 }
 }
 }
]
 }
}

If you also pass in source: 'path/to/original.css', that will be set
on node.position.source.

Performance

Parsed 15,000 lines of CSS (2mb) in 40ms on my macbook air.

Related

css-stringify [https://github.com/visionmedia/css-stringify]css-value [https://github.com/visionmedia/css-value]

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/inherits/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

 Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.

usage

var inherits = require('inherits');
// then use exactly as the standard one

note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:

		new version uses super_ instead of super for referencing
superclass

		new version overwrites current prototype while old one preserves any
existing fields on it

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/debug/node_modules/ms/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

ms.js: miliseconds conversion utility

ms('1d') // 86400000
ms('10h') // 36000000
ms('2h') // 7200000
ms('1m') // 60000
ms('5s') // 5000
ms('100') // 100

ms(60000) // "1m"
ms(2 * 60000) // "2m"
ms(ms('10 hours')) // "10h"

ms(60000, { long: true }) // "1 minute"
ms(2 * 60000, { long: true }) // "2 minutes"
ms(ms('10 hours', { long: true })) // "10 hours"

		Node/Browser compatible. Published as ms in NPM.

		If a number is supplied to ms, a string with a unit is returned.

		If a string that contains the number is supplied, it returns it as
a number (e.g: it returns 100 for '100').

		If you pass a string with a number and a valid unit, the number of
equivalent ms is returned.

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/glob/node_modules/minimatch/node_modules/lru-cache/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

lru cache

A cache object that deletes the least-recently-used items.

Usage:

var LRU = require("lru-cache")
 , options = { max: 500
 , length: function (n) { return n * 2 }
 , dispose: function (key, n) { n.close() }
 , maxAge: 1000 * 60 * 60 }
 , cache = LRU(options)
 , otherCache = LRU(50) // sets just the max size

cache.set("key", "value")
cache.get("key") // "value"

cache.reset() // empty the cache

If you put more stuff in it, then items will fall out.

If you try to put an oversized thing in it, then it’ll fall out right
away.

Options

		max The maximum size of the cache, checked by applying the length
function to all values in the cache. Not setting this is kind of
silly, since that’s the whole purpose of this lib, but it defaults
to Infinity.

		maxAge Maximum age in ms. Items are not pro-actively pruned out
as they age, but if you try to get an item that is too old, it’ll
drop it and return undefined instead of giving it to you.

		length Function that is used to calculate the length of stored
items. If you’re storing strings or buffers, then you probably want
to do something like function(n){return n.length}. The default is
function(n){return 1}, which is fine if you want to store n
like-sized things.

		dispose Function that is called on items when they are dropped
from the cache. This can be handy if you want to close file
descriptors or do other cleanup tasks when items are no longer
accessible. Called with key, value. It’s called before
actually removing the item from the internal cache, so if you want
to immediately put it back in, you’ll have to do that in a
nextTick or setTimeout callback or it won’t do anything.

		stale By default, if you set a maxAge, it’ll only actually pull
stale items out of the cache when you get(key). (That is, it’s
not pre-emptively doing a setTimeout or anything.) If you set
stale:true, it’ll return the stale value before deleting it. If
you don’t set this, then it’ll return undefined when you try to
get a stale entry, as if it had already been deleted.

API

		set(key, value)

		get(key) => value

Both of these will update the “recently used”-ness of the key.
They do what you think.

		peek(key)

Returns the key value (or undefined if not found) without
updating the “recently used”-ness of the key.

(If you find yourself using this a lot, you might be using the
wrong sort of data structure, but there are some use cases where
it’s handy.)

		del(key)

Deletes a key out of the cache.

		reset()

Clear the cache entirely, throwing away all values.

		has(key)

Check if a key is in the cache, without updating the recent-ness
or deleting it for being stale.

		forEach(function(value,key,cache), [thisp])

Just like Array.prototype.forEach. Iterates over all the keys
in the cache, in order of recent-ness. (Ie, more recently used
items are iterated over first.)

		keys()

Return an array of the keys in the cache.

		values()

Return an array of the values in the cache.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/debug/History.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

2.1.0 / 2014-10-15

		node: implement DEBUG_FD env variable support

		package: update “browserify” to v6.1.0

		package: add “license” field to package.json (#135, @panuhorsmalahti)

2.0.0 / 2014-09-01

		package: update “browserify” to v5.11.0

		node: use stderr rather than stdout for logging (#29, @stephenmathieson)

1.0.4 / 2014-07-15

		dist: recompile

		example: remove console.info() log usage

		example: add “Content-Type” UTF-8 header to browser example

		browser: place %c marker after the space character

		browser: reset the “content” color via color: inherit

		browser: add colors support for Firefox >= v31

		debug: prefer an instance log() function over the global one (#119)

		Readme: update documentation about styled console logs for FF v31 (#116, @wryk)

1.0.3 / 2014-07-09

		Add support for multiple wildcards in namespaces (#122, @seegno)

		browser: fix lint

1.0.2 / 2014-06-10

		browser: update color palette (#113, @gscottolson)

		common: make console logging function configurable (#108, @timoxley)

		node: fix %o colors on old node <= 0.8.x

		Makefile: find node path using shell/which (#109, @timoxley)

1.0.1 / 2014-06-06

		browser: use removeItem() to clear localStorage

		browser, node: don’t set DEBUG if namespaces is undefined (#107, @leedm777)

		package: add “contributors” section

		node: fix comment typo

		README: list authors

1.0.0 / 2014-06-04

		make ms diff be global, not be scope

		debug: ignore empty strings in enable()

		node: make DEBUG_COLORS able to disable coloring

		*: export the colors array

		npmignore: don’t publish the dist dir

		Makefile: refactor to use browserify

		package: add “browserify” as a dev dependency

		Readme: add Web Inspector Colors section

		node: reset terminal color for the debug content

		node: map “%o” to util.inspect()

		browser: map “%j” to JSON.stringify()

		debug: add custom “formatters”

		debug: use “ms” module for humanizing the diff

		Readme: add “bash” syntax highlighting

		browser: add Firebug color support

		browser: add colors for WebKit browsers

		node: apply log to console

		rewrite: abstract common logic for Node & browsers

		add .jshintrc file

0.8.1 / 2014-04-14

		package: re-add the “component” section

0.8.0 / 2014-03-30

		add enable() method for nodejs. Closes #27

		change from stderr to stdout

		remove unnecessary index.js file

0.7.4 / 2013-11-13

		remove “browserify” key from package.json (fixes something in browserify)

0.7.3 / 2013-10-30

		fix: catch localStorage security error when cookies are blocked (Chrome)

		add debug(err) support. Closes #46

		add .browser prop to package.json. Closes #42

0.7.2 / 2013-02-06

		fix package.json

		fix: Mobile Safari (private mode) is broken with debug

		fix: Use unicode to send escape character to shell instead of octal to work with strict mode javascript

0.7.1 / 2013-02-05

		add repository URL to package.json

		add DEBUG_COLORED to force colored output

		add browserify support

		fix component. Closes #24

0.7.0 / 2012-05-04

		Added .component to package.json

		Added debug.component.js build

0.6.0 / 2012-03-16

		Added support for “-” prefix in DEBUG [Vinay Pulim]

		Added .enabled flag to the node version [TooTallNate]

0.5.0 / 2012-02-02

		Added: humanize diffs. Closes #8

		Added debug.disable() to the CS variant

		Removed padding. Closes #10

		Fixed: persist client-side variant again. Closes #9

0.4.0 / 2012-02-01

		Added browser variant support for older browsers [TooTallNate]

		Added debug.enable('project:*') to browser variant [TooTallNate]

		Added padding to diff (moved it to the right)

0.3.0 / 2012-01-26

		Added millisecond diff when isatty, otherwise UTC string

0.2.0 / 2012-01-22

		Added wildcard support

0.1.0 / 2011-12-02

		Added: remove colors unless stderr isatty [TooTallNate]

0.0.1 / 2010-01-03

		Initial release

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/glob/node_modules/minimatch/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

minimatch

A minimal matching utility.

[image: Build Status] [http://travis-ci.org/isaacs/minimatch]

This is the matching library used internally by npm.

Eventually, it will replace the C binding in node-glob.

It works by converting glob expressions into JavaScript RegExp
objects.

Usage

var minimatch = require("minimatch")

minimatch("bar.foo", "*.foo") // true!
minimatch("bar.foo", "*.bar") // false!
minimatch("bar.foo", "*.+(bar|foo)", { debug: true }) // true, and noisy!

Features

Supports these glob features:

		Brace Expansion

		Extended glob matching

		“Globstar” ** matching

See:

		man sh

		man bash

		man 3 fnmatch

		man 5 gitignore

Minimatch Class

Create a minimatch object by instanting the minimatch.Minimatch class.

var Minimatch = require("minimatch").Minimatch
var mm = new Minimatch(pattern, options)

Properties

		pattern The original pattern the minimatch object represents.

		options The options supplied to the constructor.

		set A 2-dimensional array of regexp or string expressions.
Each row in the
array corresponds to a brace-expanded pattern. Each item in the row
corresponds to a single path-part. For example, the pattern
{a,b/c}/d would expand to a set of patterns like:

 [[a, d]
 , [b, c, d]]

If a portion of the pattern doesn’t have any “magic” in it
(that is, it’s something like "foo" rather than fo*o?), then it
will be left as a string rather than converted to a regular
expression.

		regexp Created by the makeRe method. A single regular expression
expressing the entire pattern. This is useful in cases where you wish
to use the pattern somewhat like fnmatch(3) with FNM_PATH enabled.

		negate True if the pattern is negated.

		comment True if the pattern is a comment.

		empty True if the pattern is "".

Methods

		makeRe Generate the regexp member if necessary, and return it.
Will return false if the pattern is invalid.

		match(fname) Return true if the filename matches the pattern, or
false otherwise.

		matchOne(fileArray, patternArray, partial) Take a /-split
filename, and match it against a single row in the regExpSet. This
method is mainly for internal use, but is exposed so that it can be
used by a glob-walker that needs to avoid excessive filesystem calls.

All other methods are internal, and will be called as necessary.

Functions

The top-level exported function has a cache property, which is an LRU
cache set to store 100 items. So, calling these methods repeatedly
with the same pattern and options will use the same Minimatch object,
saving the cost of parsing it multiple times.

minimatch(path, pattern, options)

Main export. Tests a path against the pattern using the options.

var isJS = minimatch(file, "*.js", { matchBase: true })

minimatch.filter(pattern, options)

Returns a function that tests its
supplied argument, suitable for use with Array.filter. Example:

var javascripts = fileList.filter(minimatch.filter("*.js", {matchBase: true}))

minimatch.match(list, pattern, options)

Match against the list of
files, in the style of fnmatch or glob. If nothing is matched, and
options.nonull is set, then return a list containing the pattern itself.

var javascripts = minimatch.match(fileList, "*.js", {matchBase: true}))

minimatch.makeRe(pattern, options)

Make a regular expression object from the pattern.

Options

All options are false by default.

debug

Dump a ton of stuff to stderr.

nobrace

Do not expand {a,b} and {1..3} brace sets.

noglobstar

Disable ** matching against multiple folder names.

dot

Allow patterns to match filenames starting with a period, even if
the pattern does not explicitly have a period in that spot.

Note that by default, a/**/b will not match a/.d/b, unless dot
is set.

noext

Disable “extglob” style patterns like +(a|b).

nocase

Perform a case-insensitive match.

nonull

When a match is not found by minimatch.match, return a list containing
the pattern itself if this option is set. When not set, an empty list
is returned if there are no matches.

matchBase

If set, then patterns without slashes will be matched
against the basename of the path if it contains slashes. For example,
a?b would match the path /xyz/123/acb, but not /xyz/acb/123.

nocomment

Suppress the behavior of treating # at the start of a pattern as a
comment.

nonegate

Suppress the behavior of treating a leading ! character as negation.

flipNegate

Returns from negate expressions the same as if they were not negated.
(Ie, true on a hit, false on a miss.)

Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between minimatch and other
implementations, and are intentional.

If the pattern starts with a ! character, then it is negated. Set the
nonegate flag to suppress this behavior, and treat leading !
characters normally. This is perhaps relevant if you wish to start the
pattern with a negative extglob pattern like !(a|B). Multiple !
characters at the start of a pattern will negate the pattern multiple
times.

If a pattern starts with #, then it is treated as a comment, and
will not match anything. Use \# to match a literal # at the
start of a line, or set the nocomment flag to suppress this behavior.

The double-star character ** is supported by default, unless the
noglobstar flag is set. This is supported in the manner of bsdglob
and bash 4.1, where ** only has special significance if it is the only
thing in a path part. That is, a/**/b will match a/x/y/b, but
a/**b will not.

If an escaped pattern has no matches, and the nonull flag is set,
then minimatch.match returns the pattern as-provided, rather than
interpreting the character escapes. For example,
minimatch.match([], "*a\\?") will return "*a\\?" rather than
"*a?". This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern. Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity. Since those two are valid, matching proceeds.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/source-map/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Source Map

This is a library to generate and consume the source map format
described here [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit].

This library is written in the Asynchronous Module Definition format, and works
in the following environments:

		Modern Browsers supporting ECMAScript 5 (either after the build, or with an
AMD loader such as RequireJS)

		Inside Firefox (as a JSM file, after the build)

		With NodeJS versions 0.8.X and higher

Node

$ npm install source-map

Building from Source (for everywhere else)

Install Node and then run

$ git clone https://fitzgen@github.com/mozilla/source-map.git
$ cd source-map
$ npm link .

Next, run

$ node Makefile.dryice.js

This should spew a bunch of stuff to stdout, and create the following files:

		dist/source-map.js - The unminified browser version.

		dist/source-map.min.js - The minified browser version.

		dist/SourceMap.jsm - The JavaScript Module for inclusion in Firefox source.

Examples

Consuming a source map

var rawSourceMap = {
 version: 3,
 file: 'min.js',
 names: ['bar', 'baz', 'n'],
 sources: ['one.js', 'two.js'],
 sourceRoot: 'http://example.com/www/js/',
 mappings: 'CAAC,IAAI,IAAM,SAAUA,GAClB,OAAOC,IAAID;CCDb,IAAI,IAAM,SAAUE,GAClB,OAAOA'
};

var smc = new SourceMapConsumer(rawSourceMap);

console.log(smc.sources);
// ['http://example.com/www/js/one.js',
// 'http://example.com/www/js/two.js']

console.log(smc.originalPositionFor({
 line: 2,
 column: 28
}));
// { source: 'http://example.com/www/js/two.js',
// line: 2,
// column: 10,
// name: 'n' }

console.log(smc.generatedPositionFor({
 source: 'http://example.com/www/js/two.js',
 line: 2,
 column: 10
}));
// { line: 2, column: 28 }

smc.eachMapping(function (m) {
 // ...
});

Generating a source map

In depth guide:
Compiling to JavaScript, and Debugging with Source Maps [https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/]

With SourceNode (high level API)

function compile(ast) {
 switch (ast.type) {
 case 'BinaryExpression':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 [compile(ast.left), " + ", compile(ast.right)]
);
 case 'Literal':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 String(ast.value)
);
 // ...
 default:
 throw new Error("Bad AST");
 }
}

var ast = parse("40 + 2", "add.js");
console.log(compile(ast).toStringWithSourceMap({
 file: 'add.js'
}));
// { code: '40 + 2',
// map: [object SourceMapGenerator] }

With SourceMapGenerator (low level API)

var map = new SourceMapGenerator({
 file: "source-mapped.js"
});

map.addMapping({
 generated: {
 line: 10,
 column: 35
 },
 source: "foo.js",
 original: {
 line: 33,
 column: 2
 },
 name: "christopher"
});

console.log(map.toString());
// '{"version":3,"file":"source-mapped.js","sources":["foo.js"],"names":["christopher"],"mappings":";;;;;;;;;mCAgCEA"}'

API

Get a reference to the module:

// NodeJS
var sourceMap = require('source-map');

// Browser builds
var sourceMap = window.sourceMap;

// Inside Firefox
let sourceMap = {};
Components.utils.import('resource:///modules/devtools/SourceMap.jsm', sourceMap);

SourceMapConsumer

A SourceMapConsumer instance represents a parsed source map which we can query
for information about the original file positions by giving it a file position
in the generated source.

new SourceMapConsumer(rawSourceMap)

The only parameter is the raw source map (either as a string which can be
JSON.parse‘d, or an object). According to the spec, source maps have the
following attributes:

		version: Which version of the source map spec this map is following.

		sources: An array of URLs to the original source files.

		names: An array of identifiers which can be referrenced by individual
mappings.

		sourceRoot: Optional. The URL root from which all sources are relative.

		sourcesContent: Optional. An array of contents of the original source files.

		mappings: A string of base64 VLQs which contain the actual mappings.

		file: Optional. The generated filename this source map is associated with.

SourceMapConsumer.prototype.originalPositionFor(generatedPosition)

Returns the original source, line, and column information for the generated
source’s line and column positions provided. The only argument is an object with
the following properties:

		line: The line number in the generated source.

		column: The column number in the generated source.

and an object is returned with the following properties:

		source: The original source file, or null if this information is not
available.

		line: The line number in the original source, or null if this information is
not available.

		column: The column number in the original source, or null or null if this
information is not available.

		name: The original identifier, or null if this information is not available.

SourceMapConsumer.prototype.generatedPositionFor(originalPosition)

Returns the generated line and column information for the original source,
line, and column positions provided. The only argument is an object with
the following properties:

		source: The filename of the original source.

		line: The line number in the original source.

		column: The column number in the original source.

and an object is returned with the following properties:

		line: The line number in the generated source, or null.

		column: The column number in the generated source, or null.

SourceMapConsumer.prototype.sourceContentFor(source)

Returns the original source content for the source provided. The only
argument is the URL of the original source file.

SourceMapConsumer.prototype.eachMapping(callback, context, order)

Iterate over each mapping between an original source/line/column and a
generated line/column in this source map.

		callback: The function that is called with each mapping. Mappings have the
form { source, generatedLine, generatedColumn, originalLine, originalColumn, name }

		context: Optional. If specified, this object will be the value of this
every time that callback is called.

		order: Either SourceMapConsumer.GENERATED_ORDER or
SourceMapConsumer.ORIGINAL_ORDER. Specifies whether you want to iterate over
the mappings sorted by the generated file’s line/column order or the
original’s source/line/column order, respectively. Defaults to
SourceMapConsumer.GENERATED_ORDER.

SourceMapGenerator

An instance of the SourceMapGenerator represents a source map which is being
built incrementally.

new SourceMapGenerator([startOfSourceMap])

You may pass an object with the following properties:

		file: The filename of the generated source that this source map is
associated with.

		sourceRoot: A root for all relative URLs in this source map.

SourceMapGenerator.fromSourceMap(sourceMapConsumer)

Creates a new SourceMapGenerator based on a SourceMapConsumer

		sourceMapConsumer The SourceMap.

SourceMapGenerator.prototype.addMapping(mapping)

Add a single mapping from original source line and column to the generated
source’s line and column for this source map being created. The mapping object
should have the following properties:

		generated: An object with the generated line and column positions.

		original: An object with the original line and column positions.

		source: The original source file (relative to the sourceRoot).

		name: An optional original token name for this mapping.

SourceMapGenerator.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for an original source file.

		sourceFile the URL of the original source file.

		sourceContent the content of the source file.

SourceMapGenerator.prototype.applySourceMap(sourceMapConsumer[, sourceFile[, sourceMapPath]])

Applies a SourceMap for a source file to the SourceMap.
Each mapping to the supplied source file is rewritten using the
supplied SourceMap. Note: The resolution for the resulting mappings
is the minimium of this map and the supplied map.

		sourceMapConsumer: The SourceMap to be applied.

		sourceFile: Optional. The filename of the source file.
If omitted, sourceMapConsumer.file will be used, if it exists.
Otherwise an error will be thrown.

		sourceMapPath: Optional. The dirname of the path to the SourceMap
to be applied. If relative, it is relative to the SourceMap.

This parameter is needed when the two SourceMaps aren’t in the same
directory, and the SourceMap to be applied contains relative source
paths. If so, those relative source paths need to be rewritten
relative to the SourceMap.

If omitted, it is assumed that both SourceMaps are in the same directory,
thus not needing any rewriting. (Supplying '.' has the same effect.)

SourceMapGenerator.prototype.toString()

Renders the source map being generated to a string.

SourceNode

SourceNodes provide a way to abstract over interpolating and/or concatenating
snippets of generated JavaScript source code, while maintaining the line and
column information associated between those snippets and the original source
code. This is useful as the final intermediate representation a compiler might
use before outputting the generated JS and source map.

new SourceNode([line, column, source[, chunk[, name]]])

		line: The original line number associated with this source node, or null if
it isn’t associated with an original line.

		column: The original column number associated with this source node, or null
if it isn’t associated with an original column.

		source: The original source’s filename; null if no filename is provided.

		chunk: Optional. Is immediately passed to SourceNode.prototype.add, see
below.

		name: Optional. The original identifier.

SourceNode.fromStringWithSourceMap(code, sourceMapConsumer[, relativePath])

Creates a SourceNode from generated code and a SourceMapConsumer.

		code: The generated code

		sourceMapConsumer The SourceMap for the generated code

		relativePath The optional path that relative sources in sourceMapConsumer
should be relative to.

SourceNode.prototype.add(chunk)

Add a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.prepend(chunk)

Prepend a chunk of generated JS to this source node.

		chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for a source file. This will be added to the
SourceMap in the sourcesContent field.

		sourceFile: The filename of the source file

		sourceContent: The content of the source file

SourceNode.prototype.walk(fn)

Walk over the tree of JS snippets in this node and its children. The walking
function is called once for each snippet of JS and is passed that snippet and
the its original associated source’s line/column location.

		fn: The traversal function.

SourceNode.prototype.walkSourceContents(fn)

Walk over the tree of SourceNodes. The walking function is called for each
source file content and is passed the filename and source content.

		fn: The traversal function.

SourceNode.prototype.join(sep)

Like Array.prototype.join except for SourceNodes. Inserts the separator
between each of this source node’s children.

		sep: The separator.

SourceNode.prototype.replaceRight(pattern, replacement)

Call String.prototype.replace on the very right-most source snippet. Useful
for trimming whitespace from the end of a source node, etc.

		pattern: The pattern to replace.

		replacement: The thing to replace the pattern with.

SourceNode.prototype.toString()

Return the string representation of this source node. Walks over the tree and
concatenates all the various snippets together to one string.

SourceNode.prototype.toStringWithSourceMap([startOfSourceMap])

Returns the string representation of this tree of source nodes, plus a
SourceMapGenerator which contains all the mappings between the generated and
original sources.

The arguments are the same as those to new SourceMapGenerator.

Tests

[image: Build Status] [https://travis-ci.org/mozilla/source-map]

Install NodeJS version 0.8.0 or greater, then run node test/run-tests.js.

To add new tests, create a new file named test/test-<your new test name>.js
and export your test functions with names that start with “test”, for example

exports["test doing the foo bar"] = function (assert, util) {
 ...
};

The new test will be located automatically when you run the suite.

The util argument is the test utility module located at test/source-map/util.

The assert argument is a cut down version of node’s assert module. You have
access to the following assertion functions:

		doesNotThrow

		equal

		ok

		strictEqual

		throws

(The reason for the restricted set of test functions is because we need the
tests to run inside Firefox’s test suite as well and so the assert module is
shimmed in that environment. See build/assert-shim.js.)

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/source-map/CHANGELOG.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

Change Log

0.1.40

		Performance improvements for parsing source maps in SourceMapConsumer.

0.1.39

		Fix a bug where setting a source’s contents to null before any source content
had been set before threw a TypeError. See issue #131.

0.1.38

		Fix a bug where finding relative paths from an empty path were creating
absolute paths. See issue #129.

0.1.37

		Fix a bug where if the source root was an empty string, relative source paths
would turn into absolute source paths. Issue #124.

0.1.36

		Allow the names mapping property to be an empty string. Issue #121.

0.1.35

		A third optional parameter was added to SourceNode.fromStringWithSourceMap
to specify a path that relative sources in the second parameter should be
relative to. Issue #105.

		If no file property is given to a SourceMapGenerator, then the resulting
source map will no longer have a null file property. The property will
simply not exist. Issue #104.

		Fixed a bug where consecutive newlines were ignored in SourceNodes.
Issue #116.

0.1.34

		Make SourceNode work with windows style (“\r\n”) newlines. Issue #103.

		Fix bug involving source contents and the
SourceMapGenerator.prototype.applySourceMap. Issue #100.

0.1.33

		Fix some edge cases surrounding path joining and URL resolution.

		Add a third parameter for relative path to
SourceMapGenerator.prototype.applySourceMap.

		Fix issues with mappings and EOLs.

0.1.32

		Fixed a bug where SourceMapConsumer couldn’t handle negative relative columns
(issue 92).

		Fixed test runner to actually report number of failed tests as its process
exit code.

		Fixed a typo when reporting bad mappings (issue 87).

0.1.31

		Delay parsing the mappings in SourceMapConsumer until queried for a source
location.

		Support Sass source maps (which at the time of writing deviate from the spec
in small ways) in SourceMapConsumer.

0.1.30

		Do not join source root with a source, when the source is a data URI.

		Extend the test runner to allow running single specific test files at a time.

		Performance improvements in SourceNode.prototype.walk and
SourceMapConsumer.prototype.eachMapping.

		Source map browser builds will now work inside Workers.

		Better error messages when attempting to add an invalid mapping to a
SourceMapGenerator.

0.1.29

		Allow duplicate entries in the names and sources arrays of source maps
(usually from TypeScript) we are parsing. Fixes github issue 72.

0.1.28

		Skip duplicate mappings when creating source maps from SourceNode; github
issue 75.

0.1.27

		Don’t throw an error when the file property is missing in SourceMapConsumer,
we don’t use it anyway.

0.1.26

		Fix SourceNode.fromStringWithSourceMap for empty maps. Fixes github issue 70.

0.1.25

		Make compatible with browserify

0.1.24

		Fix issue with absolute paths and file:// URIs. See
https://bugzilla.mozilla.org/show_bug.cgi?id=885597

0.1.23

		Fix issue with absolute paths and sourcesContent, github issue 64.

0.1.22

		Ignore duplicate mappings in SourceMapGenerator. Fixes github issue 21.

0.1.21

		Fixed handling of sources that start with a slash so that they are relative to
the source root’s host.

0.1.20

		Fixed github issue #43: absolute URLs aren’t joined with the source root
anymore.

0.1.19

		Using Travis CI to run tests.

0.1.18

		Fixed a bug in the handling of sourceRoot.

0.1.17

		Added SourceNode.fromStringWithSourceMap.

0.1.16

		Added missing documentation.

		Fixed the generating of empty mappings in SourceNode.

0.1.15

		Added SourceMapGenerator.applySourceMap.

0.1.14

		The sourceRoot is now handled consistently.

0.1.13

		Added SourceMapGenerator.fromSourceMap.

0.1.12

		SourceNode now generates empty mappings too.

0.1.11

		Added name support to SourceNode.

0.1.10

		Added sourcesContent support to the customer and generator.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/grunt-contrib-nodeunit/node_modules/nodeunit/node_modules/tap/node_modules/glob/node_modules/minimatch/node_modules/sigmund/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

sigmund

Quick and dirty signatures for Objects.

This is like a much faster deepEquals comparison, which returns a
string key suitable for caches and the like.

Usage

function doSomething (someObj) {
 var key = sigmund(someObj, maxDepth) // max depth defaults to 10
 var cached = cache.get(key)
 if (cached) return cached)

 var result = expensiveCalculation(someObj)
 cache.set(key, result)
 return result
}

The resulting key will be as unique and reproducible as calling
JSON.stringify or util.inspect on the object, but is much faster.
In order to achieve this speed, some differences are glossed over.
For example, the object {0:'foo'} will be treated identically to the
array ['foo'].

Also, just as there is no way to summon the soul from the scribblings
of a cocain-addled psychoanalyst, there is no way to revive the object
from the signature string that sigmund gives you. In fact, it’s
barely even readable.

As with sys.inspect and JSON.stringify, larger objects will
produce larger signature strings.

Because sigmund is a bit less strict than the more thorough
alternatives, the strings will be shorter, and also there is a
slightly higher chance for collisions. For example, these objects
have the same signature:

var obj1 = {a:'b',c:/def/,g:['h','i',{j:'',k:'l'}]}
var obj2 = {a:'b',c:'/def/',g:['h','i','{jkl']}

Like a good Freudian, sigmund is most effective when you already have
some understanding of what you’re looking for. It can help you help
yourself, but you must be willing to do some work as well.

Cycles are handled, and cyclical objects are silently omitted (though
the key is included in the signature output.)

The second argument is the maximum depth, which defaults to 10,
because that is the maximum object traversal depth covered by most
insurance carriers.

 © Copyright .
 Created using Sphinx 1.3.1.

node_modules/stylus/node_modules/source-map/node_modules/amdefine/README.html

 Navigation

 		
 index

 		rgi-assessment-tool stable documentation »

amdefine

A module that can be used to implement AMD’s define() in Node. This allows you
to code to the AMD API and have the module work in node programs without
requiring those other programs to use AMD.

Usage

1) Update your package.json to indicate amdefine as a dependency:

 "dependencies": {
 "amdefine": ">=0.1.0"
 }

Then run npm install to get amdefine into your project.

2) At the top of each module that uses define(), place this code:

if (typeof define !== 'function') { var define = require('amdefine')(module) }

Only use these snippets when loading amdefine. If you preserve the basic structure,
with the braces, it will be stripped out when using the RequireJS optimizer.

You can add spaces, line breaks and even require amdefine with a local path, but
keep the rest of the structure to get the stripping behavior.

As you may know, because if statements in JavaScript don’t have their own scope, the var
declaration in the above snippet is made whether the if expression is truthy or not. If
RequireJS is loaded then the declaration is superfluous because define is already already
declared in the same scope in RequireJS. Fortunately JavaScript handles multiple var
declarations of the same variable in the same scope gracefully.

If you want to deliver amdefine.js with your code rather than specifying it as a dependency
with npm, then just download the latest release and refer to it using a relative path:

Latest Version [https://github.com/jrburke/amdefine/raw/latest/amdefine.js]

amdefine/intercept

Consider this very experimental.

Instead of pasting the piece of text for the amdefine setup of a define
variable in each module you create or consume, you can use amdefine/intercept
instead. It will automatically insert the above snippet in each .js file loaded
by Node.

Warning: you should only use this if you are creating an application that
is consuming AMD style defined()’d modules that are distributed via npm and want
to run that code in Node.

For library code where you are not sure if it will be used by others in Node or
in the browser, then explicitly depending on amdefine and placing the code
snippet above is suggested path, instead of using amdefine/intercept. The
intercept module affects all .js files loaded in the Node app, and it is
inconsiderate to modify global state like that unless you are also controlling
the top level app.

Why distribute AMD-style nodes via npm?

npm has a lot of weaknesses for front-end use (installed layout is not great,
should have better support for the `baseUrl + moduleID + ‘.js’ style of loading,
single file JS installs), but some people want a JS package manager and are
willing to live with those constraints. If that is you, but still want to author
in AMD style modules to get dynamic require([]), better direct source usage and
powerful loader plugin support in the browser, then this tool can help.

amdefine/intercept usage

Just require it in your top level app module (for example index.js, server.js):

require('amdefine/intercept');

The module does not return a value, so no need to assign the result to a local
variable.

Then just require() code as you normally would with Node’s require(). Any .js
loaded after the intercept require will have the amdefine check injected in
the .js source as it is loaded. It does not modify the source on disk, just
prepends some content to the text of the module as it is loaded by Node.

How amdefine/intercept works

It overrides the Module._extensions['.js'] in Node to automatically prepend
the amdefine snippet above. So, it will affect any .js file loaded by your
app.

define() usage

It is best if you use the anonymous forms of define() in your module:

define(function (require) {
 var dependency = require('dependency');
});

or

define(['dependency'], function (dependency) {

});

RequireJS optimizer integration. [bookmark: optimizer]

[bookmark: optimizer]
[bookmark: optimizer]Version 1.0.3 of the RequireJS optimizer [http://requirejs.org/docs/optimization.html]
will have support for stripping the if (typeof define !== 'function') check
mentioned above, so you can include this snippet for code that runs in the
browser, but avoid taking the cost of the if() statement once the code is
optimized for deployment.

Node 0.4 Support

If you want to support Node 0.4, then add require as the second parameter to amdefine:

//Only if you want Node 0.4. If using 0.5 or later, use the above snippet.
if (typeof define !== 'function') { var define = require('amdefine')(module, require) }

Limitations

Synchronous vs Asynchronous

amdefine creates a define() function that is callable by your code. It will
execute and trace dependencies and call the factory function synchronously,
to keep the behavior in line with Node’s synchronous dependency tracing.

The exception: calling AMD’s callback-style require() from inside a factory
function. The require callback is called on process.nextTick():

define(function (require) {
 require(['a'], function(a) {
 //'a' is loaded synchronously, but
 //this callback is called on process.nextTick().
 });
});

Loader Plugins

Loader plugins are supported as long as they call their load() callbacks
synchronously. So ones that do network requests will not work. However plugins
like text [http://requirejs.org/docs/api.html#text] can load text files locally.

The plugin API’s load.fromText() is not supported in amdefine, so this means
transpiler plugins like the CoffeeScript loader plugin [https://github.com/jrburke/require-cs]
will not work. This may be fixable, but it is a bit complex, and I do not have
enough node-fu to figure it out yet. See the source for amdefine.js if you want
to get an idea of the issues involved.

Tests

To run the tests, cd to tests and run:

node all.js
node all-intercept.js

License

New BSD and MIT. Check the LICENSE file for all the details.

 © Copyright .
 Created using Sphinx 1.3.1.

